MATH 61501 — Combinatorics of crystal bases (Spring 2020) Lecture 19

1 Last time: the x-involution of B

Fix a Cartan type (®, A) with simple roots {a; : i € I'}.
The elementary crystal B; has weight map of B; is wt(u;(n)) = na; and crystal graph
o u(2) o (1) =5 w(0) = ug(—1) S -

Fix a reduced word i = (i1,42,...,ixn) for the longest element wy € W.
Define A :=8B;, @ B;, ® --- ® B;,,. Write x <y ife;, ---ej,ej, () =y. Then define

B ={x € A:z < ux} where s :=u; (0) ® u,(0) ® -+ @ u;,, (0) € A,
with all operators on By, inherited from A, except e;(z) = 0 when ¢;(xz) = 0. We have an embedding

1 (z) = (a1, a9,...,ay) €ZYN  for x = u;, (—ay) @ ug,(—az) @ -+ @ Uiy (—an) € Boo. (1.1)

We have a second embedding, where if by = ¢;, (z) and by = €, (ei-’l1 (z)) and so forth, then

to(x) = string;(x) = (b1, ba, ..., bN). (1.2)

Our goal is define a weight-preserving involution % : By, — By such that v1 (%) = 1o(x).

We gave a concrete definition of % in type A, last time along with most of the construction in general.

2 Finishing the construction of the x-involution

We continue from where we left off last time.

The way we want to define x in general is to describe a second crystal structure B, on the same underlying
set as B, and then identify * as the unique weight-preserving isomorphism between these structures.

It will not be obvious from this approach that the map % is an involution, but we will prove this.

2.1 The crystals B' and B}

Our strategy involves several other subcrystals of B; and B.,. We review the definitions.
Throughout, let x = u;, (—a1) ® -+ @ u;, (—an) € Boo be a generic element, so aq,...,ay > 0.
We write v; : Boo — B; ® Boo for the unique crystal morphism with ¢;(te) = 1;(0) ® teo.

If 41 = i (which we can assume without loss of generality), then

Yi(x) = ui(—a1) ®u;y, (0) @ - @ uiy(—an) = u;j(—a1) ® y  where y € By.

Define B to be the subset of x € By, with v;(z) = u;(0) ® z, i.e., with a; = 0 (assuming i; = 7).
We make B into a crystal by redefining f;(z) = 0 if ¢;(z) = 0 for z € B'.
The crystal B! is upper seminormal and i-seminormal, meaning that
wi(r) = max{k > 0: fF(x) # 0} and gi(z) = max{k > 0: eF(z) # 0}
and that e;(z) € B' U{0} and £;(z) = max{k > 0 : f]’“(x) # 0} for all j € I and x € B

Also, let B = {u;(—a) : a > 0}. To make this set into a crystal, we redefine e;(u;(0)) = 0.
Key fact: the map v; is a crystal isomorphism Bo, — B;” ® B.
The tensor product B;” ® B is a subset of B; ® By, and turns out to be equal to the image ;(Boo)-
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2.2 The crystal B

Now define B to be the same set as B, but viewed as a crystal relative to these modified operators:
e The weight map wt is the same as before.
e For z € B, with ¥;(z) = u;(—a)®y for some y € B¢, define e (x) = a and ¢} (x) = a+ (wt(x), o).
o Next define ef(x) and f}(z) by requiring that

u(—(a—1)®y ifa>0 .
0 ifa=0

If ¢ # j then the operators e} and f commute with e; and f;.
If i # j then we also have €;(f/(z)) = ¢;(z) for all € B.
The highest weight element of B is still ©n.

2.3 The crystals B* and B;"

Let B* = {z € B : €;(z) = 0}.
We make B*! into a crystal with crystal operators ef and f* by redefining f7(z) = 0 if ¢} (z) = 0.

Then B*? is a subcrystal of B%, that is upper seminormal and i-seminormal.

Let B = B; but denote the crystal operators as €7, ¢f, ef, fF and elements as u}(—a) for a € Z.

Define B} to be the subcrystal of elements u}(—a) € B} with a > 0.

Given x € B%, let a = g;(x) define y = e?(z) € B*".
Next, let ¢ : B, — BT ® B* be the map with 1} (z) = uf(—a) ® y.
Last time we sketched a proof of the following technical lemma:

Lemma 2.1. Suppose = € By has ¢;(x) = u;(—t) ® y and ¢ (z) = vl (—v) @ z. Then

*

gi (2) — pily) = ei(r) — ¥i(2).

Last time we also stated the following result. Today we explain the proof.
Proposition 2.2. The map 9} : B, — BT ® B* is a morphism for the * crystal structure.

Proof sketch. We need to show that 5 (z) = €59 (z) and €37 (z) = e (x) for all z € BX, and j € I

We also need corresponding statements for the ¢ and f7, but these are equivalent by the crystal axioms.

Assume j # i. Then these identities are fairly direct consequences of the fact that e; and e} commute.
Since €% (uf(—n)) = —oo, the operator e} always acts on uf(—n) @y € B;™ @ B*' on the second factor.
Also, the relevant crystals and are either upper seminormal or i-seminormal.

For example, this means that if a := ¢;(z) and y := ef (z) then a = g;e}(z) and €}(y) = efe}(z) so

¥i(ej (@) = uj(—a) @ €j(y) = ej(uj(—a) @ y) = ej(P7 (2)).
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Instead assume that ¢ = j. This case is more involved and we only sketch the argument.
Write ¢;(z) = u;(—t) ® y and ¥} (z) = u;(—v) ® z where

t=¢e;(x), v =¢g;(x), y = el (x), and z = e} (x).

There are two subcases. The first case is t = €} (z) < ;(y). By the technical lemma, v = ¢;(x) < 7 (2).

We already know that 1); is crystal morphism, so we have
v = eppi(x) = max{ei(y),t +&i(y) — @i(y)} = €i(y).

Because t < ¢;(y), each time we apply e; to ©;(x) = u;(—t) ® y it applies to the second component, and
Vi(2) = Yilejz) = efvi(x) = ui(—t) ® €7 ().

This means that €/ (z) =t = £f(x). On the other hand, since ¢;(z) < ¢f(z), we have

ei i (v) = max{ej (2),e:(x) + 7 (2) — ¥j (2)} = & (2). ()

Combining these facts gives ef (¢F (z)) = &

*(z). This proves the first of our identities.

For the second identity, one argues that ;(ef(x)) = v and that ¥} (e (z)) = uf (—v) ® e} (e} (x)).
Then it suffices to show that e¥ (e} (z)) = e} (=) since e} (Y} (z)) = e} (uf (—v) @ z) = uf(—v) ® € (2).

The justification of these claims follows by calculations similar to those above.

The other subcase is t = £/ (x) > ¢;(y) in which case the technical lemma implies v = g;(x) > 7 (2).

One argues now that € (z) = ¢;(y), and using (*) that
i (2) = ei(x) +€7(2) — 9 (2) = €7 () + £ (2) — @ily) = €i (),

where the second equality holds by the technical lemma.

To show that e (x) = 1fer(x), one argues that &;(ef(r)) =v — 1 and e/ ' (e} (z)) = z and
Pi(ei (@) =uj(=(v-1)) @2
since then the right hand side is e} (z). O

Theorem 2.3. The crystal B is isomorphic to Bs. Hence, there exists a unique weight-preserving
bijection ¥ : Boo — B, such that for every i € I we have

ef ol =g, ;o =y, ef o =vYoey, and frod=1vof;.

Proof. Let wg = s;, - - 8;, be a reduced word for the longest element in W.

Since we have embeddings 1; : Boo — B; ® Bs we have an embedding
Boo = Bi, @ Bi, ® -+ Q@ By ® Boo.

We may construct Boo as the subcrystal of B;, ® B;, @ - - - ® B;, generated by ues := u;, (0) @ - - @u;, (0).
We can therefore understand the previous map as an embedding B, — Bs ® Boo given by & +— & ® Ueo.
In particular, we always have f;(z ® tuso) = fi(2) ® Uso since ¢;(us) < €;(x).

Thus B is isomorphic to a subcrystal contained in the set B;, @ B;, ® -+ @ B, ® Uoo-

On the other hand we have similar embeddings v} : Bx, — B ® B, for any i € I and thus also

B — B @B, @B, @B,
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and the image of the second embedding is contained in the set B}, @ B}, ® --- @ B}, @ uj,

But B; and B} are the same crystals, just written in different notation, so the map
0 uiy (—a1) ® - @ Uiy (—an) @ Uso — U, (—a1) @ - @ uj, (—an) @ us,

is an isomorphism B;, ® B, ® - -+ ® B, ® Use — Bf @ Bf, ®@---® B}, @ux,.
Let ¥ : Boo — B%, be the map that makes the diagram

Boo —— Biy ®Bi, ® -+ @ Biy ® Uuoo

s ls

By, —— B @B, ®---® B} ®@uj,
commute. This map is the desired isomorphism. It is well-defined because
e the image of By in B;, @ B;, ® - ® B;,, ® B is generated by too ® Uno,
e the image of B, in B} ® B}, @ --- ® B ® By, is generated by uy, ® u},, and
e we have 0(uo ® Us) = Ul ® uk,.

This ensure that the image of B, under its embedding is mapped by 6 to the image of B . O

o0

Proposition 2.4. The map ¢ : B, — B, from the previous theorem has order two.

Proof. To simplify our notation we do not distinguish between B; and B} in this proof, meaning that we
consider uf(—t) = u;(—t). One can show from/using the proof of Proposition [2.2| that

Yie; = (e @V, Piff = (fi®@ Dy, Yiei = (e @1)yf,  and  ¢ifi = (fio Y. (*F)

The map 9 is a crystal morphism B}, — B; ® Bj,.

The map (1 ® 9)1;9~1 is another morphism BX, — B; @ B,.

Since B}, is connected with highest weight element ., there is at most one morphism BY — B; @ B%,.
Hence (1 ® 9)¢;971 = ¢F and (1 ® 9)y; = .

Using (**) and the fact that ¢ is a crystal isomorphism, we compute

WIS = IO = (LR OWST0 = (i@ 0)d = (£ © 1) v® = v o™

Since 1} is injective, it follows that 92 f; = f;92. Similar computations show that ¥? commutes with the
e; operators and is therefore a crystal isomorphism : By, — Beo-

But the identity map is the only such morphism, so 92 = 1. O
Finally, here is our definition of the *-involution:

Definition 2.5. The *-involution of By is the map = — z* := J(x).

3 Properties of the x-involution

Let i = (i1,...,in) be a reduced word for wy € W. Identify By, with a subcrystal of B;, ® -+ ® B; .
The following shows that ¢1(x*) = ta(z) for all # € B for our two embeddings from (1.1]) and (L.2)).
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Theorem 3.1. If v € By, has * = u;, (—a1) @ -+ - ® u; (—an) then string;(z) = (a1,...,an).

Proof. Consider the sequence of embeddings

Py 1®Y] 1®1v;,
Bi, — B}, @ By, —= B}, ® B}, ® B}, s

ending in B}, ® --- ® Bf, ® {us} C B} ®---® B}, ® B,
If ¥ = ujy (—a1) @ - ® uz, (—an) then its image under this map is u;, (—a1) @ -+ @ usy (—an) @ ul,.

On the other hand, we have ¢}, (v) = u}, (—a1) ® y, where y = ¢f’'x and a; = &;, ().

Then applying 1 ® 97, gives uj (—a1) ® uj,(—a2) ® z where u},(—a2) ® z = 97 (y) and so we have
ag = €, (ej!x) and z = ej’ej'z. Continuing in this way shows that string;(z) = (a1,...,an). O

Let w € W with a reduced word w = s;, - -8, .
Write B, (w) for the Demazure crystal ;, -+ D;, {tioo} where ;X = {z € By, : €¥(x) € X for a k > 0}.

The *-involution interacts with Demazure crystals in a particularly nice way:
Theorem 3.2. We have B, (w™1)* = By (w).

Proof. We start with a reduced word (i1, ...,4,.) for w = s;, ---s; and complete it to a reduced word for
wo = 84, -+~ Sip- Note that the order of the reduced word is reversed from the usual convention.

We proved in an earlier lecture that we identify Bo,(w™!) = A(w™1) N €, where
<= {‘T € Bil ® - 'BiN Tx X uOO} and *A(w_l) = Bil - ®Bi7- ®ui7-+1(0) ®--- ®UZN(O)

Applying * and using the previous theorem, we see that B..(w™1)* is contained in the set of elements in
Boo whose string patterns for i = (i1, ...,ix) terminate after r steps. Such elements are in Boo(w).

This means that Bo(w™)* C By (w). Inverting w gives Boo (w)* C Boo(w™!), and since it follows by
applying the involution % that Ba(w) C Buo(w™1)*. Hence Boo (w™1)* = By (w). O
The image of ¥; : Boo = B; @ Boo is {ui(—a) ® y € B; ® Boo : €7 (y) = 0 and a > 0}.

Recall that there is a unique crystal embedding 1y : By — Ty ® Boo.

We can also characterize the image of this map.

Lemma 3.3. Let X :={ty @z :ef(z) < (\, o)) for all i} C T} @ Beo.
If ty @z € ¥ then p;(tx ® x) > 0, with strict inequality if and only if f;(tx ® z) € X.

Proof. Choose a reduced word (iy,14s2,...,ix) for wg with i = ;.

When we identify By, with a subcrystal of B;, ® - -+ ® B;,, we may write
b ®@x =1\ @ui(—a) @ uj,(—a2) @ @ ujy(—an)

where a = e} (). The lemma follows by computing ¢;(¢tx ® x) using the formulas for string lengths in
N-fold tensor products applied to the RHS. The details are a little technical though not very involved
(relative to other results today); see Lemma 14.18 in Bump and Schilling’s book for the full argument. [J

Theorem 3.4. The image of ¥ is {tx @ z € T, @ B : €f(x) < (A, ) for all i}.
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Proof. Tt follows by the lemma that if we redefine f;(tx ® ) = 0 when @;(t\ ® ) = 0 then the set X
becomes a crystal that is both upper seminormal (since By, is) and lower seminormal.

Now we argue that the image of 1 is contained in 3.

The highest weight element u) is mapped to t) ® us, € X.

If v € B, is not a highest weight element then write v = f;(y) for some y € B,.

By induction ¥y (y) € £ and ¢;(¥(y)) = pi(y) > 0. Since ¥ is seminormal, we have v = f;(¢A(y)) € X.

This shows that image(iy) C X.

As ¥ has a unique highest weight element ) ® uso, it is a connected crystal, so image(¢y) = X. O
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