1 Last time: the \star -involution of \mathcal{B}_{∞}

Fix a Cartan type (Φ, Λ) with simple roots $\{\alpha_i : i \in I\}$. The elementary crystal \mathcal{B}_i has weight map of \mathcal{B}_i is $\mathbf{wt}(u_i(n)) = n\alpha_i$ and crystal graph $\cdots \xrightarrow{i} u_i(2) \xrightarrow{i} u_i(1) \xrightarrow{i} u_i(0) \xrightarrow{i} u_i(-1) \xrightarrow{i} \cdots$

Fix a reduced word $\mathbf{i} = (i_1, i_2, \dots, i_N)$ for the longest element $w_0 \in W$.

Define $\mathcal{A} := \mathcal{B}_{i_1} \otimes \mathcal{B}_{i_2} \otimes \cdots \otimes \mathcal{B}_{i_N}$. Write $x \leq y$ if $e_{j_m} \cdots e_{j_2} e_{j_1}(x) = y$. Then define

$$\mathcal{B}_{\infty} := \{ x \in \mathcal{A} : x \preceq u_{\infty} \} \quad \text{where } u_{\infty} := u_{i_1}(0) \otimes u_{i_2}(0) \otimes \cdots \otimes u_{i_N}(0) \in \mathcal{A} \}$$

with all operators on \mathcal{B}_{∞} inherited from \mathcal{A} , except $e_i(x) = 0$ when $\varepsilon_i(x) = 0$. We have an embedding

$$\iota_1(x) = (a_1, a_2, \dots, a_N) \in \mathbb{Z}^N \quad \text{for } x = u_{i_1}(-a_1) \otimes u_{i_2}(-a_2) \otimes \dots \otimes u_{i_N}(-a_N) \in \mathcal{B}_{\infty}.$$
(1.1)

We have a second embedding, where if $b_1 = \varepsilon_{i_1}(x)$ and $b_2 = \varepsilon_{i_2}(e_{i_1}^{b_1}(x))$ and so forth, then

$$\iota_2(x) = \text{string}_{\mathbf{i}}(x) = (b_1, b_2, \dots, b_N).$$
 (1.2)

Our goal is define a weight-preserving involution $\star : \mathcal{B}_{\infty} \to \mathcal{B}_{\infty}$ such that $\iota_1(x^*) = \iota_2(x)$.

We gave a concrete definition of \star in type A_2 last time along with most of the construction in general.

2 Finishing the construction of the *-involution

We continue from where we left off last time.

The way we want to define \star in general is to describe a second crystal structure $\mathcal{B}_{\infty}^{\star}$ on the same underlying set as \mathcal{B}_{∞} , and then identify \star as the unique weight-preserving isomorphism between these structures. It will not be obvious from this approach that the map \star is an involution, but we will prove this.

2.1 The crystals \mathcal{B}^i and \mathcal{B}^+_i

Our strategy involves several other subcrystals of \mathcal{B}_i and \mathcal{B}_{∞} . We review the definitions. Throughout, let $x = u_{i_1}(-a_1) \otimes \cdots \otimes u_{i_N}(-a_N) \in \mathcal{B}_{\infty}$ be a generic element, so $a_1, \ldots, a_N \ge 0$. We write $\psi_i : \mathcal{B}_{\infty} \to \mathcal{B}_i \otimes \mathcal{B}_{\infty}$ for the unique crystal morphism with $\psi_i(u_{\infty}) = u_i(0) \otimes u_{\infty}$. If $i_1 = i$ (which we can assume without loss of generality), then

$$\psi_i(x) = u_i(-a_1) \otimes u_{i_1}(0) \otimes \cdots \otimes u_{i_N}(-a_N) = u_i(-a_1) \otimes y \quad \text{where } y \in \mathcal{B}_{\infty}.$$

Define \mathcal{B}^i to be the subset of $x \in \mathcal{B}_{\infty}$ with $\psi_i(x) = u_i(0) \otimes x$, i.e., with $a_1 = 0$ (assuming $i_1 = i$). We make \mathcal{B}^i into a crystal by redefining $f_i(x) = 0$ if $\varphi_i(x) = 0$ for $x \in \mathcal{B}^i$.

The crystal \mathcal{B}^i is upper seminormal and *i*-seminormal, meaning that

$$\begin{split} \varphi_i(x) &= \max\{k \geq 0 : f_i^k(x) \neq 0\} \quad \text{ and } \quad \varepsilon_i(x) = \max\{k \geq 0 : e_i^k(x) \neq 0\} \\ \text{ and that } e_j(x) \in \mathcal{B}^i \sqcup \{0\} \text{ and } \varepsilon_j(x) = \max\{k \geq 0 : f_j^k(x) \neq 0\} \text{ for all } j \in I \text{ and } x \in \mathcal{B}^i. \end{split}$$

Also, let $\mathcal{B}_i^+ = \{u_i(-a) : a \ge 0\}$. To make this set into a crystal, we redefine $e_i(u_i(0)) = 0$. Key fact: the map ψ_i is a crystal isomorphism $\mathcal{B}_{\infty} \xrightarrow{\sim} \mathcal{B}_i^+ \otimes \mathcal{B}^i$.

The tensor product $\mathcal{B}_i^+ \otimes \mathcal{B}^i$ is a subset of $\mathcal{B}_i \otimes \mathcal{B}_\infty$ and turns out to be equal to the image $\psi_i(\mathcal{B}_\infty)$.

2.2 The crystal $\mathcal{B}^{\star}_{\infty}$

Now define $\mathcal{B}_{\infty}^{\star}$ to be the same set as \mathcal{B}_{∞} , but viewed as a crystal relative to these modified operators:

- The weight map **wt** is the same as before.
- For $x \in \mathcal{B}_{\infty}$ with $\psi_i(x) = u_i(-a) \otimes y$ for some $y \in \mathcal{B}^i$, define $\varepsilon_i^{\star}(x) = a$ and $\varphi_i^{\star}(x) = a + \langle \mathbf{wt}(x), \alpha_i^{\vee} \rangle$.
- Next define $e_i^{\star}(x)$ and $f_i^{\star}(x)$ by requiring that

$$\psi_i(e_i^{\star}(x)) = \begin{cases} u_i(-(a-1)) \otimes y & \text{if } a > 0\\ 0 & \text{if } a = 0 \end{cases} \quad \text{and} \quad \psi_i(f_i^{\star}(x)) = u_i(-(a+1)) \otimes y$$

If $i \neq j$ then the operators e_i^* and f_i^* commute with e_j and f_j . If $i \neq j$ then we also have $\varepsilon_j(f_i^*(x)) = \varepsilon_j(x)$ for all $x \in \mathcal{B}_\infty$. The highest weight element of \mathcal{B}_∞^* is still u_∞ .

2.3 The crystals $\mathcal{B}^{\star i}$ and $\mathcal{B}^{\star +}_i$

Let $\mathcal{B}^{\star i} = \{x \in \mathcal{B}_{\infty} : e_i(x) = 0\}.$

We make $\mathcal{B}^{\star i}$ into a crystal with crystal operators e_i^{\star} and f_i^{\star} by redefining $f_i^{\star}(x) = 0$ if $\varphi_i^{\star}(x) = 0$. Then $\mathcal{B}^{\star i}$ is a subcrystal of $\mathcal{B}^{\star}_{\infty}$ that is upper seminormal and *i*-seminormal.

Let $\mathcal{B}_i^{\star} = \mathcal{B}_i$ but denote the crystal operators as ε_i^{\star} , φ_i^{\star} , e_i^{\star} , f_i^{\star} and elements as $u_i^{\star}(-a)$ for $a \in \mathbb{Z}$. Define $\mathcal{B}_i^{\star+}$ to be the subcrystal of elements $u_i^{\star}(-a) \in \mathcal{B}_i^{\star}$ with $a \ge 0$.

Given $x \in \mathcal{B}^{\star}_{\infty}$, let $a = \varepsilon_i(x)$ define $y = e_i^a(x) \in \mathcal{B}^{\star i}$. Next, let $\psi_i^{\star} : \mathcal{B}^{\star}_{\infty} \to \mathcal{B}^{\star +}_i \otimes \mathcal{B}^{\star i}$ be the map with $\psi_i^{\star}(x) = u_i^{\star}(-a) \otimes y$. Last time we sketched a proof of the following technical lemma:

Lemma 2.1. Suppose $x \in \mathcal{B}_{\infty}$ has $\psi_i(x) = u_i(-t) \otimes y$ and $\psi_i^{\star}(x) = u_i^{\star}(-v) \otimes z$. Then $\varepsilon_i^{\star}(x) - \varphi_i(y) = \varepsilon_i(x) - \varphi_i^{\star}(z)$.

Last time we also stated the following result. Today we explain the proof.

Proposition 2.2. The map $\psi_i^{\star} : \mathcal{B}_{\infty}^{\star} \to \mathcal{B}_i^{\star +} \otimes \mathcal{B}^{\star i}$ is a morphism for the \star crystal structure.

Proof sketch. We need to show that $\varepsilon_j^*(x) = \varepsilon_j^* \psi_i^*(x)$ and $e_j^* \psi_i^*(x) = \psi_i^* e_j^*(x)$ for all $x \in \mathcal{B}_{\infty}^*$ and $j \in I$. We also need corresponding statements for the φ_j^* and f_j^* , but these are equivalent by the crystal axioms.

Assume $j \neq i$. Then these identities are fairly direct consequences of the fact that e_i and e_j^* commute. Since $\varepsilon_j^*(u_i^*(-n)) = -\infty$, the operator e_j^* always acts on $u_i^*(-n) \otimes y \in \mathcal{B}_i^{*+} \otimes \mathcal{B}^{*i}$ on the second factor. Also, the relevant crystals and are either upper seminormal or *i*-seminormal.

For example, this means that if $a := \varepsilon_i(x)$ and $y := e_i^a(x)$ then $a = \varepsilon_i e_i^{\star}(x)$ and $e_i^{\star}(y) = e_i^a e_i^{\star}(x)$ so

$$\psi_i^\star(e_j^\star(x)) = u_i^\star(-a) \otimes e_j^\star(y) = e_j^\star(u_i^\star(-a) \otimes y) = e_j^\star(\psi_i^\star(x)).$$

Instead assume that i = j. This case is more involved and we only sketch the argument.

Write $\psi_i(x) = u_i(-t) \otimes y$ and $\psi_i^{\star}(x) = u_i(-v) \otimes z$ where

$$t = \varepsilon_i^{\star}(x), \qquad v = \varepsilon_i(x), \qquad y = e_i^{\star t}(x), \qquad \text{and} \qquad z = e_i^v(x).$$

There are two subcases. The first case is $t = \varepsilon_i^*(x) \le \varphi_i(y)$. By the technical lemma, $v = \varepsilon_i(x) \le \varphi_i^*(z)$. We already know that ψ_i is crystal morphism, so we have

$$v = \varepsilon_i \psi_i(x) = \max\{\varepsilon_i(y), t + \varepsilon_i(y) - \varphi_i(y)\} = \varepsilon_i(y).$$

Because $t \leq \varphi_i(y)$, each time we apply e_i to $\psi_i(x) = u_i(-t) \otimes y$ it applies to the second component, and

$$\psi_i(z) = \psi_i(e_i^v x) = e_i^v \psi_i(x) = u_i(-t) \otimes e_i^v(y).$$

This means that $\varepsilon_i^{\star}(z) = t = \varepsilon_i^{\star}(x)$. On the other hand, since $\varepsilon_i(x) \leq \varphi_i^{\star}(z)$, we have

$$\varepsilon_i^*\psi_i^*(x) = \max\{\varepsilon_i^*(z), \varepsilon_i(x) + \varepsilon_i^*(z) - \varphi_i^*(z)\} = \varepsilon_i^*(z).$$
(*)

Combining these facts gives $\varepsilon_i^{\star}(\psi_i^{\star}(x)) = \varepsilon_i^{\star}(x)$. This proves the first of our identities.

For the second identity, one argues that $\varepsilon_i(e_i^{\star}(x)) = v$ and that $\psi_i^{\star}(e_i^{\star}(x)) = u_i^{\star}(-v) \otimes e_i^{v}(e_i^{\star}(x))$.

Then it suffices to show that $e_i^v(e_i^\star(x)) = e_i^\star(z)$ since $e_i^\star(\psi_i^\star(x)) = e_i^\star(u_i^\star(-v) \otimes z) = u_i^\star(-v) \otimes e_i^\star(z)$.

The justification of these claims follows by calculations similar to those above.

The other subcase is $t = \varepsilon_i^*(x) > \varphi_i(y)$ in which case the technical lemma implies $v = \varepsilon_i(x) > \varphi_i^*(z)$. One argues now that $\varepsilon_i^*(z) = \varphi_i(y)$, and using (*) that

$$\varepsilon_i^{\star}\psi_i^{\star}(x) = \varepsilon_i(x) + \varepsilon_i^{\star}(z) - \varphi_i^{\star}(z) = \varepsilon_i^{\star}(x) + \varepsilon_i^{\star}(z) - \varphi_i(y) = \varepsilon_i^{\star}(x),$$

where the second equality holds by the technical lemma.

To show that $e_i^{\star}\psi_i^{\star}(x) = \psi_i^{\star}e_i^{\star}(x)$, one argues that $\varepsilon_i(e_i^{\star}(x)) = v - 1$ and $e_i^{v-1}(e_i^{\star}(x)) = z$ and

$$\psi_i^\star(e_i^\star(x)) = u_i^\star(-(v-1)) \otimes z$$

since then the right hand side is $e_i^{\star}\psi_i^{\star}(x)$.

Theorem 2.3. The crystal $\mathcal{B}_{\infty}^{\star}$ is isomorphic to \mathcal{B}_{∞} . Hence, there exists a unique weight-preserving bijection $\vartheta : \mathcal{B}_{\infty} \to \mathcal{B}_{\infty}$ such that for every $i \in I$ we have

 $\varepsilon_i^\star \circ \vartheta = \varepsilon_i, \qquad \varphi_i^\star \circ \vartheta = \varphi_i, \qquad e_i^\star \circ \vartheta = \vartheta \circ e_i, \qquad \text{and} \qquad f_i^\star \circ \vartheta = \vartheta \circ f_i.$

Proof. Let $w_0 = s_{i_1} \cdots s_{i_N}$ be a reduced word for the longest element in W.

Since we have embeddings $\psi_i : \mathcal{B}_{\infty} \hookrightarrow \mathcal{B}_i \otimes \mathcal{B}_{\infty}$ we have an embedding

$$\mathcal{B}_{\infty} \hookrightarrow \mathcal{B}_{i_1} \otimes \mathcal{B}_{i_2} \otimes \cdots \otimes \mathcal{B}_{i_N} \otimes \mathcal{B}_{\infty}.$$

We may construct \mathcal{B}_{∞} as the subcrystal of $\mathcal{B}_{i_1} \otimes \mathcal{B}_{i_2} \otimes \cdots \otimes \mathcal{B}_{i_N}$ generated by $u_{\infty} := u_{i_1}(0) \otimes \cdots \otimes u_{i_N}(0)$. We can therefore understand the previous map as an embedding $\mathcal{B}_{\infty} \hookrightarrow \mathcal{B}_{\infty} \otimes \mathcal{B}_{\infty}$ given by $x \mapsto x \otimes u_{\infty}$. In particular, we always have $f_i(x \otimes u_{\infty}) = f_i(x) \otimes u_{\infty}$ since $\varphi_i(u_{\infty}) \leq \varepsilon_i(x)$.

Thus \mathcal{B}_{∞} is isomorphic to a subcrystal contained in the set $\mathcal{B}_{i_1} \otimes \mathcal{B}_{i_2} \otimes \cdots \otimes \mathcal{B}_{i_N} \otimes u_{\infty}$.

On the other hand we have similar embeddings $\psi_i^\star : \mathcal{B}_\infty^\star \hookrightarrow \mathcal{B}_i^\star \otimes \mathcal{B}_\infty^\star$ for any $i \in I$ and thus also

$$\mathcal{B}^{\star}_{\infty} \hookrightarrow \mathcal{B}^{\star}_{i_1} \otimes \mathcal{B}^{\star}_{i_2} \otimes \cdots \otimes \mathcal{B}^{\star}_{i_N} \otimes \mathcal{B}^{\star}_{\infty}$$

and the image of the second embedding is contained in the set $\mathcal{B}_{i_1}^{\star} \otimes \mathcal{B}_{i_2}^{\star} \otimes \cdots \otimes \mathcal{B}_{i_N}^{\star} \otimes u_{\infty}^{\star}$. But \mathcal{B}_i and \mathcal{B}_i^{\star} are the same crystals, just written in different notation, so the map

$$\theta: u_{i_1}(-a_1) \otimes \cdots \otimes u_{i_N}(-a_N) \otimes u_{\infty} \mapsto u_{i_1}^{\star}(-a_1) \otimes \cdots \otimes u_{i_N}^{\star}(-a_N) \otimes u_{\infty}^{\star}$$

is an isomorphism $\mathcal{B}_{i_1} \otimes \mathcal{B}_{i_2} \otimes \cdots \otimes \mathcal{B}_{i_N} \otimes u_{\infty} \xrightarrow{\sim} \mathcal{B}_{i_1}^{\star} \otimes \mathcal{B}_{i_2}^{\star} \otimes \cdots \otimes \mathcal{B}_{i_N}^{\star} \otimes u_{\infty}^{\star}$. Let $\vartheta : \mathcal{B}_{\infty} \to \mathcal{B}_{\infty}^{\star}$ be the map that makes the diagram

$$\begin{array}{cccc} \mathcal{B}_{\infty} & & \longrightarrow & \mathcal{B}_{i_1} \otimes \mathcal{B}_{i_2} \otimes \cdots \otimes \mathcal{B}_{i_N} \otimes u_{\infty} \\ & & \downarrow^{\vartheta} & & \downarrow^{\theta} \\ \mathcal{B}_{\infty}^{\star} & & \longrightarrow & \mathcal{B}_{i_1}^{\star} \otimes \mathcal{B}_{i_2}^{\star} \otimes \cdots \otimes \mathcal{B}_{i_N}^{\star} \otimes u_{\infty}^{\star} \end{array}$$

commute. This map is the desired isomorphism. It is well-defined because

- the image of \mathcal{B}_{∞} in $\mathcal{B}_{i_1} \otimes \mathcal{B}_{i_2} \otimes \cdots \otimes \mathcal{B}_{i_N} \otimes \mathcal{B}_{\infty}$ is generated by $u_{\infty} \otimes u_{\infty}$,
- the image of $\mathcal{B}^{\star}_{\infty}$ in $\mathcal{B}^{\star}_{i_1} \otimes \mathcal{B}^{\star}_{i_2} \otimes \cdots \otimes \mathcal{B}^{\star}_{i_N} \otimes \mathcal{B}^{\star}_{\infty}$ is generated by $u^{\star}_{\infty} \otimes u^{\star}_{\infty}$, and
- we have $\theta(u_{\infty} \otimes u_{\infty}) = u_{\infty}^{\star} \otimes u_{\infty}^{\star}$.

This ensure that the image of \mathcal{B}_{∞} under its embedding is mapped by θ to the image of $\mathcal{B}_{\infty}^{\star}$.

Proposition 2.4. The map $\vartheta : \mathcal{B}_{\infty} \to \mathcal{B}_{\infty}$ from the previous theorem has order two.

Proof. To simplify our notation we do not distinguish between \mathcal{B}_i and \mathcal{B}_i^* in this proof, meaning that we consider $u_i^*(-t) = u_i(-t)$. One can show from/using the proof of Proposition 2.2 that

$$\psi_i e_i^{\star} = (e_i \otimes 1)\psi_i, \qquad \psi_i f_i^{\star} = (f_i \otimes 1)\psi_i, \qquad \psi_i^{\star} e_i = (e_i \otimes 1)\psi_i^{\star}, \qquad \text{and} \qquad \psi_i^{\star} f_i = (f_i \otimes 1)\psi_i^{\star}. \quad (^{**})$$

The map ψ_i^{\star} is a crystal morphism $\mathcal{B}_{\infty}^{\star} \to \mathcal{B}_i \otimes \mathcal{B}_{\infty}^{\star}$.

The map $(1 \otimes \vartheta)\psi_i \vartheta^{-1}$ is another morphism $\mathcal{B}^{\star}_{\infty} \to \mathcal{B}_i \otimes \mathcal{B}^{\star}_{\infty}$.

Since $\mathcal{B}^{\star}_{\infty}$ is connected with highest weight element u_{∞} , there is at most one morphism $\mathcal{B}^{\star}_{\infty} \to \mathcal{B}_i \otimes \mathcal{B}^{\star}_{\infty}$. Hence $(1 \otimes \vartheta)\psi_i\vartheta^{-1} = \psi_i^{\star}$ and $(1 \otimes \vartheta)\psi_i = \psi_i^{\star}\vartheta$.

Using (**) and the fact that ϑ is a crystal isomorphism, we compute

$$\psi_i^{\star}\vartheta^2 f_i = \psi_i^{\star}\vartheta f_i^{\star}\vartheta = (1\otimes\vartheta)\psi_i f_i^{\star}\vartheta = (f_i\otimes\vartheta)\psi_i\vartheta = (f_i\otimes1)\psi_i^{\star}\vartheta^2 = \psi_i^{\star}f_i\vartheta^2.$$

Since ψ_i^{\star} is injective, it follows that $\vartheta^2 f_i = f_i \vartheta^2$. Similar computations show that ϑ^2 commutes with the e_i operators and is therefore a crystal isomorphism : $\mathcal{B}_{\infty} \to \mathcal{B}_{\infty}$.

But the identity map is the only such morphism, so $\vartheta^2 = 1$.

Finally, here is our definition of the \star -involution:

Definition 2.5. The *-involution of \mathcal{B}_{∞} is the map $x \mapsto x^* := \vartheta(x)$.

3 Properties of the *-involution

Let $\mathbf{i} = (i_1, \ldots, i_N)$ be a reduced word for $w_0 \in W$. Identify \mathcal{B}_{∞} with a subcrystal of $\mathcal{B}_{i_1} \otimes \cdots \otimes \mathcal{B}_{i_N}$. The following shows that $\iota_1(x^*) = \iota_2(x)$ for all $x \in \mathcal{B}_{\infty}$ for our two embeddings from (1.1) and (1.2).

Theorem 3.1. If $x \in \mathcal{B}_{\infty}$ has $x^* = u_{i_1}(-a_1) \otimes \cdots \otimes u_{i_N}(-a_N)$ then string_i $(x) = (a_1, \ldots, a_N)$.

Proof. Consider the sequence of embeddings

$$\mathcal{B}_{\infty}^{\star} \xrightarrow{\psi_{i_1}^{\star}} \mathcal{B}_{i_1}^{\star} \otimes \mathcal{B}_{\infty}^{\star} \xrightarrow{1 \otimes \psi_{i_2}^{\star}} \mathcal{B}_{i_1}^{\star} \otimes \mathcal{B}_{i_2}^{\star} \otimes \mathcal{B}_{\infty}^{\star} \xrightarrow{1 \otimes 1 \otimes \psi_{i_3}^{\star}} \cdots$$

ending in $\mathcal{B}_{i_1}^{\star} \otimes \cdots \otimes \mathcal{B}_{i_N}^{\star} \otimes \{u_{\infty}^{\star}\} \subset \mathcal{B}_{i_1}^{\star} \otimes \cdots \otimes \mathcal{B}_{i_N}^{\star} \otimes \mathcal{B}_{\infty}^{\star}$. If $x^{\star} = u_{i_1}(-a_1) \otimes \cdots \otimes u_{i_N}(-a_N)$ then its image under this map is $u_{i_1}(-a_1) \otimes \cdots \otimes u_{i_N}(-a_N) \otimes u_{\infty}^{\star}$. On the other hand, we have $\psi_{i_1}^{\star}(x) = u_{i_1}^{\star}(-a_1) \otimes y$, where $y = e_{i_1}^{a_1}x$ and $a_1 = \varepsilon_{i_1}(x)$.

Then applying $1 \otimes \psi_{i_2}^{\star}$ gives $u_{i_1}^{\star}(-a_1) \otimes u_{i_2}^{\star}(-a_2) \otimes z$ where $u_{i_2}^{\star}(-a_2) \otimes z = \psi_{i_2}^{\star}(y)$ and so we have $a_2 = \varepsilon_{i_2}(e_{i_1}^{a_1}x)$ and $z = e_{i_2}^{a_2}e_{i_1}^{a_1}x$. Continuing in this way shows that $\operatorname{string}_{\mathbf{i}}(x) = (a_1, \ldots, a_N)$.

Let $w \in W$ with a reduced word $w = s_{i_r} \cdots s_{i_1}$.

Write $\mathcal{B}_{\infty}(w)$ for the *Demazure crystal* $\mathfrak{D}_{i_r}\cdots\mathfrak{D}_{i_1}\{u_\infty\}$ where $\mathfrak{D}_i X = \{x \in \mathcal{B}_\infty : e_i^k(x) \in X \text{ for a } k \ge 0\}.$

The \star -involution interacts with Demazure crystals in a particularly nice way:

Theorem 3.2. We have $\mathcal{B}_{\infty}(w^{-1})^{\star} = \mathcal{B}_{\infty}(w)$.

Proof. We start with a reduced word (i_1, \ldots, i_r) for $w = s_{i_1} \cdots s_{i_r}$ and complete it to a reduced word for $w_0 = s_{i_1} \cdots s_{i_N}$. Note that the order of the reduced word is reversed from the usual convention.

We proved in an earlier lecture that we identify $\mathcal{B}_{\infty}(w^{-1}) = \mathcal{A}(w^{-1}) \cap \mathfrak{C}$, where

$$\mathfrak{C} = \{ x \in \mathcal{B}_{i_1} \otimes \cdots \otimes \mathcal{B}_{i_N} : x \preceq u_\infty \} \text{ and } \mathcal{A}(w^{-1}) = \mathcal{B}_{i_1} \otimes \cdots \otimes \mathcal{B}_{i_r} \otimes u_{i_{r+1}}(0) \otimes \cdots \otimes u_{i_N}(0).$$

Applying \star and using the previous theorem, we see that $\mathcal{B}_{\infty}(w^{-1})^{\star}$ is contained in the set of elements in \mathcal{B}_{∞} whose string patterns for $\mathbf{i} = (i_1, \ldots, i_N)$ terminate after r steps. Such elements are in $\mathcal{B}_{\infty}(w)$.

This means that $\mathcal{B}_{\infty}(w^{-1})^* \subseteq \mathcal{B}_{\infty}(w)$. Inverting w gives $\mathcal{B}_{\infty}(w)^* \subseteq \mathcal{B}_{\infty}(w^{-1})$, and since it follows by applying the involution \star that $\mathcal{B}_{\infty}(w) \subseteq \mathcal{B}_{\infty}(w^{-1})^*$. Hence $\mathcal{B}_{\infty}(w^{-1})^* = \mathcal{B}_{\infty}(w)$.

The image of $\psi_i : \mathcal{B}_{\infty} \hookrightarrow \mathcal{B}_i \otimes \mathcal{B}_{\infty}$ is $\{u_i(-a) \otimes y \in \mathcal{B}_i \otimes \mathcal{B}_{\infty} : \varepsilon_i^*(y) = 0 \text{ and } a \ge 0\}.$

Recall that there is a unique crystal embedding $\psi_{\lambda} : \mathcal{B}_{\lambda} \hookrightarrow \mathcal{T}_{\lambda} \otimes \mathcal{B}_{\infty}$.

We can also characterize the image of this map.

Lemma 3.3. Let $\Sigma := \{t_{\lambda} \otimes x : \varepsilon_i^{\star}(x) \leq \langle \lambda, \alpha_i^{\vee} \rangle \text{ for all } i\} \subseteq \mathcal{T}_{\lambda} \otimes \mathcal{B}_{\infty}.$

If $t_{\lambda} \otimes x \in \Sigma$ then $\varphi_i(t_{\lambda} \otimes x) \ge 0$, with strict inequality if and only if $f_i(t_{\lambda} \otimes x) \in \Sigma$.

Proof. Choose a reduced word (i_1, i_2, \ldots, i_N) for w_0 with $i = i_1$.

When we identify \mathcal{B}_{∞} with a subcrystal of $\mathcal{B}_{i_1} \otimes \cdots \otimes \mathcal{B}_{i_N}$ we may write

$$t_{\lambda} \otimes x = t_{\lambda} \otimes u_i(-a) \otimes u_{i_2}(-a_2) \otimes \cdots \otimes u_{i_N}(-a_N)$$

where $a = \varepsilon_i^{\star}(x)$. The lemma follows by computing $\varphi_i(t_{\lambda} \otimes x)$ using the formulas for string lengths in N-fold tensor products applied to the RHS. The details are a little technical though not very involved (relative to other results today); see Lemma 14.18 in Bump and Schilling's book for the full argument. \Box

Theorem 3.4. The image of ψ_{λ} is $\{t_{\lambda} \otimes x \in \mathcal{T}_{\lambda} \otimes \mathcal{B}_{\infty} : \varepsilon_{i}^{\star}(x) \leq \langle \lambda, \alpha_{i}^{\vee} \rangle$ for all $i\}$.

Proof. It follows by the lemma that if we redefine $f_i(t_\lambda \otimes x) = 0$ when $\varphi_i(t_\lambda \otimes x) = 0$ then the set Σ becomes a crystal that is both upper seminormal (since \mathcal{B}_{∞} is) and lower seminormal.

Now we argue that the image of ψ_{λ} is contained in Σ .

The highest weight element u_{λ} is mapped to $t_{\lambda} \otimes u_{\infty} \in \Sigma$.

If $v \in \mathcal{B}_{\lambda}$ is not a highest weight element then write $v = f_i(y)$ for some $y \in \mathcal{B}_{\lambda}$.

By induction $\psi_{\lambda}(y) \in \Sigma$ and $\varphi_i(\psi_{\lambda}(y)) = \varphi_i(y) > 0$. Since Σ is seminormal, we have $v = f_i(\psi_{\lambda}(y)) \in \Sigma$.

This shows that $\operatorname{image}(\psi_{\lambda}) \subseteq \Sigma$.

As Σ has a unique highest weight element $t_{\lambda} \otimes u_{\infty}$, it is a connected crystal, so image $(\psi_{\lambda}) = \Sigma$.