1 Last time: the \star-involution of \mathcal{B}_{∞}

Fix a Cartan type (Φ, Λ) with simple roots $\left\{\alpha_{i}: i \in I\right\}$.
The elementary crystal \mathcal{B}_{i} has weight map of \mathcal{B}_{i} is $\mathbf{w t}\left(u_{i}(n)\right)=n \alpha_{i}$ and crystal graph

$$
\cdots \xrightarrow{i} u_{i}(2) \xrightarrow{i} u_{i}(1) \xrightarrow{i} u_{i}(0) \xrightarrow{i} u_{i}(-1) \xrightarrow{i} \cdots
$$

Fix a reduced word $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ for the longest element $w_{0} \in W$.
Define $\mathcal{A}:=\mathcal{B}_{i_{1}} \otimes \mathcal{B}_{i_{2}} \otimes \cdots \otimes \mathcal{B}_{i_{N}}$. Write $x \preceq y$ if $e_{j_{m}} \cdots e_{j_{2}} e_{j_{1}}(x)=y$. Then define

$$
\mathcal{B}_{\infty}:=\left\{x \in \mathcal{A}: x \preceq u_{\infty}\right\} \quad \text { where } u_{\infty}:=u_{i_{1}}(0) \otimes u_{i_{2}}(0) \otimes \cdots \otimes u_{i_{N}}(0) \in \mathcal{A}
$$

with all operators on \mathcal{B}_{∞} inherited from \mathcal{A}, except $e_{i}(x)=0$ when $\varepsilon_{i}(x)=0$. We have an embedding

$$
\begin{equation*}
\iota_{1}(x)=\left(a_{1}, a_{2}, \ldots, a_{N}\right) \in \mathbb{Z}^{N} \quad \text { for } x=u_{i_{1}}\left(-a_{1}\right) \otimes u_{i_{2}}\left(-a_{2}\right) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right) \in \mathcal{B}_{\infty} \tag{1.1}
\end{equation*}
$$

We have a second embedding, where if $b_{1}=\varepsilon_{i_{1}}(x)$ and $b_{2}=\varepsilon_{i_{2}}\left(e_{i_{1}}^{b_{1}}(x)\right)$ and so forth, then

$$
\begin{equation*}
\iota_{2}(x)=\operatorname{string}_{\mathbf{i}}(x)=\left(b_{1}, b_{2}, \ldots, b_{N}\right) \tag{1.2}
\end{equation*}
$$

Our goal is define a weight-preserving involution $\star: \mathcal{B}_{\infty} \rightarrow \mathcal{B}_{\infty}$ such that $\iota_{1}\left(x^{\star}\right)=\iota_{2}(x)$.
We gave a concrete definition of \star in type A_{2} last time along with most of the construction in general.

2 Finishing the construction of the \star-involution

We continue from where we left off last time.
The way we want to define \star in general is to describe a second crystal structure $\mathcal{B}_{\infty}^{\star}$ on the same underlying set as \mathcal{B}_{∞}, and then identify \star as the unique weight-preserving isomorphism between these structures.
It will not be obvious from this approach that the map \star is an involution, but we will prove this.

2.1 The crystals \mathcal{B}^{i} and \mathcal{B}_{i}^{+}

Our strategy involves several other subcrystals of \mathcal{B}_{i} and \mathcal{B}_{∞}. We review the definitions.
Throughout, let $x=u_{i_{1}}\left(-a_{1}\right) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right) \in \mathcal{B}_{\infty}$ be a generic element, so $a_{1}, \ldots, a_{N} \geq 0$.
We write $\psi_{i}: \mathcal{B}_{\infty} \rightarrow \mathcal{B}_{i} \otimes \mathcal{B}_{\infty}$ for the unique crystal morphism with $\psi_{i}\left(u_{\infty}\right)=u_{i}(0) \otimes u_{\infty}$.
If $i_{1}=i$ (which we can assume without loss of generality), then

$$
\psi_{i}(x)=u_{i}\left(-a_{1}\right) \otimes u_{i_{1}}(0) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right)=u_{i}\left(-a_{1}\right) \otimes y \quad \text { where } y \in \mathcal{B}_{\infty}
$$

Define \mathcal{B}^{i} to be the subset of $x \in \mathcal{B}_{\infty}$ with $\psi_{i}(x)=u_{i}(0) \otimes x$, i.e., with $a_{1}=0$ (assuming $i_{1}=i$).
We make \mathcal{B}^{i} into a crystal by redefining $f_{i}(x)=0$ if $\varphi_{i}(x)=0$ for $x \in \mathcal{B}^{i}$.
The crystal \mathcal{B}^{i} is upper seminormal and i-seminormal, meaning that

$$
\varphi_{i}(x)=\max \left\{k \geq 0: f_{i}^{k}(x) \neq 0\right\} \quad \text { and } \quad \varepsilon_{i}(x)=\max \left\{k \geq 0: e_{i}^{k}(x) \neq 0\right\}
$$

and that $e_{j}(x) \in \mathcal{B}^{i} \sqcup\{0\}$ and $\varepsilon_{j}(x)=\max \left\{k \geq 0: f_{j}^{k}(x) \neq 0\right\}$ for all $j \in I$ and $x \in \mathcal{B}^{i}$.

Also, let $\mathcal{B}_{i}^{+}=\left\{u_{i}(-a): a \geq 0\right\}$. To make this set into a crystal, we redefine $e_{i}\left(u_{i}(0)\right)=0$.
Key fact: the map ψ_{i} is a crystal isomorphism $\mathcal{B}_{\infty} \xrightarrow{\sim} \mathcal{B}_{i}^{+} \otimes \mathcal{B}^{i}$.
The tensor product $\mathcal{B}_{i}^{+} \otimes \mathcal{B}^{i}$ is a subset of $\mathcal{B}_{i} \otimes \mathcal{B}_{\infty}$ and turns out to be equal to the image $\psi_{i}\left(\mathcal{B}_{\infty}\right)$.

2.2 The crystal $\mathcal{B}_{\infty}^{\star}$

Now define $\mathcal{B}_{\infty}^{\star}$ to be the same set as \mathcal{B}_{∞}, but viewed as a crystal relative to these modified operators:

- The weight map wt is the same as before.
- For $x \in \mathcal{B}_{\infty}$ with $\psi_{i}(x)=u_{i}(-a) \otimes y$ for some $y \in \mathcal{B}^{i}$, define $\varepsilon_{i}^{\star}(x)=a$ and $\varphi_{i}^{\star}(x)=a+\left\langle\mathbf{w t}(x), \alpha_{i}^{\vee}\right\rangle$.
- Next define $e_{i}^{\star}(x)$ and $f_{i}^{\star}(x)$ by requiring that

$$
\psi_{i}\left(e_{i}^{\star}(x)\right)=\left\{\begin{array}{ll}
u_{i}(-(a-1)) \otimes y & \text { if } a>0 \\
0 & \text { if } a=0
\end{array} \quad \text { and } \quad \psi_{i}\left(f_{i}^{\star}(x)\right)=u_{i}(-(a+1)) \otimes y\right.
$$

If $i \neq j$ then the operators e_{i}^{\star} and f_{i}^{\star} commute with e_{j} and f_{j}.
If $i \neq j$ then we also have $\varepsilon_{j}\left(f_{i}^{\star}(x)\right)=\varepsilon_{j}(x)$ for all $x \in \mathcal{B}_{\infty}$.
The highest weight element of $\mathcal{B}_{\infty}^{\star}$ is still u_{∞}.

2.3 The crystals $\mathcal{B}^{\star i}$ and $\mathcal{B}_{i}^{\star+}$

Let $\mathcal{B}^{\star i}=\left\{x \in \mathcal{B}_{\infty}: e_{i}(x)=0\right\}$.
We make $\mathcal{B}^{\star i}$ into a crystal with crystal operators e_{i}^{\star} and f_{i}^{\star} by redefining $f_{i}^{\star}(x)=0$ if $\varphi_{i}^{\star}(x)=0$.
Then $\mathcal{B}^{\star i}$ is a subcrystal of $\mathcal{B}_{\infty}^{\star}$ that is upper seminormal and i-seminormal.

Let $\mathcal{B}_{i}^{\star}=\mathcal{B}_{i}$ but denote the crystal operators as $\varepsilon_{i}^{\star}, \varphi_{i}^{\star}, e_{i}^{\star}, f_{i}^{\star}$ and elements as $u_{i}^{\star}(-a)$ for $a \in \mathbb{Z}$.
Define $\mathcal{B}_{i}^{\star+}$ to be the subcrystal of elements $u_{i}^{\star}(-a) \in \mathcal{B}_{i}^{\star}$ with $a \geq 0$.

Given $x \in \mathcal{B}_{\infty}^{\star}$, let $a=\varepsilon_{i}(x)$ define $y=e_{i}^{a}(x) \in \mathcal{B}^{\star i}$.
Next, let $\psi_{i}^{\star}: \mathcal{B}_{\infty}^{\star} \rightarrow \mathcal{B}_{i}^{\star+} \otimes \mathcal{B}^{\star i}$ be the map with $\psi_{i}^{\star}(x)=u_{i}^{\star}(-a) \otimes y$.
Last time we sketched a proof of the following technical lemma:
Lemma 2.1. Suppose $x \in \mathcal{B}_{\infty}$ has $\psi_{i}(x)=u_{i}(-t) \otimes y$ and $\psi_{i}^{\star}(x)=u_{i}^{\star}(-v) \otimes z$. Then

$$
\varepsilon_{i}^{\star}(x)-\varphi_{i}(y)=\varepsilon_{i}(x)-\varphi_{i}^{\star}(z)
$$

Last time we also stated the following result. Today we explain the proof.
Proposition 2.2. The map $\psi_{i}^{\star}: \mathcal{B}_{\infty}^{\star} \rightarrow \mathcal{B}_{i}^{\star+} \otimes \mathcal{B}^{\star i}$ is a morphism for the \star crystal structure.
Proof sketch. We need to show that $\varepsilon_{j}^{\star}(x)=\varepsilon_{j}^{\star} \psi_{i}^{\star}(x)$ and $e_{j}^{\star} \psi_{i}^{\star}(x)=\psi_{i}^{\star} e_{j}^{\star}(x)$ for all $x \in \mathcal{B}_{\infty}^{\star}$ and $j \in I$.
We also need corresponding statements for the φ_{j}^{\star} and f_{j}^{\star}, but these are equivalent by the crystal axioms.

Assume $j \neq i$. Then these identities are fairly direct consequences of the fact that e_{i} and e_{j}^{\star} commute.
Since $\varepsilon_{j}^{\star}\left(u_{i}^{\star}(-n)\right)=-\infty$, the operator e_{j}^{\star} always acts on $u_{i}^{\star}(-n) \otimes y \in \mathcal{B}_{i}^{\star+} \otimes \mathcal{B}^{\star i}$ on the second factor.
Also, the relevant crystals and are either upper seminormal or i-seminormal.
For example, this means that if $a:=\varepsilon_{i}(x)$ and $y:=e_{i}^{a}(x)$ then $a=\varepsilon_{i} e_{j}^{\star}(x)$ and $e_{j}^{\star}(y)=e_{i}^{a} e_{j}^{\star}(x)$ so

$$
\psi_{i}^{\star}\left(e_{j}^{\star}(x)\right)=u_{i}^{\star}(-a) \otimes e_{j}^{\star}(y)=e_{j}^{\star}\left(u_{i}^{\star}(-a) \otimes y\right)=e_{j}^{\star}\left(\psi_{i}^{\star}(x)\right) .
$$

Instead assume that $i=j$. This case is more involved and we only sketch the argument.
Write $\psi_{i}(x)=u_{i}(-t) \otimes y$ and $\psi_{i}^{\star}(x)=u_{i}(-v) \otimes z$ where

$$
t=\varepsilon_{i}^{\star}(x), \quad v=\varepsilon_{i}(x), \quad y=e_{i}^{\star t}(x), \quad \text { and } \quad z=e_{i}^{v}(x)
$$

There are two subcases. The first case is $t=\varepsilon_{i}^{\star}(x) \leq \varphi_{i}(y)$. By the technical lemma, $v=\varepsilon_{i}(x) \leq \varphi_{i}^{\star}(z)$. We already know that ψ_{i} is crystal morphism, so we have

$$
v=\varepsilon_{i} \psi_{i}(x)=\max \left\{\varepsilon_{i}(y), t+\varepsilon_{i}(y)-\varphi_{i}(y)\right\}=\varepsilon_{i}(y)
$$

Because $t \leq \varphi_{i}(y)$, each time we apply e_{i} to $\psi_{i}(x)=u_{i}(-t) \otimes y$ it applies to the second component, and

$$
\psi_{i}(z)=\psi_{i}\left(e_{i}^{v} x\right)=e_{i}^{v} \psi_{i}(x)=u_{i}(-t) \otimes e_{i}^{v}(y)
$$

This means that $\varepsilon_{i}^{\star}(z)=t=\varepsilon_{i}^{\star}(x)$. On the other hand, since $\varepsilon_{i}(x) \leq \varphi_{i}^{\star}(z)$, we have

$$
\begin{equation*}
\varepsilon_{i}^{\star} \psi_{i}^{\star}(x)=\max \left\{\varepsilon_{i}^{\star}(z), \varepsilon_{i}(x)+\varepsilon_{i}^{\star}(z)-\varphi_{i}^{\star}(z)\right\}=\varepsilon_{i}^{\star}(z) \tag{*}
\end{equation*}
$$

Combining these facts gives $\varepsilon_{i}^{\star}\left(\psi_{i}^{\star}(x)\right)=\varepsilon_{i}^{\star}(x)$. This proves the first of our identities.
For the second identity, one argues that $\varepsilon_{i}\left(e_{i}^{\star}(x)\right)=v$ and that $\psi_{i}^{\star}\left(e_{i}^{\star}(x)\right)=u_{i}^{\star}(-v) \otimes e_{i}^{v}\left(e_{i}^{\star}(x)\right)$.
Then it suffices to show that $e_{i}^{v}\left(e_{i}^{\star}(x)\right)=e_{i}^{\star}(z)$ since $e_{i}^{\star}\left(\psi_{i}^{\star}(x)\right)=e_{i}^{\star}\left(u_{i}^{\star}(-v) \otimes z\right)=u_{i}^{\star}(-v) \otimes e_{i}^{\star}(z)$.
The justification of these claims follows by calculations similar to those above.

The other subcase is $t=\varepsilon_{i}^{\star}(x)>\varphi_{i}(y)$ in which case the technical lemma implies $v=\varepsilon_{i}(x)>\varphi_{i}^{\star}(z)$.
One argues now that $\varepsilon_{i}^{\star}(z)=\varphi_{i}(y)$, and using $\left(^{*}\right)$ that

$$
\varepsilon_{i}^{\star} \psi_{i}^{\star}(x)=\varepsilon_{i}(x)+\varepsilon_{i}^{\star}(z)-\varphi_{i}^{\star}(z)=\varepsilon_{i}^{\star}(x)+\varepsilon_{i}^{\star}(z)-\varphi_{i}(y)=\varepsilon_{i}^{\star}(x)
$$

where the second equality holds by the technical lemma.
To show that $e_{i}^{\star} \psi_{i}^{\star}(x)=\psi_{i}^{\star} e_{i}^{\star}(x)$, one argues that $\varepsilon_{i}\left(e_{i}^{\star}(x)\right)=v-1$ and $e_{i}^{v-1}\left(e_{i}^{\star}(x)\right)=z$ and

$$
\psi_{i}^{\star}\left(e_{i}^{\star}(x)\right)=u_{i}^{\star}(-(v-1)) \otimes z
$$

since then the right hand side is $e_{i}^{\star} \psi_{i}^{\star}(x)$.

Theorem 2.3. The crystal $\mathcal{B}_{\infty}^{\star}$ is isomorphic to \mathcal{B}_{∞}. Hence, there exists a unique weight-preserving bijection $\vartheta: \mathcal{B}_{\infty} \rightarrow \mathcal{B}_{\infty}$ such that for every $i \in I$ we have

$$
\varepsilon_{i}^{\star} \circ \vartheta=\varepsilon_{i}, \quad \varphi_{i}^{\star} \circ \vartheta=\varphi_{i}, \quad e_{i}^{\star} \circ \vartheta=\vartheta \circ e_{i}, \quad \text { and } \quad f_{i}^{\star} \circ \vartheta=\vartheta \circ f_{i} .
$$

Proof. Let $w_{0}=s_{i_{1}} \cdots s_{i_{N}}$ be a reduced word for the longest element in W.
Since we have embeddings $\psi_{i}: \mathcal{B}_{\infty} \hookrightarrow \mathcal{B}_{i} \otimes \mathcal{B}_{\infty}$ we have an embedding

$$
\mathcal{B}_{\infty} \hookrightarrow \mathcal{B}_{i_{1}} \otimes \mathcal{B}_{i_{2}} \otimes \cdots \otimes \mathcal{B}_{i_{N}} \otimes \mathcal{B}_{\infty}
$$

We may construct \mathcal{B}_{∞} as the subcrystal of $\mathcal{B}_{i_{1}} \otimes \mathcal{B}_{i_{2}} \otimes \cdots \otimes \mathcal{B}_{i_{N}}$ generated by $u_{\infty}:=u_{i_{1}}(0) \otimes \cdots \otimes u_{i_{N}}(0)$.
We can therefore understand the previous map as an embedding $\mathcal{B}_{\infty} \hookrightarrow \mathcal{B}_{\infty} \otimes \mathcal{B}_{\infty}$ given by $x \mapsto x \otimes u_{\infty}$. In particular, we always have $f_{i}\left(x \otimes u_{\infty}\right)=f_{i}(x) \otimes u_{\infty}$ since $\varphi_{i}\left(u_{\infty}\right) \leq \varepsilon_{i}(x)$.
Thus \mathcal{B}_{∞} is isomorphic to a subcrystal contained in the set $\mathcal{B}_{i_{1}} \otimes \mathcal{B}_{i_{2}} \otimes \cdots \otimes \mathcal{B}_{i_{N}} \otimes u_{\infty}$.
On the other hand we have similar embeddings $\psi_{i}^{\star}: \mathcal{B}_{\infty}^{\star} \hookrightarrow \mathcal{B}_{i}^{\star} \otimes \mathcal{B}_{\infty}^{\star}$ for any $i \in I$ and thus also

$$
\mathcal{B}_{\infty}^{\star} \hookrightarrow \mathcal{B}_{i_{1}}^{\star} \otimes \mathcal{B}_{i_{2}}^{\star} \otimes \cdots \otimes \mathcal{B}_{i_{N}}^{\star} \otimes \mathcal{B}_{\infty}^{\star}
$$

and the image of the second embedding is contained in the set $\mathcal{B}_{i_{1}}^{\star} \otimes \mathcal{B}_{i_{2}}^{\star} \otimes \cdots \otimes \mathcal{B}_{i_{N}}^{\star} \otimes u_{\infty}^{\star}$.
But \mathcal{B}_{i} and \mathcal{B}_{i}^{\star} are the same crystals, just written in different notation, so the map

$$
\theta: u_{i_{1}}\left(-a_{1}\right) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right) \otimes u_{\infty} \mapsto u_{i_{1}}^{\star}\left(-a_{1}\right) \otimes \cdots \otimes u_{i_{N}}^{\star}\left(-a_{N}\right) \otimes u_{\infty}^{\star}
$$

is an isomorphism $\mathcal{B}_{i_{1}} \otimes \mathcal{B}_{i_{2}} \otimes \cdots \otimes \mathcal{B}_{i_{N}} \otimes u_{\infty} \xrightarrow{\sim} \mathcal{B}_{i_{1}}^{\star} \otimes \mathcal{B}_{i_{2}}^{\star} \otimes \cdots \otimes \mathcal{B}_{i_{N}}^{\star} \otimes u_{\infty}^{\star}$.
Let $\vartheta: \mathcal{B}_{\infty} \rightarrow \mathcal{B}_{\infty}^{\star}$ be the map that makes the diagram

commute. This map is the desired isomorphism. It is well-defined because

- the image of \mathcal{B}_{∞} in $\mathcal{B}_{i_{1}} \otimes \mathcal{B}_{i_{2}} \otimes \cdots \otimes \mathcal{B}_{i_{N}} \otimes \mathcal{B}_{\infty}$ is generated by $u_{\infty} \otimes u_{\infty}$,
- the image of $\mathcal{B}_{\infty}^{\star}$ in $\mathcal{B}_{i_{1}}^{\star} \otimes \mathcal{B}_{i_{2}}^{\star} \otimes \cdots \otimes \mathcal{B}_{i_{N}}^{\star} \otimes \mathcal{B}_{\infty}^{\star}$ is generated by $u_{\infty}^{\star} \otimes u_{\infty}^{\star}$, and
- we have $\theta\left(u_{\infty} \otimes u_{\infty}\right)=u_{\infty}^{\star} \otimes u_{\infty}^{\star}$.

This ensure that the image of \mathcal{B}_{∞} under its embedding is mapped by θ to the image of $\mathcal{B}_{\infty}^{\star}$.

Proposition 2.4. The map $\vartheta: \mathcal{B}_{\infty} \rightarrow \mathcal{B}_{\infty}$ from the previous theorem has order two.
Proof. To simplify our notation we do not distinguish between \mathcal{B}_{i} and \mathcal{B}_{i}^{\star} in this proof, meaning that we consider $u_{i}^{\star}(-t)=u_{i}(-t)$. One can show from/using the proof of Proposition 2.2 that

$$
\begin{equation*}
\psi_{i} e_{i}^{\star}=\left(e_{i} \otimes 1\right) \psi_{i}, \quad \psi_{i} f_{i}^{\star}=\left(f_{i} \otimes 1\right) \psi_{i}, \quad \psi_{i}^{\star} e_{i}=\left(e_{i} \otimes 1\right) \psi_{i}^{\star}, \quad \text { and } \quad \psi_{i}^{\star} f_{i}=\left(f_{i} \otimes 1\right) \psi_{i}^{\star} \tag{**}
\end{equation*}
$$

The map ψ_{i}^{\star} is a crystal morphism $\mathcal{B}_{\infty}^{\star} \rightarrow \mathcal{B}_{i} \otimes \mathcal{B}_{\infty}^{\star}$.
The map $(1 \otimes \vartheta) \psi_{i} \vartheta^{-1}$ is another morphism $\mathcal{B}_{\infty}^{\star} \rightarrow \mathcal{B}_{i} \otimes \mathcal{B}_{\infty}^{\star}$.
Since $\mathcal{B}_{\infty}^{\star}$ is connected with highest weight element u_{∞}, there is at most one morphism $\mathcal{B}_{\infty}^{\star} \rightarrow \mathcal{B}_{i} \otimes \mathcal{B}_{\infty}^{\star}$.
Hence $(1 \otimes \vartheta) \psi_{i} \vartheta^{-1}=\psi_{i}^{\star}$ and $(1 \otimes \vartheta) \psi_{i}=\psi_{i}^{\star} \vartheta$.
Using $\left({ }^{* *}\right)$ and the fact that ϑ is a crystal isomorphism, we compute

$$
\psi_{i}^{\star} \vartheta^{2} f_{i}=\psi_{i}^{\star} \vartheta f_{i}^{\star} \vartheta=(1 \otimes \vartheta) \psi_{i} f_{i}^{\star} \vartheta=\left(f_{i} \otimes \vartheta\right) \psi_{i} \vartheta=\left(f_{i} \otimes 1\right) \psi_{i}^{\star} \vartheta^{2}=\psi_{i}^{\star} f_{i} \vartheta^{2} .
$$

Since ψ_{i}^{\star} is injective, it follows that $\vartheta^{2} f_{i}=f_{i} \vartheta^{2}$. Similar computations show that ϑ^{2} commutes with the e_{i} operators and is therefore a crystal isomorphism : $\mathcal{B}_{\infty} \rightarrow \mathcal{B}_{\infty}$.
But the identity map is the only such morphism, so $\vartheta^{2}=1$.
Finally, here is our definition of the \star-involution:
Definition 2.5. The \star-involution of \mathcal{B}_{∞} is the map $x \mapsto x^{\star}:=\vartheta(x)$.

3 Properties of the \star-involution

Let $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right)$ be a reduced word for $w_{0} \in W$. Identify \mathcal{B}_{∞} with a subcrystal of $\mathcal{B}_{i_{1}} \otimes \cdots \otimes \mathcal{B}_{i_{N}}$. The following shows that $\iota_{1}\left(x^{\star}\right)=\iota_{2}(x)$ for all $x \in \mathcal{B}_{\infty}$ for our two embeddings from 1.1 and (1.2).

Theorem 3.1. If $x \in \mathcal{B}_{\infty}$ has $x^{\star}=u_{i_{1}}\left(-a_{1}\right) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right)$ then $\operatorname{string}_{\mathbf{i}}(x)=\left(a_{1}, \ldots, a_{N}\right)$.
Proof. Consider the sequence of embeddings

$$
\mathcal{B}_{\infty}^{\star} \xrightarrow{\psi_{i_{1}}^{\star}} \mathcal{B}_{i_{1}}^{\star} \otimes \mathcal{B}_{\infty}^{\star} \xrightarrow{1 \otimes \psi_{i_{2}}^{\star}} \mathcal{B}_{i_{1}}^{\star} \otimes \mathcal{B}_{i_{2}}^{\star} \otimes \mathcal{B}_{\infty}^{\star} \xrightarrow{1 \otimes 1 \otimes \psi_{i_{3}}^{\star}} \cdots
$$

ending in $\mathcal{B}_{i_{1}}^{\star} \otimes \cdots \otimes \mathcal{B}_{i_{N}}^{\star} \otimes\left\{u_{\infty}^{\star}\right\} \subset \mathcal{B}_{i_{1}}^{\star} \otimes \cdots \otimes \mathcal{B}_{i_{N}}^{\star} \otimes \mathcal{B}_{\infty}^{\star}$.
If $x^{\star}=u_{i_{1}}\left(-a_{1}\right) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right)$ then its image under this map is $u_{i_{1}}\left(-a_{1}\right) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right) \otimes u_{\infty}^{\star}$.
On the other hand, we have $\psi_{i_{1}}^{\star}(x)=u_{i_{1}}^{\star}\left(-a_{1}\right) \otimes y$, where $y=e_{i_{1}}^{a_{1}} x$ and $a_{1}=\varepsilon_{i_{1}}(x)$.
Then applying $1 \otimes \psi_{i_{2}}^{\star}$ gives $u_{i_{1}}^{\star}\left(-a_{1}\right) \otimes u_{i_{2}}^{\star}\left(-a_{2}\right) \otimes z$ where $u_{i_{2}}^{\star}\left(-a_{2}\right) \otimes z=\psi_{i_{2}}^{\star}(y)$ and so we have $a_{2}=\varepsilon_{i_{2}}\left(e_{i_{1}}^{a_{1}} x\right)$ and $z=e_{i_{2}}^{a_{2}} e_{i_{1}}^{a_{1}} x$. Continuing in this way shows that $\operatorname{string}_{\mathbf{i}}(x)=\left(a_{1}, \ldots, a_{N}\right)$.

Let $w \in W$ with a reduced word $w=s_{i_{r}} \cdots s_{i_{1}}$.
Write $\mathcal{B}_{\infty}(w)$ for the Demazure crystal $\mathfrak{D}_{i_{r}} \cdots \mathfrak{D}_{i_{1}}\left\{u_{\infty}\right\}$ where $\mathfrak{D}_{i} X=\left\{x \in \mathcal{B}_{\infty}: e_{i}^{k}(x) \in X\right.$ for a $\left.k \geq 0\right\}$.
The \star-involution interacts with Demazure crystals in a particularly nice way:
Theorem 3.2. We have $\mathcal{B}_{\infty}\left(w^{-1}\right)^{\star}=\mathcal{B}_{\infty}(w)$.
Proof. We start with a reduced word $\left(i_{1}, \ldots, i_{r}\right)$ for $w=s_{i_{1}} \cdots s_{i_{r}}$ and complete it to a reduced word for $w_{0}=s_{i_{1}} \cdots s_{i_{N}}$. Note that the order of the reduced word is reversed from the usual convention.
We proved in an earlier lecture that we identify $\mathcal{B}_{\infty}\left(w^{-1}\right)=\mathcal{A}\left(w^{-1}\right) \cap \mathfrak{C}$, where

$$
\mathfrak{C}=\left\{x \in \mathcal{B}_{i_{1}} \otimes \cdots \mathcal{B}_{i_{N}}: x \preceq u_{\infty}\right\} \quad \text { and } \quad \mathcal{A}\left(w^{-1}\right)=\mathcal{B}_{i_{1}} \otimes \cdots \otimes \mathcal{B}_{i_{r}} \otimes u_{i_{r+1}}(0) \otimes \cdots \otimes u_{i_{N}}(0)
$$

Applying \star and using the previous theorem, we see that $\mathcal{B}_{\infty}\left(w^{-1}\right)^{\star}$ is contained in the set of elements in \mathcal{B}_{∞} whose string patterns for $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right)$ terminate after r steps. Such elements are in $\mathcal{B}_{\infty}(w)$.

This means that $\mathcal{B}_{\infty}\left(w^{-1}\right)^{\star} \subseteq \mathcal{B}_{\infty}(w)$. Inverting w gives $\mathcal{B}_{\infty}(w)^{\star} \subseteq \mathcal{B}_{\infty}\left(w^{-1}\right)$, and since it follows by applying the involution \star that $\mathcal{B}_{\infty}(w) \subseteq \mathcal{B}_{\infty}\left(w^{-1}\right)^{\star}$. Hence $\mathcal{B}_{\infty}\left(w^{-1}\right)^{\star}=\mathcal{B}_{\infty}(w)$.

The image of $\psi_{i}: \mathcal{B}_{\infty} \hookrightarrow \mathcal{B}_{i} \otimes \mathcal{B}_{\infty}$ is $\left\{u_{i}(-a) \otimes y \in \mathcal{B}_{i} \otimes \mathcal{B}_{\infty}: \varepsilon_{i}^{\star}(y)=0\right.$ and $\left.a \geq 0\right\}$.
Recall that there is a unique crystal embedding $\psi_{\lambda}: \mathcal{B}_{\lambda} \hookrightarrow \mathcal{T}_{\lambda} \otimes \mathcal{B}_{\infty}$.
We can also characterize the image of this map.
Lemma 3.3. Let $\Sigma:=\left\{t_{\lambda} \otimes x: \varepsilon_{i}^{\star}(x) \leq\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle\right.$ for all $\left.i\right\} \subseteq \mathcal{T}_{\lambda} \otimes \mathcal{B}_{\infty}$.
If $t_{\lambda} \otimes x \in \Sigma$ then $\varphi_{i}\left(t_{\lambda} \otimes x\right) \geq 0$, with strict inequality if and only if $f_{i}\left(t_{\lambda} \otimes x\right) \in \Sigma$.

Proof. Choose a reduced word $\left(i_{1}, i_{2}, \ldots, i_{N}\right)$ for w_{0} with $i=i_{1}$.
When we identify \mathcal{B}_{∞} with a subcrystal of $\mathcal{B}_{i_{1}} \otimes \cdots \otimes \mathcal{B}_{i_{N}}$ we may write

$$
t_{\lambda} \otimes x=t_{\lambda} \otimes u_{i}(-a) \otimes u_{i_{2}}\left(-a_{2}\right) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right)
$$

where $a=\varepsilon_{i}^{\star}(x)$. The lemma follows by computing $\varphi_{i}\left(t_{\lambda} \otimes x\right)$ using the formulas for string lengths in N-fold tensor products applied to the RHS. The details are a little technical though not very involved (relative to other results today); see Lemma 14.18 in Bump and Schilling's book for the full argument.

Theorem 3.4. The image of ψ_{λ} is $\left\{t_{\lambda} \otimes x \in \mathcal{T}_{\lambda} \otimes \mathcal{B}_{\infty}: \varepsilon_{i}^{\star}(x) \leq\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle\right.$ for all $\left.i\right\}$.

Proof. It follows by the lemma that if we redefine $f_{i}\left(t_{\lambda} \otimes x\right)=0$ when $\varphi_{i}\left(t_{\lambda} \otimes x\right)=0$ then the set Σ becomes a crystal that is both upper seminormal (since \mathcal{B}_{∞} is) and lower seminormal.

Now we argue that the image of ψ_{λ} is contained in Σ.
The highest weight element u_{λ} is mapped to $t_{\lambda} \otimes u_{\infty} \in \Sigma$.
If $v \in \mathcal{B}_{\lambda}$ is not a highest weight element then write $v=f_{i}(y)$ for some $y \in \mathcal{B}_{\lambda}$.
By induction $\psi_{\lambda}(y) \in \Sigma$ and $\varphi_{i}\left(\psi_{\lambda}(y)\right)=\varphi_{i}(y)>0$. Since Σ is seminormal, we have $v=f_{i}\left(\psi_{\lambda}(y)\right) \in \Sigma$.

This shows that image $\left(\psi_{\lambda}\right) \subseteq \Sigma$.
As Σ has a unique highest weight element $t_{\lambda} \otimes u_{\infty}$, it is a connected crystal, so image $\left(\psi_{\lambda}\right)=\Sigma$.

