
MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 19

1 Last time: the ?-involution of B∞

Fix a Cartan type (Φ,Λ) with simple roots {αi : i ∈ I}.

The elementary crystal Bi has weight map of Bi is wt(ui(n)) = nαi and crystal graph

· · · i−−→ ui(2)
i−−→ ui(1)

i−−→ ui(0)
i−−→ ui(−1)

i−−→ · · ·

Fix a reduced word i = (i1, i2, . . . , iN ) for the longest element w0 ∈W .

Define A := Bi1 ⊗ Bi2 ⊗ · · · ⊗ BiN . Write x � y if ejm · · · ej2ej1(x) = y. Then define

B∞ := {x ∈ A : x � u∞} where u∞ := ui1(0)⊗ ui2(0)⊗ · · · ⊗ uiN (0) ∈ A,

with all operators on B∞ inherited from A, except ei(x) = 0 when εi(x) = 0. We have an embedding

ι1(x) = (a1, a2, . . . , aN ) ∈ ZN for x = ui1(−a1)⊗ ui2(−a2)⊗ · · · ⊗ uiN (−aN ) ∈ B∞. (1.1)

We have a second embedding, where if b1 = εi1(x) and b2 = εi2(eb1i1 (x)) and so forth, then

ι2(x) = stringi(x) = (b1, b2, . . . , bN ). (1.2)

Our goal is define a weight-preserving involution ? : B∞ → B∞ such that ι1(x?) = ι2(x).

We gave a concrete definition of ? in type A2 last time along with most of the construction in general.

2 Finishing the construction of the ?-involution

We continue from where we left off last time.

The way we want to define ? in general is to describe a second crystal structure B?∞ on the same underlying
set as B∞, and then identify ? as the unique weight-preserving isomorphism between these structures.

It will not be obvious from this approach that the map ? is an involution, but we will prove this.

2.1 The crystals Bi and B+
i

Our strategy involves several other subcrystals of Bi and B∞. We review the definitions.

Throughout, let x = ui1(−a1)⊗ · · · ⊗ uiN (−aN ) ∈ B∞ be a generic element, so a1, . . . , aN ≥ 0.

We write ψi : B∞ → Bi ⊗ B∞ for the unique crystal morphism with ψi(u∞) = ui(0)⊗ u∞.

If i1 = i (which we can assume without loss of generality), then

ψi(x) = ui(−a1)⊗ ui1(0)⊗ · · · ⊗ uiN (−aN ) = ui(−a1)⊗ y where y ∈ B∞.

Define Bi to be the subset of x ∈ B∞ with ψi(x) = ui(0)⊗ x, i.e., with a1 = 0 (assuming i1 = i).

We make Bi into a crystal by redefining fi(x) = 0 if ϕi(x) = 0 for x ∈ Bi.

The crystal Bi is upper seminormal and i-seminormal, meaning that

ϕi(x) = max{k ≥ 0 : fki (x) 6= 0} and εi(x) = max{k ≥ 0 : eki (x) 6= 0}

and that ej(x) ∈ Bi t {0} and εj(x) = max{k ≥ 0 : fkj (x) 6= 0} for all j ∈ I and x ∈ Bi.

Also, let B+i = {ui(−a) : a ≥ 0}. To make this set into a crystal, we redefine ei(ui(0)) = 0.

Key fact: the map ψi is a crystal isomorphism B∞
∼−→ B+

i ⊗ Bi.

The tensor product B+i ⊗ Bi is a subset of Bi ⊗ B∞ and turns out to be equal to the image ψi(B∞).
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2.2 The crystal B?
∞

Now define B?∞ to be the same set as B∞, but viewed as a crystal relative to these modified operators:

• The weight map wt is the same as before.

• For x ∈ B∞ with ψi(x) = ui(−a)⊗y for some y ∈ Bi, define ε?i (x) = a and ϕ?i (x) = a+〈wt(x), α∨i 〉.

• Next define e?i (x) and f?i (x) by requiring that

ψi (e?i (x)) =

{
ui(−(a− 1))⊗ y if a > 0

0 if a = 0
and ψi(f

?
i (x)) = ui(−(a+ 1))⊗ y.

If i 6= j then the operators e?i and f?i commute with ej and fj .

If i 6= j then we also have εj(f
?
i (x)) = εj(x) for all x ∈ B∞.

The highest weight element of B?∞ is still u∞.

2.3 The crystals B?i and B?+
i

Let B?i = {x ∈ B∞ : ei(x) = 0}.

We make B?i into a crystal with crystal operators e?i and f?i by redefining f?i (x) = 0 if ϕ?i (x) = 0.

Then B?i is a subcrystal of B?∞ that is upper seminormal and i-seminormal.

Let B?i = Bi but denote the crystal operators as ε?i , ϕ
?
i , e

?
i , f

?
i and elements as u?i (−a) for a ∈ Z.

Define B?+i to be the subcrystal of elements u?i (−a) ∈ B?i with a ≥ 0.

Given x ∈ B?∞, let a = εi(x) define y = eai (x) ∈ B?i.

Next, let ψ?i : B?∞ → B?+i ⊗ B?i be the map with ψ?i (x) = u?i (−a)⊗ y.

Last time we sketched a proof of the following technical lemma:

Lemma 2.1. Suppose x ∈ B∞ has ψi(x) = ui(−t)⊗ y and ψ?i (x) = u?i (−v)⊗ z. Then

ε?i (x)− ϕi(y) = εi(x)− ϕ?i (z).

Last time we also stated the following result. Today we explain the proof.

Proposition 2.2. The map ψ?i : B?∞ → B?+i ⊗ B?i is a morphism for the ? crystal structure.

Proof sketch. We need to show that ε?j (x) = ε?jψ
?
i (x) and e?jψ

?
i (x) = ψ?i e

?
j (x) for all x ∈ B?∞ and j ∈ I.

We also need corresponding statements for the ϕ?j and f?j , but these are equivalent by the crystal axioms.

Assume j 6= i. Then these identities are fairly direct consequences of the fact that ei and e?j commute.

Since ε?j (u
?
i (−n)) = −∞, the operator e?j always acts on u?i (−n)⊗ y ∈ B?+i ⊗ B?i on the second factor.

Also, the relevant crystals and are either upper seminormal or i-seminormal.

For example, this means that if a := εi(x) and y := eai (x) then a = εie
?
j (x) and e?j (y) = eai e

?
j (x) so

ψ?i (e?j (x)) = u?i (−a)⊗ e?j (y) = e?j (u
?
i (−a)⊗ y) = e?j (ψ

?
i (x)).
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Instead assume that i = j. This case is more involved and we only sketch the argument.

Write ψi(x) = ui(−t)⊗ y and ψ?i (x) = ui(−v)⊗ z where

t = ε?i (x), v = εi(x), y = e?ti (x), and z = evi (x).

There are two subcases. The first case is t = ε?i (x) ≤ ϕi(y). By the technical lemma, v = εi(x) ≤ ϕ?i (z).

We already know that ψi is crystal morphism, so we have

v = εiψi(x) = max{εi(y), t+ εi(y)− ϕi(y)} = εi(y).

Because t ≤ ϕi(y), each time we apply ei to ψi(x) = ui(−t)⊗ y it applies to the second component, and

ψi(z) = ψi(e
v
i x) = eviψi(x) = ui(−t)⊗ evi (y).

This means that ε?i (z) = t = ε?i (x). On the other hand, since εi(x) ≤ ϕ?i (z), we have

ε?iψ
?
i (x) = max{ε?i (z), εi(x) + ε?i (z)− ϕ?i (z)} = ε?i (z). (*)

Combining these facts gives ε?i (ψ
?
i (x)) = ε?i (x). This proves the first of our identities.

For the second identity, one argues that εi(e
?
i (x)) = v and that ψ?i (e?i (x)) = u?i (−v)⊗ evi (e?i (x)).

Then it suffices to show that evi (e
?
i (x)) = e?i (z) since e?i (ψ

?
i (x)) = e?i (u

?
i (−v)⊗ z) = u?i (−v)⊗ e?i (z).

The justification of these claims follows by calculations similar to those above.

The other subcase is t = ε?i (x) > ϕi(y) in which case the technical lemma implies v = εi(x) > ϕ?i (z).

One argues now that ε?i (z) = ϕi(y), and using (*) that

ε?iψ
?
i (x) = εi(x) + ε?i (z)− ϕ?i (z) = ε?i (x) + ε?i (z)− ϕi(y) = ε?i (x),

where the second equality holds by the technical lemma.

To show that e?iψ
?
i (x) = ψ?i e

?
i (x), one argues that εi(e

?
i (x)) = v − 1 and ev−1i (e?i (x)) = z and

ψ?i (e?i (x)) = u?i (−(v − 1))⊗ z

since then the right hand side is e?iψ
?
i (x).

Theorem 2.3. The crystal B?∞ is isomorphic to B∞. Hence, there exists a unique weight-preserving
bijection ϑ : B∞ → B∞ such that for every i ∈ I we have

ε?i ◦ ϑ = εi, ϕ?i ◦ ϑ = ϕi, e?i ◦ ϑ = ϑ ◦ ei, and f?i ◦ ϑ = ϑ ◦ fi.

Proof. Let w0 = si1 · · · siN be a reduced word for the longest element in W .

Since we have embeddings ψi : B∞ ↪→ Bi ⊗ B∞ we have an embedding

B∞ ↪→ Bi1 ⊗ Bi2 ⊗ · · · ⊗ BiN ⊗ B∞.

We may construct B∞ as the subcrystal of Bi1 ⊗Bi2 ⊗· · ·⊗BiN generated by u∞ := ui1(0)⊗· · ·⊗uiN (0).
We can therefore understand the previous map as an embedding B∞ ↪→ B∞⊗B∞ given by x 7→ x⊗ u∞.
In particular, we always have fi(x⊗ u∞) = fi(x)⊗ u∞ since ϕi(u∞) ≤ εi(x).

Thus B∞ is isomorphic to a subcrystal contained in the set Bi1 ⊗ Bi2 ⊗ · · · ⊗ BiN ⊗ u∞.

On the other hand we have similar embeddings ψ?i : B?∞ ↪→ B?i ⊗ B?∞ for any i ∈ I and thus also

B?∞ ↪→ B?i1 ⊗ B
?
i2 ⊗ · · · ⊗ B

?
iN ⊗ B

?
∞,
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and the image of the second embedding is contained in the set B?i1 ⊗ B
?
i2
⊗ · · · ⊗ B?iN ⊗ u

?
∞.

But Bi and B?i are the same crystals, just written in different notation, so the map

θ : ui1(−a1)⊗ · · · ⊗ uiN (−aN )⊗ u∞ 7→ u?i1(−a1)⊗ · · · ⊗ u?iN (−aN )⊗ u?∞

is an isomorphism Bi1 ⊗ Bi2 ⊗ · · · ⊗ BiN ⊗ u∞
∼−→ B?i1 ⊗ B

?
i2
⊗ · · · ⊗ B?iN ⊗ u

?
∞.

Let ϑ : B∞ → B?∞ be the map that makes the diagram

B∞ Bi1 ⊗ Bi2 ⊗ · · · ⊗ BiN ⊗ u∞

B?∞ B?i1 ⊗ B
?
i2
⊗ · · · ⊗ B?iN ⊗ u

?
∞

ϑ θ

commute. This map is the desired isomorphism. It is well-defined because

• the image of B∞ in Bi1 ⊗ Bi2 ⊗ · · · ⊗ BiN ⊗ B∞ is generated by u∞ ⊗ u∞,

• the image of B?∞ in B?i1 ⊗ B
?
i2
⊗ · · · ⊗ B?iN ⊗ B

?
∞ is generated by u?∞ ⊗ u?∞, and

• we have θ(u∞ ⊗ u∞) = u?∞ ⊗ u?∞.

This ensure that the image of B∞ under its embedding is mapped by θ to the image of B?∞.

Proposition 2.4. The map ϑ : B∞ → B∞ from the previous theorem has order two.

Proof. To simplify our notation we do not distinguish between Bi and B?i in this proof, meaning that we
consider u?i (−t) = ui(−t). One can show from/using the proof of Proposition 2.2 that

ψie
?
i = (ei ⊗ 1)ψi, ψif

?
i = (fi ⊗ 1)ψi, ψ?i ei = (ei ⊗ 1)ψ?i , and ψ?i fi = (fi ⊗ 1)ψ?i . (**)

The map ψ?i is a crystal morphism B?∞ → Bi ⊗ B?∞.

The map (1⊗ ϑ)ψiϑ
−1 is another morphism B?∞ → Bi ⊗ B?∞.

Since B?∞ is connected with highest weight element u∞, there is at most one morphism B?∞ → Bi ⊗ B?∞.

Hence (1⊗ ϑ)ψiϑ
−1 = ψ?i and (1⊗ ϑ)ψi = ψ?i ϑ.

Using (**) and the fact that ϑ is a crystal isomorphism, we compute

ψ?i ϑ
2fi = ψ?i ϑf

?
i ϑ = (1⊗ ϑ)ψif

?
i ϑ = (fi ⊗ ϑ)ψiϑ = (fi ⊗ 1)ψ?i ϑ

2 = ψ?i fiϑ
2.

Since ψ?i is injective, it follows that ϑ2fi = fiϑ
2. Similar computations show that ϑ2 commutes with the

ei operators and is therefore a crystal isomorphism : B∞ → B∞.

But the identity map is the only such morphism, so ϑ2 = 1.

Finally, here is our definition of the ?-involution:

Definition 2.5. The ?-involution of B∞ is the map x 7→ x? := ϑ(x).

3 Properties of the ?-involution

Let i = (i1, . . . , iN ) be a reduced word for w0 ∈W . Identify B∞ with a subcrystal of Bi1 ⊗ · · · ⊗ BiN .

The following shows that ι1(x?) = ι2(x) for all x ∈ B∞ for our two embeddings from (1.1) and (1.2).
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Theorem 3.1. If x ∈ B∞ has x? = ui1(−a1)⊗ · · · ⊗ uiN (−aN ) then stringi(x) = (a1, . . . , aN ).

Proof. Consider the sequence of embeddings

B?∞
ψ?

i1−−→ B?i1 ⊗ B
?
∞

1⊗ψ?
i2−−−−→ B?i1 ⊗ B

?
i2 ⊗ B

?
∞

1⊗1⊗ψ?
i3−−−−−−→ · · ·

ending in B?i1 ⊗ · · · ⊗ B
?
iN
⊗ {u?∞} ⊂ B?i1 ⊗ · · · ⊗ B

?
iN
⊗ B?∞.

If x? = ui1(−a1)⊗ · · · ⊗ uiN (−aN ) then its image under this map is ui1(−a1)⊗ · · · ⊗ uiN (−aN )⊗ u?∞.

On the other hand, we have ψ?i1(x) = u?i1(−a1)⊗ y, where y = ea1i1 x and a1 = εi1(x).

Then applying 1 ⊗ ψ?i2 gives u?i1(−a1) ⊗ u?i2(−a2) ⊗ z where u?i2(−a2) ⊗ z = ψ?i2(y) and so we have
a2 = εi2(ea1i1 x) and z = ea2i2 e

a1
i1
x. Continuing in this way shows that stringi(x) = (a1, . . . , aN ).

Let w ∈W with a reduced word w = sir · · · si1 .

Write B∞(w) for the Demazure crystal Dir · · ·Di1{u∞} where DiX = {x ∈ B∞ : eki (x) ∈ X for a k ≥ 0}.

The ?-involution interacts with Demazure crystals in a particularly nice way:

Theorem 3.2. We have B∞(w−1)? = B∞(w).

Proof. We start with a reduced word (i1, . . . , ir) for w = si1 · · · sir and complete it to a reduced word for
w0 = si1 · · · siN . Note that the order of the reduced word is reversed from the usual convention.

We proved in an earlier lecture that we identify B∞(w−1) = A(w−1) ∩ C, where

C = {x ∈ Bi1 ⊗ · · · BiN : x � u∞} and A(w−1) = Bi1 ⊗ · · · ⊗ Bir ⊗ uir+1
(0)⊗ · · · ⊗ uiN (0).

Applying ? and using the previous theorem, we see that B∞(w−1)? is contained in the set of elements in
B∞ whose string patterns for i = (i1, . . . , iN ) terminate after r steps. Such elements are in B∞(w).

This means that B∞(w−1)? ⊆ B∞(w). Inverting w gives B∞(w)? ⊆ B∞(w−1), and since it follows by
applying the involution ? that B∞(w) ⊆ B∞(w−1)?. Hence B∞(w−1)? = B∞(w).

The image of ψi : B∞ ↪→ Bi ⊗ B∞ is {ui(−a)⊗ y ∈ Bi ⊗ B∞ : ε?i (y) = 0 and a ≥ 0}.

Recall that there is a unique crystal embedding ψλ : Bλ ↪→ Tλ ⊗ B∞.

We can also characterize the image of this map.

Lemma 3.3. Let Σ := {tλ ⊗ x : ε?i (x) ≤ 〈λ, α∨i 〉 for all i} ⊆ Tλ ⊗ B∞.

If tλ ⊗ x ∈ Σ then ϕi(tλ ⊗ x) ≥ 0, with strict inequality if and only if fi(tλ ⊗ x) ∈ Σ.

Proof. Choose a reduced word (i1, i2, . . . , iN ) for w0 with i = i1.

When we identify B∞ with a subcrystal of Bi1 ⊗ · · · ⊗ BiN we may write

tλ ⊗ x = tλ ⊗ ui(−a)⊗ ui2(−a2)⊗ · · · ⊗ uiN (−aN )

where a = ε?i (x). The lemma follows by computing ϕi(tλ ⊗ x) using the formulas for string lengths in
N -fold tensor products applied to the RHS. The details are a little technical though not very involved
(relative to other results today); see Lemma 14.18 in Bump and Schilling’s book for the full argument.

Theorem 3.4. The image of ψλ is {tλ ⊗ x ∈ Tλ ⊗ B∞ : ε?i (x) ≤ 〈λ, α∨i 〉 for all i}.
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Proof. It follows by the lemma that if we redefine fi(tλ ⊗ x) = 0 when ϕi(tλ ⊗ x) = 0 then the set Σ
becomes a crystal that is both upper seminormal (since B∞ is) and lower seminormal.

Now we argue that the image of ψλ is contained in Σ.

The highest weight element uλ is mapped to tλ ⊗ u∞ ∈ Σ.

If v ∈ Bλ is not a highest weight element then write v = fi(y) for some y ∈ Bλ.

By induction ψλ(y) ∈ Σ and ϕi(ψλ(y)) = ϕi(y) > 0. Since Σ is seminormal, we have v = fi(ψλ(y)) ∈ Σ.

This shows that image(ψλ) ⊆ Σ.

As Σ has a unique highest weight element tλ ⊗ u∞, it is a connected crystal, so image(ψλ) = Σ.
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