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1 Last time: the ?-involution of B∞

Fix a Cartan type (Φ,Λ) with simple roots {αi : i ∈ I}.

Elementary crystals: Bi = · · · i−−→ ui(2)
i−−→ ui(1)

i−−→ ui(0)
i−−→ ui(−1)

i−−→ · · · with wt(ui(n)) = nαi.

Fix a reduced word i = (i1, i2, . . . , iN ) for the longest element w0 ∈W .

Define A := Bi1 ⊗ Bi2 ⊗ · · · ⊗ BiN . Write x � y if ejm · · · ej2ej1(x) = y.

Then B∞ := {x ∈ A : x � u∞} for u∞ := ui1(0)⊗ ui2(0)⊗ · · · ⊗ uiN (0) ∈ A.

All operators on B∞ inherited from A, except ei(x) = 0 when εi(x) = 0.

We write ψi : B∞ → Bi ⊗ B∞ for the unique crystal morphism with ψi(u∞) = ui(0)⊗ u∞.

Define Bi to be the subset of x ∈ B∞ with ψi(x) = ui(0)⊗ x.

We make Bi into upper seminormal and i-seminormal crystal by redefining fi(x) = 0 if ϕi(x) = 0.

Also, let B+i = {ui(−a) : a ≥ 0}. To make this set into a crystal, we redefine ei(ui(0)) = 0.

Then ψi is a crystal isomorphism B∞
∼−→ B+

i ⊗ Bi.

Define B?∞ to be the same set as B∞, with same weight map, but with crystal operators that have

ε?i (x) = a and ϕ?i (x) = a+ 〈wt(x), α∨i 〉

for x, y ∈ B∞ with ψi(x) = ui(−a)⊗ y, and

ψi (e?i (x)) =

{
ui(−(a− 1))⊗ y if a > 0

0 if a = 0
and ψi(f

?
i (x)) = ui(−(a+ 1))⊗ y.

If i 6= j then e?i and f?i commute with ej and fj . Highest weight element of B∞ and B?∞ is still u∞.

Let B?i = {x ∈ B∞ : ei(x) = 0}, with f?i (x) = 0 if ϕ?i (x) = 0.

Then B?i is a subcrystal of B?∞ that is upper seminormal and i-seminormal.

Let B?i = Bi but denote the crystal operators as ε?i , ϕ
?
i , e

?
i , f

?
i and elements as u?i (−a) for a ∈ Z.

Define B?+i to be the subcrystal of elements u?i (−a) ∈ B?i with a ≥ 0.

Given x ∈ B?∞, let a = εi(x) define y = eai (x) ∈ B?i.

Next, let ψ?i : B?∞ → B?+i ⊗ B?i be the map with ψ?i (x) = u?i (−a)⊗ y.

Then the map ψ?i : B?∞ → B?+i ⊗ B?i is a morphism for the ? crystal structure.

Key fact: The crystal B?∞ is isomorphic to B∞, since iterating ψi and ψ?i gives embeddings

B∞ ↪→ Bi1 ⊗ Bi2 ⊗ · · · ⊗ BiN ⊗ B∞ and B?∞ ↪→ B?i1 ⊗ B
?
i2 ⊗ · · · ⊗ B

?
iN ⊗ B

?
∞,

but Bi and B?i are the same crystals, and the images of the embeddings can be identified.

Key fact: Write x 7→ x? for the unique crystal isomorphism B∞ → B?∞. This map has order two.
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2 Commutors

We include some final remarks about the connection between the ?-involution and the commutor map.

Suppose C is a connected normal crystal of type (Φ,Λ) with simple roots {αi : i ∈ I}.

Let τ : I → I be the permutation such that w0(αi) = −ατ(i).

In type An−1 we have w0 = n · · · 321 and αi = ei − ei+1 so w0(αi) = en+1−i − en−i = −αn−i.

HW3 contained an exercise about crystal involutions.

A crystal involution is a map S : C → C with wt(S(x)) = w0(wt(x)) as well as

ei(S(x)) = fτ(i)(x), fi(S(x)) = eτ(i)(x), εi(S(x)) = ϕτ(i)(x), ϕi(S(x)) = ετ(i)(x)

for all i ∈ I and x ∈ B. This is sometimes called a Schützenberger involution or Lusztig involution.

The content of the exercise was to show:

Theorem 2.1. A connected normal crystal C has a unique Lusztig involution.

Write S : C → C for the Lusztig involution. This map sends the highest weight vector to the lowest weight
vector sand interchanges fi with eτ(i). When C is a disconnected normal crystal, we define S : C → C to
be the map that restrict to the Lusztig involution on each full subcrystal.

Given dominant weights λ, µ ∈ Λ+, the commutor is the map

C : Bµ ⊗ Bλ → Bλ ⊗ Bµ

with the formula b⊗ c 7→ S(S(c)⊗S(b)). Here Bµ is the connected normal crystal with highest weight µ.

When we want to emphasize the crystals involved, we write CA,B : A⊗ B → B ⊗A.

Proposition 2.2. The commutor is an involution and satisfies

CB⊗A,C ◦ (CA,B ⊗ 1) = CA,C⊗B ◦ (1⊗ CB,C) : A⊗ B ⊗ C → C ⊗ B ⊗A. (2.1)

Proof. Applying either side of the identity to a⊗ b⊗ c ∈ A⊗ B ⊗ C gives S(S(c)⊗ S(b)⊗ S(a)).

The identity in (2.1) is known as the cactus relation.

It implies that the category of crystals is a coboundary category.

The cactus relation imposes the action of the cactus group on the tensor product of finite normal crystals.

The cactus group also acts on the left cells in a finite Weyl group, if you know about cells.

The commutor is not a braiding (see https://ncatlab.org/nlab/show/braided+monoidal+category).

However, it is related to the ?-involution in an interesting way.

Recall that we have a unique embedding ψλ : Bλ ↪→ Tλ ⊗ B∞ with ψ(uλ) = tλ ⊗ u∞.

For b ∈ Bµ define b? = ψ−1λ (ψµ(b)?) ∈ Bλ. This is well-defined in the following case:

Theorem 2.3. For a highest weight element b⊗ uλ ∈ Bµ ⊗ Bλ, it holds that C(b⊗ uλ) = b? ⊗ uµ.

The proof of this result follows from some exercises in Chapter 15 of Bump and Schilling’s book.
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3 Crystals and tropical geometry

In the last two weeks of class we embark on the long penultimate chapter of Bump and Schilling’s book.

(The final chapter of the book is just a survey of further topics.)

The first thing to discuss is the Lusztig parametrization of B∞. This was introduced by Lusztig in the
1990s as a “canonical basis” of the quantized enveloping algebra Uq(n) of the maximal nilpotent Lie
algebra n of a semisimple Lie algebra g.

We will focus on the part of the Lusztig parametrization that can be explained without using quantum
groups. For every reduced word i = (i1, i2, . . . , iN ) for the longest element w0 of the Weyl group W
we have a map B∞ → NN , written v 7→ vi := stringi(v). The different maps v 7→ vi are related by
piecewise-linear transformations of NN which are “tropicalizations” of certain algebraic maps.

Our second topic will be the combinatorics of MV polytopes. As motivation, we explain now how these
objects arise in the geometric Langlands program.

(In the following discussion we won’t worry too much about the precise definitions.)

Let G be a split reductive group over C and let Ĝ be its Langlands dual group. Write O = C[[x]] for
the ring of formal power series and K = C((x)) for its field of fractions, i.e., the field of formal Laurent
series. The quotient Gr = G((K))/G((O)) is called the affine Grassmannian or loop Grassmannian.

If G is a general linear group then Gr is a parameter space for the set of finitely-generated O-submodules
spanning the vector space Kn — hence the name.

There is an equivalence of categories, called the geometric Satake isomorphism, between the finite-
dimensional representations of Ĝ and the perverse sheaves on Gr.

MV polytopes are related to certain MV-cycles, whose images in the intersection homology of a perverse
sheaf form a basis of the corresponding representation of Ĝ.

The moment maps of an MV-cycle represent each element of the cycle by a convex polytope in the weight
lattice of Ĝ. These polytopes are organized into a crystal basis for the corresponding representation. For
us, these MV-polytopes will provide another model for B∞, in which crystal elements are polytopes. The
components of vi will turn out to be the lengths of the edges of one of these polytopes.

The piecewise linear maps involving max and min that we have encountered recently, and which will
reappear in the following lectures, are tropicalizations of certain algebraic maps.

To be precise, define the tropical semi-ring T to be the set Rt{∞} with the usual addition, multiplication,
and division operations replaced by

x⊕ y := min(x, y), x⊗ y := x+ y, and x� y := x− y.

A semi-ring is defined in the same way as a ring except elements need not have additive inverses.

In other words, the additive structure of a semi-ring is a commutative monoid rather than a group.

The usual 0 element in R is the multiplicative identity in T.

The element ∞ is the additive identity in T. To indicate this, we set 1 = 0 and O =∞.

Any polynomial map that has a formula that does not involve subtraction can be reinterpreted using
the tropical relations. For example, the resulting tropicalization of f(x, y, z) = (x+ y)/z is the piecewise
linear map f(x, y, z) = min(x, y)− z.

Conversely, we can try to interpret a piecewise linear map as the tropicalization of a polynomial map, to
be called a geometric lifting. Finding geometric lifts is an underdetermined problem usually without a
unique solution. But it is sometimes interesting to look for such lifts.
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4 The Lusztig parametrization in type A2

We will only discuss geometric crystals for simply-laced Cartan types (Φ,Λ).

In this section we further restrict our attention to Cartan type A2.

Let R be a commutative ring. For a ∈ R define 3-by-3 matrices

x1(a) =

 1 a 0
0 1 0
0 0 1

 and x2(a) =

 1 0 0
0 1 a
0 0 1

 .
One can check that

x1(a)x2(b)x1(c) =

 1 a+ c ab
0 1 b
0 0 1

 and x2(a)x1(b)x2(c) =

 1 b bc
0 1 a+ c
0 0 1

 .
Define ϑalg as the map from the domain {(a, b, c) : a+ c 6= 0, b 6= 0} to itself given by

ϑalg(a, b, c) =

(
bc

a+ c
, a+ c,

ab

a+ c

)
.

Then we see that x1(a)x2(b)x1(c) = x2(a′)x1(b′)x2(c′) where (a′, b′, c′) = ϑalg(a, b, c).

It follows by a calculation that ϑalg has order 2.

What about the tropicalization of ϑalg? This is the map given by respectively replacing addition, multipli-
cation, and division by min, addition, and subtraction; these substitutions make sense since the formula
for ϑalg does not involve subtraction.

Write ϑ for the tropicalization of ϑalg. This is the piecewise linear map on R3 given by

ϑ(a, b, c) = (b+ c−min(a, c),min(a, c), a+ b−min(a, c)).

Using this map, we construct a crystal isomorphic to B∞ in type A2.

Consider the set L = N3 of nonnegative integer vectors. Define wt : N3 → Λ ∼= Z3 by

wt(x) = −(a+ b)α1 − (b+ c)α2 for x = (a, b, c).

To be concrete, one can take αi = ei − ei+1 ∈ Z3. Next define

ε1(x) = a and e1(x) =

{
(a− 1, b, c) if a > 0

0 if a = 0.

The other crystal operators are given by ε2 = ε1 ◦ ϑ and e2 = ϑ ◦ e1 ◦ ϑ. Next, define

f1(x) = (a+ 1, b, c) and f2 = ϑ ◦ f1 ◦ ϑ.

Finally let ϕi be such that ϕi(x)− εi(x) = 〈wt(x), α∨i 〉.

Proposition 4.1. The set L = N3 relative to these operators is a type A2 crystal with unique highest
weight element (0, 0, 0). It is a weak Stembridge crystal isomorphic to B∞.

Proof. Checking that L is an upper seminormal A2 crystal is a routine calculation.

Checking the Stembridge axioms takes a little more work. Let x = (a, b, c). Assume ε1(x) = a > 0. Then

ε2(e1(x)) =

{
ε2(x) if a > c

ε2(x) + 1 if a ≤ c.
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Replacing x by ϑ(x), this implies that

ε1(e2(x)) =

{
ε1(x) if a < c

ε1(x) + 1 if a ≥ c.

This verifies the first two Stembridge axioms (S0) and (S1). The other axioms may be verified by explicit
calculations; just plug in all the formulas. For example, one can check that

e1e2e2e1(a− 1, b− 1, a− 1) = e2e1e1e2(a− 1, b− 1, a− 1) = (a, b, a)

which is most of what is needed to verify the axiom (S3).

Let us conclude that L is a weak Stembridge crystal. The claim about the highest weight vector is
obvious. Since L is upper seminormal with a unique highest weight vector of weight zero, it must be
isomorphic to B∞, since B∞ is the only such crystal up to isomorphism.

(Technically, the last claim requires us to prove that upper seminormal weak Stembridge crystals are
uniquely determined up to isomorphism by their highest weights. We have only discussed the version
of this claim for (seminormal) Stembridge crystals. The argument for the stronger property is similar:
suppose you have map that identifies highest weight elements and looks like a crystal isomorphism on
the top part of the crystal graph; assume the domain of this map is maximal satisfying some natural
conditions, and then argue that the domain is a proper subset of your crystal implies a contradiction.)

5 Geometric preparations for simply-laced types

Next time we will discuss the Lusztig parametrization of B∞ for simply-laced types (Φ,Λ).

This will involve generalizing the constructions for type A2. The required piecewise linear maps will be
tropicalizations of geometric ones. We discuss some of the relevant geometry here.

Not every unipotent upper triangular 3-by-3 matrix can be written as x1(a)x2(b)x1(c). For example, 1 x z
0 1 y
0 0 1


for y = 0 and z 6= 0. Nevertheless set of the matrices x1(a)x2(b)x1(c) is Zariski dense in the group N+

of unipotent upper triangular 3-by-3 matrices.

We can generalize this fact to an arbitrary reductive group G.

Define by Ga the “additive group” which is the affine algebraic group such that Ga(R) is the additive
group of R for any commutative ring R.

If α ∈ Φ is a root then let xα : Ga → G be the one-parameter subgroup tangent to α and let xi = xαi .

In type A for α = ei − ej we have xα(t) = I + t · Eij .

Let i = (i1, . . . , iN ) be a reduced word for the longest element w0 ∈W . Define

γ1(i) = αi1 , γ2(i) = si1(αi2), γ3(i) = si1si2(αi3), · · ·

and let γ(i) = (γ1(i), . . . , γN (i)).

For example, in the type A2 case for i = (1, 2, 1) we have γ(i) = (α1, α1 + α2, α2) for αi = ei − ei+1.

The following statement is something that could be derived in a course on finite reflection groups.

Proposition 5.1. Each positive root appears exactly once in the sequence γ(i).
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Let V and W be irreducible algebraic varieties. A rational map f : V → W is a morphism defined on a
dense Zariski-open subset U of V . If f ′ : V → W is another rational map defined on U ′, we consider f
and f ′ to be the same if f = f ′ on the (still dense) intersection U ∩ U ′.

A birational equivalence is a rational map that has a rational two-sided inverse, in other words, an
isomorphism in the category of irreducible varieties with rational maps as morphisms.

Let N+ be the maximal unipotent subgroup generated by the xα with α ∈ Φ+.

Define N− analogously, taking α ∈ Φ−.

Let B = {g ∈ G : gN+g−1 = N+} be the normalizer of N+ in G and let B− be the normalizer of N−.

Then B and B− are opposite Borel subgroups of G.

The flag variety is X = G/B−. This is a complete projective variety.

The Bruhat decomposition is the disjoint union G =
⊔
w∈W BwB−.

This induces a decomposition of X into relatively open subsets BwB−/B−.

There is a unique open cell BB−/B− corresponding to w = 1 and all other cells have smaller dimension.

Define j : N+ → X to be the morphism with j(n) = nB−.

This morphism is injective and its image is a dense open set. Hence j is a birational equivalence.

For i ∈ I, the subgroup SL(2)i ⊂ G generated by xαi
and x−αi

is isomorphic to SL(2).

Let B−i = B− ∩ SL(2)i and let P−i be the minimal parabolic subgroup generated by SL(2)i and B−.

The group (B−)N acts on the product P−i1 × · · · × P
−
iN

on the right by

(b1, . . . , bN ) : (p1, . . . , pN ) 7→ (p1b1, b
−1
1 p2b2, . . . , b

−1
N−1pNbN ).

The Bott-Samelson variety Xi is the quotient of P−i1 × · · · × P
−
iN

by this action.

This is a projective variety of dimension N .

There is a morphism πi : Xi → X sending the orbit of (p1, . . . , pN ) to the coset p1 · · · pNB−.

Proposition 5.2. The map πi is a birational equivalence.

Proof. The image of BB−/B in X is an affine space that may be identified with N+ since the map
n 7→ nB− from N+ to BB−/B is an isomorphism.

Let AN be affine N -space. We may map AN into Xi by sending a = (a1, . . . , aN ) ∈ AN to the orbit of

(xi1(a1)si1 , . . . , xiN (aN )siN ) ∈ SL(2)i1 × · · · × SL(2)iN .

The elements of this form make up an open subset U or Xi.

Under πi the above element maps to ξ1 · · · ξN where ξk = (si1 · · · sik−1
)xik(ak)(si1 · · · sik−1

)−1 ∈ xγk(Ga).
Since the γk are the positive roots of G, every element of N+ may be written uniquely in this form.
Hence πi maps the open set U in Xi bijectively onto the big cell of X, so is a birational equivalence.

Now define a morphism φi : AN → X by φi(a1, . . . , aN ) = xi1(a1) · · ·xiN (aN )B−.

Theorem 5.3. The morphism φi : AN → X is a birational equivalence.

Proof. Let φ̃i : AN → Xi be the map sending (a1, . . . , aN ) to the orbit of (xi1(a1), . . . , xiN (aN )). This

map lifts φi to be the Bott-Samelson variety since πi◦φ̃i = φi. Now φ̃i is a birational morphism, essentially
since the inclusion of A1 into P1 is birational. Since πi is a birational equivalence, the theorem follows.
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