1 Last time: some (tropical) geometry

The tropical semi-ring \mathbb{T} is the set $\mathbb{R} \sqcup\{\infty\}$ with the operations,$+ \times$, and / replaced by

$$
x \oplus y:=\min (x, y), \quad x \otimes y:=x+y, \quad \text { and } \quad x \oslash y:=x-y
$$

We write $\mathbb{1}=0$ and $\mathbb{O}=\infty$ since these are the identities for \oplus and \otimes.
The tropicalization of a polynomial that does not involve subtraction is the piecewise linear map given by replacing,$+ \times, /$ with \oplus, \otimes, \oslash. Example: $f(x, y, z)=(x+y) / z$ becomes $f(x, y, z)=\min (x, y)-z$.

Let $G=\operatorname{GL}(n, \mathbb{C})$ and let $\mathbb{G}_{a}=(\mathbb{C},+)$ be the additive group of \mathbb{C}.
Given $\alpha \in \Phi=\left\{\mathbf{e}_{i}-\mathbf{e}_{j}: 1 \leq i, j \leq n, i \neq j\right\}$ define $x_{\alpha}(r)=I+r E_{i j} \in G$ and $x_{i}:=x_{\alpha_{i}}=x_{\mathbf{e}_{i}-\mathbf{e}_{i+1}}$.
Let $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right)$ be a reduced word for the longest element $w_{0} \in W=S_{n}$.
Nontrivial fact: each positive root appears exactly once in the sequence $\gamma(\mathbf{i})=\left(\gamma_{1}(\mathbf{i}), \ldots, \gamma_{N}(\mathbf{i})\right)$ where

$$
\gamma_{1}(\mathbf{i})=\alpha_{i_{1}}, \quad \gamma_{2}(\mathbf{i})=s_{i_{1}}\left(\alpha_{i_{2}}\right), \quad \gamma_{3}(\mathbf{i})=s_{i_{1}} s_{i_{2}}\left(\alpha_{i_{3}}\right), \quad \ldots
$$

Let V and W be irreducible algebraic varieties. A rational map $f: V \rightarrow W$ is a morphism defined on a dense Zariski-open subset U of V. A birational equivalence is a rational map with a rational two-sided inverse.

Let $\mathcal{N}^{+}=\left\langle x_{\alpha}(r): \alpha \in \Phi^{+}, r \in \mathbb{C}\right\rangle$ be the unipotent subgroup of upper-triangular matrices in G with all diagonal entries equal to one. Define $\mathcal{N}^{-}=\left\langle x_{\alpha}(r): \alpha \in \Phi^{-}, r \in \mathbb{C}\right\rangle=\left\{g^{T}: g \in \mathcal{N}^{+}\right\}$.

Let B be the normalizer of \mathcal{N}^{+}in G and let B^{-}be the normalizer of \mathcal{N}^{-}.
You can check that B (or B^{-}) is the subgroup of all invertible upper (or lower) triangular matrices in G.
One calls B and B^{-}opposite Borel subgroups of G. The flag variety is the set of cosets $X:=G / B^{-}$. The Bruhat decomposition is the disjoint union $G=\bigsqcup_{w \in W} B w B^{-}$.
Define $j: \mathcal{N}^{+} \rightarrow X$ to be the morphism with $j(n)=n B^{-}$. The map j is a birational equivalence.

For $i \in\{1,2, \ldots, n-1\}$, the subgroup $\mathrm{SL}(2)_{i}:=\left\langle x_{ \pm \alpha_{i}}(r): r \in \mathbb{C}\right\rangle \subset G$ is isomorphic to $\mathrm{SL}(2)$.
Let $B_{i}^{-}=B^{-} \cap \mathrm{SL}(2)_{i}$ and let P_{i}^{-}be the minimal parabolic subgroup generated by $\operatorname{SL}(2)_{i}$ and B^{-}.
In the concrete $\mathrm{GL}(n, \mathbb{C})$ case, the elements of P_{i}^{-}are the matrices of the form

$$
\left[\begin{array}{llll}
X & 0 & 0 & 0 \\
u^{T} & a & b & 0 \\
v^{T} & c & d & 0 \\
A & u^{\prime} & v^{\prime} & X^{\prime}
\end{array}\right]
$$

where $a, b, c, d \in \mathbb{C}$ have $a d-b c=1$, where X and X^{\prime} are invertible and lower triangular of size $(i-1) \times(i-1)$ and $(n-i-1) \times(n-i-1)$, respectively, and where $u, v \in \mathbb{C}^{i-1}$ and $u^{\prime}, v^{\prime} \in \mathbb{C}^{n-i-1}$ and A is an arbitrary matrix. The product group $\left(B^{-}\right)^{N}$ acts on $P_{i_{1}}^{-} \times \cdots \times P_{i_{N}}^{-}$on the right by

$$
\left(b_{1}, \ldots, b_{N}\right):\left(p_{1}, \ldots, p_{N}\right) \mapsto\left(p_{1} b_{1}, b_{1}^{-1} p_{2} b_{2}, \ldots, b_{N-1}^{-1} p_{N} b_{N}\right)
$$

The Bott-Samelson variety $X_{\mathbf{i}}$ is the quotient of $P_{i_{1}}^{-} \times \cdots \times P_{i_{N}}^{-}$by this action.
Let $\pi_{\mathbf{i}}: X_{\mathbf{i}} \rightarrow X$ be the morphism sending the orbit of $\left(p_{1}, \ldots, p_{N}\right)$ to the coset $p_{1} \cdots p_{N} B^{-}$.
Let $\phi_{\mathbf{i}}: \mathbb{C}^{N} \rightarrow X$ be the morphism $\phi_{i}\left(a_{1}, \ldots, a_{N}\right)=x_{i_{1}}\left(a_{1}\right) \cdots x_{i_{N}}\left(a_{N}\right) B^{-}$.
Then both $\pi_{\mathbf{i}}$ and $\phi_{\mathbf{i}}$ are birational equivalences.
All of the above facts hold for an arbitrary reductive group G with root system Φ and Weyl group W.

2 Lusztig's parametrization of \mathcal{B}_{∞} for simply-laced types

Everything in this section works for arbitrary simply-laced types, but to be concrete it may be helpful to assume that (Φ, Λ) is the $\mathrm{GL}(n)$ Cartan type and that $W=S_{n}$.

Let $\operatorname{Red}(w)$ be the set of reduced words for $w \in W$.
Recall that the set $\operatorname{Red}(w)$ is connected by the braid relations
(B1) $\mathbf{i}=(\cdots, a, b, \cdots) \leftrightarrow(\cdots, b, a, \cdots)=\mathbf{j}$ if $s_{a} s_{b} \in W$ has order 2 , along with
(B2) $\mathbf{i}=(\cdots, a, b, a, \cdots) \leftrightarrow(\cdots, b, a, b, \cdots)=\mathbf{j}$ if $s_{a} s_{b} \in W$ has order 3 .
Lusztig's parametrization of \mathcal{B}_{∞} depends on a family of piecewise linear maps indexed by pairs of elements of $\operatorname{Red}(w)$. The description of \mathcal{B}_{∞} we covered a few weeks back, due to Kashiwara, may be understood in a similar way. This will be helpful to motivate Lusztig's construction.

Embed \mathcal{B}_{∞} into $\mathcal{B}_{i_{1}} \otimes \cdots \otimes \mathcal{B}_{i_{N}}$ in the usual way, where $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{N}\right) \in \operatorname{Red}\left(w_{0}\right)$.
Let $u_{i_{1}}\left(-a_{1}\right) \otimes \cdots \otimes u_{i_{N}}\left(-a_{N}\right)$ be the image of $v \in \mathcal{B}_{\infty}$ under this embedding and define $\widehat{v}_{\mathbf{i}}=\left(a_{1}, \ldots, a_{N}\right)$. The map $v \mapsto \widehat{v}_{\mathbf{i}} \in \mathbb{Z}^{N}$ gives us a "view" of the crystal \mathcal{B}_{∞}.

A relevant question is how such views vary for different choices of \mathbf{i}.
To answer this question, we make use of two maps $\theta_{2}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ and $\theta_{3}: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ defined by

$$
\theta_{2}(a, b)=(b, a) \quad \text { and } \quad \theta_{3}(a, b, c)=(\max (c, b-a), a+c, \min (b-c, a)) .
$$

We have encountered θ_{3} a few times already; it may also be expressed as

$$
\theta_{3}(a, b, c)=(b+c-\min (b, a+c), a+c, \min (b-c, a))
$$

which is the tropicalization of the algebraic map $(a, b, c) \mapsto\left(\frac{b c}{b+a c}, a c, \frac{b+a c}{c}\right)$.
Proposition 2.1. Let $\mathbf{i}, \mathbf{j} \in \operatorname{Red}\left(w_{0}\right)$. Then there is a piecewise linear map $\widehat{\mathcal{R}}_{\mathbf{i}, \mathbf{j}}: \mathbb{Z}^{N} \rightarrow \mathbb{Z}^{N}$ such that if $v \in \mathcal{B}_{\infty}$ then $\widehat{\mathcal{R}}_{\mathbf{i}, \mathbf{j}}\left(\widehat{v}_{\mathbf{i}}\right)=\widehat{v}_{\mathbf{j}}$. These maps satisfy the relation

$$
\widehat{\mathcal{R}}_{\mathbf{j}, \mathbf{k}} \circ \widehat{\mathcal{R}}_{\mathbf{i}, \mathbf{j}}=\widehat{\mathcal{R}}_{\mathbf{i}, \mathbf{k}}
$$

If \mathbf{i} and \mathbf{j} are as in $(\mathrm{B} 1)$ for $\left(i_{k}, i_{k+1}\right)=(a, b)$ then $\widehat{\mathcal{R}}_{\mathbf{i}, \mathbf{j}}$ is θ_{2} applied to the pair of consecutive positions $\left(a_{k}, a_{k+1}\right)$ in $\widehat{v}_{\mathbf{i}}=\left(a_{1}, \ldots, a_{N}\right)$, and if \mathbf{i} and \mathbf{j} are as in (B2) for $\left(i_{k}, i_{k+1}, i_{k+2}\right)=(a, b, c)$ then $\widehat{\mathcal{R}}_{\mathbf{i}, \mathbf{j}}$ is θ_{3} applied to the triple of consecutive positions $\left(a_{k}, a_{k+1}, a_{k+2}\right)$ in $\widehat{v}_{\mathbf{i}}$.

Proof. This follows from the fact that the maps θ_{2} and θ_{3} are isomorphisms $\mathcal{B}_{i} \otimes \mathcal{B}_{j} \rightarrow \mathcal{B}_{j} \otimes \mathcal{B}_{i}$ and $\mathcal{B}_{i} \otimes \mathcal{B}_{i+1} \otimes \mathcal{B}_{i} \rightarrow \mathcal{B}_{i+1} \otimes \mathcal{B}_{i} \otimes \mathcal{B}_{i+1}$, which we showed in Proposition 5.1 of Lecture 17.

The Lusztig parametrization will rely on slightly different piecewise linear maps $\mathcal{R}_{\mathbf{i}, \mathbf{j}}: \mathbb{Z}^{N} \rightarrow \mathbb{Z}^{N}$ (note the change of notation) with similar formal properties.
From last time, let $\vartheta: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the piecewise linear map given by

$$
\vartheta(a, b, c)=(b+c-\min (a, c), \min (a, c), a+b-\min (a, c)) .
$$

Recall that this is the tropicalization of the map

$$
\vartheta_{\mathrm{alg}}(a, b, c)=\left(\frac{b c}{a+c}, a+c, \frac{a b}{a+c}\right) .
$$

Proposition 2.2. There exists a family of piecewise linear maps $\mathcal{R}_{\mathbf{i}, \mathbf{j}}: \mathbb{Z}^{N} \rightarrow \mathbb{Z}^{N}$ satisfying

$$
\mathcal{R}_{\mathbf{j}, \mathbf{k}} \circ \mathcal{R}_{\mathbf{i}, \mathbf{j}}=\mathcal{R}_{\mathbf{i}, \mathbf{k}}
$$

along with the following properties: If \mathbf{i} and \mathbf{j} are as in (B1) for $\left(i_{k}, i_{k+1}\right)=(a, b)$ then $\mathcal{R}_{\mathbf{i}, \mathbf{j}}$ is θ_{2} applied to the substring $\left(a_{k}, a_{k+1}\right)$ in $\left(a_{1}, \ldots, a_{N}\right)$. If \mathbf{i} and \mathbf{j} are as in (B2) for $\left(i_{k}, i_{k+1}, i_{k+2}\right)=(a, b, c)$ then $\mathcal{R}_{\mathbf{i}, \mathbf{j}}$ is ϑ applied to the substring $\left(a_{k}, a_{k+1}, a_{k+2}\right)$ in $\left(a_{1}, \ldots, a_{N}\right)$.

Proof. Results from last time show that there are birational maps $\Re_{\mathbf{i}, \mathbf{j}}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ with $\Re_{\mathbf{j}, \mathbf{k}} \circ \Re_{\mathbf{i}, \mathbf{j}}=\Re_{\mathbf{i}, \mathbf{k}}$ such that in case (B1) the map $\mathfrak{R}_{\mathbf{i}, \mathbf{j}}$ when applied to $\left(a_{1}, \ldots, a_{N}\right)$ interchanges a_{k} and a_{k+1}, while in case (B2) the same map applies $\vartheta_{\text {alg }}$ to $\left(a_{k}, a_{k+1}, a_{k+2}\right)$. Namely, define

$$
\mathfrak{R}_{\mathbf{i}, \mathbf{j}}=\phi_{\mathbf{j}}^{-1} \phi_{\mathbf{i}}
$$

where $\phi_{\mathbf{i}}$ is our birational equivalence $\mathbb{C}^{N} \rightarrow X$ to the flag variety.
The property we want in case (B1) holds automatically and what needs to happen in case (B2) follows from our discussion of the Lusztig parametrization in type A_{2}, namely, the identity

$$
x_{1}(a) x_{2}(b) x_{1}(c)=x_{2}\left(a^{\prime}\right) x_{1}\left(b^{\prime}\right) x_{2}\left(c^{\prime}\right) \quad \text { where }\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\vartheta_{\text {alg }}(a, b, c)
$$

The desired maps $\mathcal{R}_{\mathbf{i}, \mathbf{j}}$ are given as the tropicalizations of $\mathfrak{R}_{\mathbf{i}, \mathbf{j}}$.
We may now define a crystal \mathcal{L} as follows. An element v of \mathcal{L} consists of a family of "views" $v=\left(v_{\mathbf{i}}\right)$ indexed by $\mathbf{i} \in \operatorname{Red}\left(w_{0}\right)$. Views are vectors $v_{\mathbf{i}} \in \mathbb{N}^{N}$, which must be related by the rule $v_{\mathbf{j}}=\mathcal{R}_{\mathbf{i}, \mathbf{j}}\left(v_{\mathbf{i}}\right)$. The latter property implies that the entire family v is determined by any particular view $v_{\mathbf{i}}$.

Given such a family $v=\left(v_{\mathbf{i}}\right) \in \mathcal{L}$, define

$$
\mathbf{w} \mathbf{t}\left(v_{\mathbf{i}}\right)=-\sum_{j=1}^{N} a_{j} \gamma_{j}
$$

where $v_{\mathbf{i}}=\left(a_{1}, a_{2}, \ldots, a_{N}\right)$ and where $\gamma(\mathbf{i})=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}\right)$ is the sequence of positive roots

$$
\gamma_{1}=\alpha_{i_{1}}, \quad \gamma_{2}=s_{i_{1}}\left(\alpha_{i_{2}}\right), \quad \gamma_{3}=s_{i_{1}} s_{i_{2}}\left(\alpha_{i_{3}}\right), \quad \cdots
$$

with $\left\{\alpha_{i}: i \in I\right\}$ the set of simple roots and $s_{i}=r_{\alpha_{i}} \in W$. Recall that $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}\right\}=\Phi^{+}$.
Lemma 2.3. If $v=\left(v_{\mathbf{i}}\right) \in \mathcal{L}$ then the value of $\mathbf{w t}\left(v_{\mathbf{i}}\right)$ is the same for all $i \in \operatorname{Red}\left(w_{0}\right)$.
Proof. Fix $v=\left(v_{\mathbf{i}}\right) \in \mathcal{L}$ and suppose $\mathbf{i}, \mathbf{j} \in \operatorname{Red}\left(w_{0}\right)$ are reduced words related by either (B1) or (B2).
It suffices to show that $\mathbf{w t}\left(v_{\mathbf{i}}\right)=\mathbf{w t}\left(v_{\mathbf{j}}\right)$.
In the (B1) case, the view $v_{\mathbf{j}}$ is obtained by interchanging two adjacent entries in $v_{\mathbf{i}}$, say a_{k} and a_{k+1}, and we claim that $\gamma(\mathbf{j})$ is likewise formed by interchanging γ_{k} and γ_{k+1} in $\gamma(\mathbf{i})$. To see that this holds, write $w=s_{i_{1}} \cdots s_{i_{k-1}}$. Then the roots in $\gamma(\mathbf{i})$ have the formula $\gamma_{k}=w\left(\alpha_{k}\right)$ and $\gamma_{k+1}=w s_{i_{k}}\left(\alpha_{i_{k+1}}\right)$. Since $s_{i_{k}}$ and $s_{i_{k+1}}$ commute, the roots $\alpha_{i_{k}}$ and $\alpha_{i_{k+1}}$ are orthogonal, so $s_{i_{k}}\left(\alpha_{i_{k+1}}\right)=\alpha_{i_{k+1}}$. Thus

$$
\left(\gamma_{k}, \gamma_{k+1}\right)=\left(w \alpha_{i_{k}}, w \alpha_{i_{k+1}}\right)
$$

The same argument shows that k th and $(k+1)$ th roots in $\gamma(\mathbf{j})$ are $\left(w \alpha_{i_{k+1}}, w \alpha_{i_{k}}\right)$, so our claim holds.
We conclude in the (B1) case that $\mathbf{w} \mathbf{t}\left(v_{\mathbf{i}}\right)=\mathbf{w} \mathbf{t}\left(v_{\mathbf{j}}\right)$. Now assume \mathbf{i} and \mathbf{j} are connected by relation (B2), say in positions $k, k+1, k+2$. Then in the sequence $\gamma(\mathbf{i})=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}\right)$ we have

$$
\left(\gamma_{k}, \gamma_{k+1}, \gamma_{k+2}\right)=\left(w\left(\alpha_{i_{k}}\right), w s_{i_{k}}\left(\alpha_{i_{k+1}}\right), w s_{i_{k}} s_{i_{k+1}}\left(\alpha_{i_{k}}\right)\right)
$$

Since $s_{i_{k}} s_{i_{k+1}} \in W$ has order 3 , we have $s_{i_{k}}\left(\alpha_{i_{k+1}}\right)=\alpha_{i_{k}}+\alpha_{i_{k+1}}$ and $s_{i_{k}} s_{i_{k+1}}\left(\alpha_{i_{k}}\right)=\alpha_{i_{k+1}}$, so

$$
\left(\gamma_{k}, \gamma_{k+1}, \gamma_{k+2}\right)=\left(w\left(\alpha_{i_{k}}\right), w\left(\alpha_{i_{k}}+\alpha_{i_{k+1}}\right), w\left(\alpha_{i_{k+1}}\right)\right)
$$

By the same argument, the corresponding terms in $\gamma(\mathbf{j})$ are $\left(w\left(\alpha_{i_{k+1}}\right), w\left(\alpha_{i_{k}}+\alpha_{i_{k+1}}\right), w\left(\alpha_{i_{k}}\right)\right)$. Thus

$$
\begin{aligned}
\mathbf{w} \mathbf{t}\left(v_{\mathbf{i}}\right)-\mathbf{w} \mathbf{t}\left(v_{\mathbf{j}}\right)= & \left(a_{k}+a_{k+1}-\min \left(a_{k}, a_{k+2}\right)-a_{k}\right) w\left(\alpha_{i_{k}}\right) \\
& +\left(\min \left(a_{k}, a_{k+2}\right)-a_{k+1}\right) w\left(\alpha_{i_{k}}+\alpha_{i_{k+1}}\right) \\
& +\left(a_{k+1}+a_{k+2}-\min \left(a_{k}, a_{k+2}\right)-a_{k+2}\right) w\left(\alpha_{i_{k+1}}\right)=0
\end{aligned}
$$

since the terms of $v_{\mathbf{j}}$ in positions $k, k+1, k+2$ are $\vartheta\left(a_{k}, a_{k+1}, a_{k+2}\right)$.
We produce a crystal structure on \mathcal{L} as follows.
The weight map is $\mathbf{w t}(v)=\mathbf{w} \mathbf{t}\left(v_{\mathbf{i}}\right)$ for $v=\left(v_{\mathbf{i}}\right) \in \mathcal{L}$. This is well-defined by the preceding lemma.
To define $e_{i}(v), f_{i}(v), \varepsilon_{i}(v), \varphi_{i}(v)$, choose a word $\mathbf{i} \in \operatorname{Red}\left(w_{0}\right)$ such that $i_{1}=i$.
Then let $\varepsilon_{i}(v)=a_{1}$ where $v_{\mathbf{i}}=\left(a_{1}, \ldots, a_{N}\right)$. We define $e_{i}(v)=0$ if $a_{1}=0$.
If $a_{1} \neq 0$ then $e_{i}(v)=v^{\prime}$ where $v^{\prime} \in \mathcal{L}$ is the unique element with

$$
v_{\mathbf{i}}^{\prime}=\left(a_{1}-1, a_{2}, \ldots, a_{N}\right)
$$

We define $\varphi_{i}(v)$ by requiring that $\varphi_{i}(v)-\varepsilon_{i}(v)=\left\langle\mathbf{w t}(v), \alpha_{i}^{\vee}\right\rangle$.
Finally, f_{i} increments a_{1} in $v_{\mathbf{i}}$ without affecting any of the other a_{k}, i.e., $f_{i}(v)=v^{\prime \prime} \in \mathcal{L}$ where

$$
v_{\mathbf{i}}^{\prime \prime}=\left(a_{1}+1, a_{2}, \ldots, a_{N}\right)
$$

Lemma 2.4. These definitions of $e_{i}(v), f_{i}(v), \varepsilon_{i}(v), \varphi_{i}(v)$ are independent of the choice of \mathbf{i}.
Proof. If $\mathbf{j} \in \operatorname{Red}\left(w_{0}\right)$ also has first entry $j_{1}=i$, then by applying Matsumoto's theorem to the word $s_{i}^{-1} w_{0}$ we obtain a sequence of reduced words interpolating between $\left(i_{2},, i_{k}\right)$ and $\left(j_{2}, \ldots, j_{k}\right)$ in which consecutive words are related as in (B1) or (B2).

Prepending i to each of these words gives a sequence of reduced words $\mathbf{i}=\mathbf{i}_{0}, \mathbf{i}_{1}, \ldots, \mathbf{i}_{r}=\mathbf{j}$, all beginning with i, in which consecutive words are related as in (B1) or (B2).

The composition $\mathcal{R}_{\mathbf{i}, \mathbf{j}}=\mathcal{R}_{\mathbf{i}_{r-1}, \mathbf{i}_{r}} \circ \cdots \circ \mathcal{R}_{\mathbf{i}_{1}, \mathbf{i}_{\mathbf{i}}}$ therefore does not affect the first coordinate, so the first entry a_{1} in $v_{\mathbf{i}}$ is the same as in $v_{\mathbf{j}}$, and this completely determines $e_{i}(v), f_{i}(v), \varepsilon_{i}(v), \varphi_{i}(v)$.

In type A_{2}, there are two reduced words $\mathbf{i}=(1,2,1)$ and $\mathbf{j}=(2,1,2)$.
If $v=(a, b, c)$ is a vector in \mathbb{N}^{3}, which is what we called \mathcal{L} last time, then we define the two views of v to be $v_{\mathbf{i}}=(a, b, c)$ and $v_{\mathbf{j}}=\vartheta(a, b, c)$.
This change of notation $v=(a, b, c) \mapsto v=\left(v_{\mathbf{i}}\right)$ identifies the type A_{2} crystal \mathcal{L} defined last time as a subset of \mathbb{N}^{3} with our new crystal \mathcal{L} defined as a subset of $\left(\mathbb{N}^{3}\right)^{2}=\left(\mathbb{N}^{n+1}\right)^{\left|\operatorname{Red}\left(w_{0}\right)\right|}$ for $n=2$.

Theorem 2.5. In any simply-laced type, the crystal \mathcal{L} is isomorphic to \mathcal{B}_{∞}.
Proof sketch. First, we want to check that \mathcal{L} is weakly Stembridge, i.e., satisfies all of the Stembridge axioms except the requirement of being seminormal.

The trivial axioms (S 0) and (S^{\prime}) hold since \mathcal{L} is upper seminormal and $f_{i}(v)$ is never zero.
The remaining Stembridge axioms require us to work with crystal operators for a pair of indices $i, j \in I$. Similar to the previous lemma, we can always choose a view $v_{\mathbf{i}}$ indexed by a reduced word $\mathbf{i} \in \operatorname{Red}\left(w_{0}\right)$
that begins as (i, j, \ldots) or (i, j, i, \ldots). This lets us calculate all of the relevant crystal operators explicitly. The details are the same as what we sketched last time for the Lusztig parametrization in type A_{2}.

Once we are satisfied that \mathcal{L} is a weakly Stembridge crystal, we may deduce that there exists a unique crystal embedding $\tau: \mathcal{L} \hookrightarrow \mathcal{B}_{\infty}$, since \mathcal{L} is connected by construction with unique highest element given by the family of "zero views" $v=\left(v_{\mathbf{i}}\right)$ in which $v_{\mathbf{i}}=(0,0, \ldots, 0)$ for all $\mathbf{i} \in \operatorname{Red}\left(w_{0}\right)$.
We want to show that τ is surjective. Argue by contradiction. Suppose $x \in \mathcal{B}_{\infty}$ is maximal under \prec among all elements not in the image of τ. This element cannot be the unique highest weight element, which is in the image of τ. Therefore $x=f_{i}(y)$ for some $y=\tau\left(y^{\prime}\right)$ where $y^{\prime} \in \mathcal{L}$. But by definition $f_{i}\left(y^{\prime}\right)$ is never zero, so $\tau\left(f_{i}\left(y^{\prime}\right)\right)=f_{i}\left(\tau\left(y^{\prime}\right)\right)=f_{i}(y)=x$, which is a contradiction. Thus τ is an isomorphism.

A root partition of a weight μ is a tuple $\left(k_{\alpha}\right)_{\alpha \in \Phi^{+}}$in which $k_{\alpha} \in \mathbb{N}$ and $\sum_{\alpha \in \Phi^{+}} k_{\alpha} \alpha=\mu$.
The Kostant partition function $P(\mu)$ computes the number of root partitions of μ.
One has the following identity of generating functions:

$$
\prod_{\alpha \in \Phi^{+}}\left(1-t^{-\alpha}\right)^{-1}=\sum_{\mu \in \Lambda} P(\mu) t^{-\mu}
$$

This turns out to be the character of \mathcal{B}_{∞}. (Showing this for Cartan type $\mathrm{GL}(n)$ is an exercise in HW5.) Deriving this from our first construction of \mathcal{B}_{∞} - the so-called the Kashiwara approach - is not straightforward. An advantage of the Lusztig parametrization is that it makes it obvious that this generating function is the character of $\mathcal{L} \cong \mathcal{B}_{\infty}$.

Corollary 2.6. One has $\operatorname{ch}(\mathcal{L})=\operatorname{ch}\left(\mathcal{B}_{\infty}\right)=\sum_{\mu \in \Lambda} P(\mu) t^{-\mu}$.
Proof. The value of $\mathbf{w t}(v)$ for $v \in \mathcal{L}$ varies over all linear combinations

$$
-a_{1} \gamma_{1}-a_{2} \gamma_{2}-\cdots-a_{N} \gamma_{N}
$$

with $\Phi^{+}=\left\{\gamma_{1}, \ldots, \gamma_{N}\right\}$ and $a_{i} \in \mathbb{N}$, so $\operatorname{ch}(\mathcal{L})$ is the linear combination over all dominant weights μ of the formal elements $t^{-\mu}$ with coefficient $P(\mu)$.

3 Weyl group action

Let \mathcal{B} be a seminormal crystal. Recall that for each $i \in I$ we have a map $\sigma_{i}: \mathcal{B} \rightarrow \mathcal{B}$ given by

$$
\sigma_{i}(x)=\left\{\begin{array}{ll}
f_{i}^{k}(x) & \text { if } k \geq 0 \\
e_{i}^{-k}(x) & \text { if } k<0
\end{array} \quad \text { where } k=\left\langle\mathbf{w} \mathbf{t}(x), \alpha_{i}^{\vee}\right\rangle\right.
$$

Moreover, if \mathcal{B} is normal then there is a unique action of W on \mathcal{B} in which s_{i} operates as σ_{i}.
We can apply the above definition of σ_{i} on other crystals. For this to define a W-action, the formula for $\sigma_{i}(x)$ must always give another element of \mathcal{B}, never zero. When \mathcal{B} is not seminormal this property can fail, and indeed, this definition does not work to define a Weyl group action on \mathcal{L}.
However, one can use a variant $\widehat{\mathcal{L}}$ of \mathcal{L} in which e_{i} and f_{i} never act as zero.
To construct this, recall that elements of \mathcal{L} are families of views $v=\left(v_{\mathbf{i}}\right)$, indexed by $\mathbf{i} \in \operatorname{Red}\left(w_{0}\right)$ with $v_{\mathbf{i}} \in \mathbb{N}^{n}$, satisfying $v_{\mathbf{j}}=\mathcal{R}_{\mathbf{i}, \mathbf{j}}\left(v_{\mathbf{i}}\right)$ for all $\mathbf{i}, \mathbf{j} \in \operatorname{Red}\left(w_{0}\right)$.
We define $\widehat{\mathcal{L}}$ in the same way, except now we allow views to be vectors $v_{\mathbf{i}} \in \mathbb{Z}^{n}$.
In \mathcal{L} we defined $e_{i}(v)=0$ if $\varepsilon_{i}(v)=0$; in $\widehat{\mathcal{L}}$ we modify this so that $e_{i}(v)$ is never zero.

Explicitly, if $\mathbf{i} \in \operatorname{Red}\left(w_{0}\right)$ has $i=\mathbf{i}_{1}$, and $v \in \widehat{\mathcal{L}}$ is such that

$$
v_{\mathbf{i}}=\left(a_{1}, a_{2}, \ldots, a_{N}\right)
$$

then we define $e_{i}(v)=v^{\prime}$ to be the unique family $v^{\prime} \in \widehat{\mathcal{L}}$ with $v_{\mathbf{i}}^{\prime}=\left(a_{1}-1, a_{2}, \ldots, a_{N}\right)$.
We retain from \mathcal{L} the meaning of all other operators wt, $\varepsilon_{i}, f_{i}, \varphi_{i}$ on $\widehat{\mathcal{L}}$.
The same proofs go through to show that $\widehat{\mathcal{L}}$ is a crystal.

Now our formula for σ_{i} is never zero on $\widehat{\mathcal{L}}$. We generalize this definition slightly. Given $\nu \in \Lambda$, let

$$
\sigma_{i}^{\nu}(x)=\left\{\begin{array}{ll}
f_{i}^{k}(x) & \text { if } k \geq 0 \\
e_{i}^{-k}(x) & \text { if } k<0
\end{array} \quad \text { where } k=\left\langle\mathbf{w} \mathbf{t}(x)+\nu, \alpha_{i}^{\vee}\right\rangle\right.
$$

Let $\mathcal{T}_{\nu}=\left\{t_{\nu}\right\}$ be our usual 1-element crystal. Then $\sigma_{i}\left(t_{\nu} \otimes v\right)=t_{\nu} \otimes \sigma_{i}^{\nu}(v)$.
Theorem 3.1. Assume (as we have done throughout) that our Cartan type (Φ, Λ) is simply-laced.
Then the maps $\sigma_{i}: \mathcal{T}_{\nu} \otimes \widehat{\mathcal{L}} \rightarrow \mathcal{T}_{\nu} \otimes \widehat{\mathcal{L}}$ are involutions satisfying the braid relations of the Weyl group W. Hence, there is a unique action of W on $\mathcal{T}_{\nu} \otimes \widehat{\mathcal{L}}$ in which s_{i} acts as σ_{i}.

Proof sketch. We give a proof for Cartan type A_{2}, since the general simply-laced case reduces to this one.
Showing that σ_{i} and σ_{j} commute if $\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle=0$ is relatively straightforward.
The hard part to check is that $\sigma_{1}^{\nu} \sigma_{2}^{\nu} \sigma_{1}^{\nu}=\sigma_{2}^{\nu} \sigma_{1}^{\nu} \sigma_{2}^{\nu}$ if $\left\langle\alpha_{1}, \alpha_{2}^{\nu}\right\rangle=-1$.
Let \mathbb{F} be a field with a nonzero element M. Define $s_{\text {alg }}^{M}: \mathbb{F}^{3} \rightarrow \mathbb{F}^{3}$ by

$$
s_{\mathrm{alg}}^{M}(a, b, c)=\left(\frac{M c}{a b}, b, c\right)
$$

With $\vartheta_{\text {alg }}$ defined as above, it holds that

$$
\vartheta_{\mathrm{alg}} \circ s_{\mathrm{alg}}^{M_{2}} \circ \vartheta_{\mathrm{alg}} \circ s_{\mathrm{alg}}^{M_{1}} \circ \vartheta_{\mathrm{alg}} \circ s_{\mathrm{alg}}^{M_{2}}=s_{\mathrm{alg}}^{M_{1}} \circ \vartheta_{\mathrm{alg}} \circ s_{\mathrm{alg}}^{M_{2}} \circ \vartheta_{\mathrm{alg}} \circ s_{\mathrm{alg}}^{M_{1}} \circ \vartheta_{\mathrm{alg}} .
$$

This identity follows by checking that both sides give the map $(a, b, c) \mapsto\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ where

$$
a^{\prime}=\frac{b c M_{2}+M_{1} M_{2}}{a^{2} b+a b c+a M_{2}+c M_{2}}, \quad b^{\prime}=\frac{a^{2} b M_{1}+a b c M_{1}+a M_{1} M_{2}+c M_{1} M_{2}}{a b^{2} c+a b M_{1}}, \quad c^{\prime}=\frac{a b c M_{2}+a M_{1} M_{2}}{a^{2} b c+a b c^{2}+a c M_{2}+c^{2} M_{2}} .
$$

If s^{M} and ϑ are the tropicalizations of $s_{\text {alg }}^{M}$ and ϑ_{alg}, then we have

$$
s^{M}(a, b, c)=(M+c-a-b, b, c) \quad \text { and } \quad \vartheta(a, b, c)=(b+c-\min (a, c), \min (a, c), a+b-\min (b, c))
$$

and it follows that

$$
\left(\vartheta \circ s^{M_{2}} \circ \vartheta\right) \circ s^{M_{1}} \circ\left(\vartheta \circ s^{M_{2}} \circ \vartheta\right)=s^{M_{1}} \circ\left(\vartheta \circ s^{M_{2}} \circ \vartheta\right) \circ s^{M_{1}}
$$

Write $\alpha_{i}^{\vee}=\mathbf{e}_{i}-\mathbf{e}_{i+1}$. Recall from last time that the weight map $\widehat{\mathcal{L}}$ in type A_{2} has the formula

$$
\mathbf{w} \mathbf{t}(v)= \begin{cases}(-a-b, a-c, b+c) & \text { if } v_{(1,2,1)}=(a, b, c) \\ (-b-c, c-a, a+b) & \text { if } v_{(2,1,2)}=(a, b, c)\end{cases}
$$

Thus, if $M_{1}=\left\langle\nu, \alpha_{1}^{\vee}\right\rangle$ and $M_{2}=\left\langle\nu, \alpha_{2}^{\vee}\right\rangle$ then for $\mathbf{i}=(1,2,1)$ and $\mathbf{j}=(2,1,2)$ we have

$$
\left(\sigma_{1}^{\nu} v\right)_{\mathbf{i}}=s^{M_{1}}\left(v_{\mathbf{i}}\right), \quad\left(\sigma_{2}^{\nu} v\right)_{\mathbf{j}}=s^{M_{2}}\left(v_{\mathbf{j}}\right), \quad v_{\mathbf{j}}=\vartheta\left(v_{\mathbf{i}}\right)
$$

Putting these together gives $\left(\sigma_{2}^{\nu} v\right)_{\mathbf{i}}=\vartheta \circ s^{M_{2}} \circ \vartheta\left(v_{\mathbf{i}}\right)$, so

$$
\begin{aligned}
\left(\sigma_{2}^{\nu} \sigma_{1}^{\nu} \sigma_{2}^{\nu} v\right)_{\mathbf{i}} & =\left(\vartheta \circ s^{M_{2}} \circ \vartheta\right) \circ s^{M_{1}} \circ\left(\vartheta \circ s^{M_{2}} \circ \vartheta\right)\left(v_{\mathbf{i}}\right)=s^{M_{1}} \circ\left(\vartheta \circ s^{M_{2}} \circ \vartheta\right) \circ s^{M_{1}}\left(v_{\mathbf{i}}\right) \\
& =\left(\sigma_{1}^{\nu} \sigma_{2}^{\nu} \sigma_{1}^{\nu} v\right)_{\mathbf{i}}
\end{aligned}
$$

as needed.

