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1 Last time: Lusztig’s parametrization for simply-laced types

Let (Φ,Λ) be a simply-laced Cartan type with simple roots {αi : i ∈ I} and Weyl group W = 〈si : i ∈ I〉.

The set Red(w) of reduced words for any w ∈W is connected by the braid relations

(B1) i = (· · · , a, b, · · · )↔ (· · · , b, a, · · · ) = j if sasb ∈W has order 2, along with

(B2) i = (· · · , a, b, a, · · · )↔ (· · · , b, a, b, · · · ) = j if sasb ∈W has order 3.

Define θ2(a, b) = (b, a) and ϑ(a, b, c) = (b+ c−min(a, c),min(a, c), a+ b−min(a, c)).

Let Ri,j : ZN → ZN be the maps indexed by i, j ∈ Red(w0) satisfying Rj,k ◦Ri,j = Ri,k such that if i and
j are as in (B1) or (B2) then Ri,j(a) is θ2 or ϑ applied to the corresponding entries in a = (a1, . . . , aN ).

Define L as the set of tuples v = (vi) indexed by i ∈ Red(w0), where each vi ∈ NN and vj = Ri,j(vi).

Given v = (vi) ∈ L, define wt(v) = −
∑N
j=1 ajγj where vi = (a1, a2, . . . , aN ) for arbitrary i and

γ1 = αi1 , γ2 = si1(αi2), γ3 = si1si2(αi3), · · ·

Then {γ1, γ2, . . . , γN} = Φ+ and this formula does not depend on the choice of i ∈ Red(w0).

For each i ∈ I, choose a word i ∈ Red(w0) such that i1 = i.

Then let εi(v) = a1 where vi = (a1, . . . , aN ). We define ei(v) = 0 if a1 = 0.

If a1 6= 0 then ei(v) = v′ where v′ ∈ L is the unique element with v′i = (a1 − 1, a2, . . . , aN ).

We define ϕi(v) by requiring that ϕi(v)− εi(v) = 〈wt(v), α∨i 〉.

Finally, fi(v) = v′′ ∈ L where v′′i = (a1 + 1, a2, . . . , aN ).

Key fact: all of these definitions of ei(v), fi(v), εi(v), ϕi(v) are also independent of the choice of i.

Theorem 1.1. In any simply-laced type, the crystal L is isomorphic to B∞.

A root partition of a weight µ is a tuple (kα)α∈Φ+ in which kα ∈ N and
∑
α∈Φ+ kαα = µ.

The Kostant partition function P (µ) computes the number of root partitions of µ.

Corollary 1.2. One has ch(L) = ch(B∞) =
∑
µ∈Λ+ P (µ)t−µ =

∏
α∈Φ+(1− t−α)−1.

On seminormal crystals B, there is a W -action in which si acts as the involution σi : B → B given by

σi(x) =

{
fki (x) if k ≥ 0

e−ki (x) if k < 0
where k = 〈wt(x), α∨i 〉.

This formula can be zero on L so does not define a W -action. However, if we enlarge L to a crystal L̂
whose elements v = (vi) allow views vi ∈ Zn rather than just vi ∈ Nn, and we modify the definition of ei
accordingly to never act as zero, then we do get a Weyl group action in the expected way.

2 MV polytopes in type A2

Our goal is to explain how the Lusztig parametrization of B∞ encodes certain polytopes in the ambient
vector space of the weight lattice. These will be call MV polytopes after Mirković and Vilonen.

A polytope is the higher dimension analogue of a polygon or polyhedron. The most accessible polytopes
are the convex ones, which can be defined as intersections of a set of half-spaces in Rd.
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Here is the idea. Choose v ∈ B∞ and let w ∈W have length r.

Select a reduced word (i1, i2, . . . , ir) ∈ Red(w).

Then complete this to a reduced word i = (i1, . . . , iN ) ∈ Red(w0) for the longest element of W .

Define positive roots γk = si1si2 · · · sik−1
(αik) in the usual way.

The sequence γ(i) := (γ1, γ2, . . . , γN ) is a permutation of Φ+ and if vi = (a1, . . . , aN ) then we define

wt(v, w) =

r∑
j=1

ajγj ∈ Λ.

By the argument we saw last class, this definition is independent of i.

We have wt(v, 1) = 0 and wt(v, w0) = −wt(v).

We will show that these weights are the vertices of a convex polytope, to be denoted MV(v).

First, we verify this for type A2. Assume we are working in the A2 Cartan type. Write αi = ei − ei+1.

Let vi = (a, b, c) with i = (1, 2, 1) and vi′ = (a′, b′, c′) with i′ = (2, 1, 2).

These are the only reduced words for w0 ∈W = S3 and we have

γ(i) = (α1, α1 + α2, α2) and γ(i′) = (α2, α1 + α2, α1).

We compute wt(v, w) for the six elements of the Weyl group:

• If w = 1 then wt(v, w) = 0.

• If w = s1 then wt(v, w) = aα1.

• If w = s1s2 then wt(v, w) = (a+ b)α1 + bα2.

• If w = s2 then wt(v, w) = a′α2.

• If w = s2s1 then wt(v, w) = (a′ + b′)α2 + b′α1.

• If w = s1s2s1 = s2s1s2 = w0 then wt(v, w) = (a+ b)α1 + (b+ c)α2 = (a′ + b′)α2 + (b′ + c′)α1.

Last identity holds as we have (a′, b′, c′) = ϑ(a, b, c).

There are two cases. First assume a ≥ c. Then

(a′, b′, c′) = (b+ c−min(a, c),min(a, c), a+ b−min(a, c)) = (b, c, a+ b− c)

so we have:

• If w = s2 then wt(v, w) = bα2.

• If w = s2s1 then wt(v, w) = (b+ c)α2 + cα1.

The corresponding picture is

0 aα1

(a+ b)α1 + bα2bα2

cα1 + (b+ c)α2 (a+ b)α1 + (b+ c)α2
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In the other case we have a ≤ c. Then (a′, b′, c′) = (b+ c− a, a, b) so we have

• If w = s2 then wt(v, w) = (b+ c− a)α2.

• If w = s2s1 then wt(v, w) = (b+ c)α2 + aα1.

The corresponding picture is

0 aα1

(a+ b)α1 + bα2

(b+ c− a)α2

aα1 + (b+ c)α2 (a+ b)α1 + (b+ c)α2

For some a, b, c, these pictures can degenerate to situations where one or more of the six edges collapse
to zero length. A polytope in the ambient vector space of the weight lattice that is a translate of one of
these by a weight is called an MV polytope for Cartan type A2. We will give the general definition later.

An important property of the MV polytope corresponding to v ∈ B∞ is that it has a lowest weight λlow = 0
and a highest weight λhigh. Given any reduced word i = (i1, i2, . . . , iN ) ∈ Red(w0), let vi = (a1, . . . , aN )
be the corresponding view. Then the sequence of weights

λlow, λlow + a1γ1(i), λlow + a1γ1(i) + a2γ2(i), . . .

is a path from the lowest weight to the highest weight that travels around the edge of the polytope. The
lengths of the segments of this path are a1, a2, a3, . . . so the polytope encodes in its dimensions every
view in the Lusztig parametrization.

In the polytopes we drawn above for type A2, the path for i = (1, 2, 1) proceeds around the right edge
which the path for i′ = (2, 1, 2) proceeds around the other side.

3 Tropical Plücker relations

So far we have assumed that (Φ,Λ) is a simply-laced Cartan type with ambient vector space V .

For simplicity, we now also assume that this Cartan type is semisimple, meaning the simple roots are a
basis for V and the fundamental weights are the unique basis dual to the simple coroots.

Before we formalize MV polytopes we define a larger class of objects called generalized Weyl polytopes.

Write {αi : i ∈ I} for the simple roots and W = 〈si : i ∈ I〉 for the Weyl group.

Let {$∨i : i ∈ I} be the unique basis of V with 〈αi, $∨j 〉 = δij .

We call the elements $∨i fundamental coweights.

A vector of the form w($∨i ) for w ∈W is a chamber coweight.

Let CW = {w($∨i ) : w ∈W, i ∈ I} be the set of chamber coweights.

Recall from HW3 that there exists a permutation of I, today written i 7→ i′, such that −w0αi = αi′ .

Lemma 3.1. If ν∨ is a chamber coweight then so is −ν∨.

Proof. Suppose ν∨ = w$∨i . Then 〈αj , w0$
∨
i′〉 = 〈w0αj , $

∨
i′〉 = 〈−αj′ , $∨i′〉 = −δi′j′ = −δij .

Since Λ is semisimple, we have w0$
∨
i′ = $∨i so −ν∨ = −w$∨i = ww0$

∨
i′ ∈ CW.
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Now let us fix a collection M• of integers Mν∨ ∈ Z for ν∨ ∈ CW. Let

P (M•) = {x ∈ RΛ : 〈x, ν∨〉 ≥Mν∨ for ν∨ ∈ CW}.

For w ∈W , there is a unique vector µw ∈ RΛ such that

〈µw, w$∨i 〉 = Mw$∨i
for all i ∈ I,

since these equations force µw to be in the intersection of |I| independent hyperplanes in a real vector
space of dimension d = |I|, and this intersection is consequently a single point.

Later, we will show that µw = wt(v, w) for some v ∈ B∞.

From now on, we assume that the µw are vertices of the polytope P (M•) .

We do not require the vectors µw to be distinct, however.

Our assumption could fail if one of the Mν∨ is� 0 in which case the hyperplane defined by Mν∨ = 〈x, ν∨〉
could completely miss the polytope determined by the inequalities from the other chamber coweights.
This would cause those µw on this hyperplane to not lie on the polytope.

Under our assumption, the set of vectors {µw}w∈W is called a GGMS datum, named for Gelfand, Goresky,
MacPherson, and Serganova, and P (M•) is called a generalized Weyl polytope.

If λ is dominant, then the convex hull of the Weyl group orbit Wλ is a generalized Weyl polytope.

A dominant orbit Wλ is sometimes called a Weyl polytope.

Proposition 3.2. Assume the vectors µw are vertices of the polytope P (M•). Then

Mw$∨i
+Mwsi$∨i

≤
∑
j 6=i

−〈αj , α∨i 〉Mw$∨j
. (3.1)

We refer to (3.1) as the edge inequalities. It always holds that −〈αj , α∨i 〉 is a nonnegative integer.

Proof. We claim that w$∨i + wsi$
∨
i =

∑
j 6=i−〈αj , α∨i 〉w$∨j .

To prove this, we may assume w = 1. Then, since Λ is semisimple, it suffices to show that both sides
have the same inner product with alpha αj . If j = i then these inner products are both zero since

〈αi, si$∨i 〉 = 〈siαi, $∨i 〉 = −〈αi, $∨i 〉 = −1.

If j 6= i then both inner products are −〈αj , α∨i 〉 since

〈αj , si$∨i 〉 = 〈siαj , $∨i 〉 = 〈αj − 〈αj , α∨i 〉αi, $∨i 〉 = −〈αj , α∨i 〉.

This proves our claim.

Now, we take the inner product of both sides or w$∨i + wsi$
∨
i =

∑
j 6=i−〈αj , α∨i 〉w$∨j with µw.

Since we have 〈µw, w$∨i 〉 = Mw$∨i
and µw ∈ P (M•), it follows that Mwsi$∨i

≤ 〈µw, wsi$∨i 〉 and

Mw$∨i
+Mwsi$∨i

≤ 〈µw, w$∨i 〉+ 〈µw, wsi$∨i 〉 =
∑
j 6=i

−〈αj , α∨i 〉〈µw, ww∨j 〉 =
∑
j 6=i

−〈αj , α∨i 〉Mw$∨j

which is what we wanted to show.
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An MV polytope will be a generalized Weyl polytope satisfying one additional family of relations, to be
called the tropical Plücker relations. These are defined as the equalities

Mwsi$∨i
+Mwsj$∨j

= min
(
Mw$∨i

+Mwsisj$∨j
,Mw$∨j

+Mwsjsi$∨i

)
(3.2)

for all w ∈W and i, j ∈ I with `(wsi) > `(w) and `(wsj) > `(w) and 〈αi, α∨j 〉 = −1.

(Recall that Φ is simply-laced so 〈αi, α∨j 〉 ∈ {0,−1} for all i 6= j.)

Here ` : W → N is the length function of the Weyl group, which counts the length of any reduced word.

One has `(wsi) > `(w) if and only if w(αi) ∈ Φ+.

There are more complicated versions of the tropical Plücker relations for non-simply-laced types.

Lemma 3.3. If P (M•) satisfies the tropical Plücker relations, then so does P (M•) + λ for every λ ∈ Λ.

Proof. Fix λ ∈ Λ. Then P (M•) + λ = P (M ′•) where M ′ν∨ = Mν∨ + 〈λ, ν∨〉.

Assume P (M•) satisfies the tropical Plücker relations.

To show that P (M ′•) also satisfies these relations, it is enough to check that

〈λ,wsi$∨i 〉+ 〈λ,wsj$∨j 〉 = 〈λ,w$∨i 〉+ 〈λ,wsisj$∨j 〉 = 〈λ,wsj$∨i 〉+ 〈λ,wsjsi$∨i 〉.

After replacing λ by wλ we may assume w = 1. Then we actually have

si$
∨
i + sj$

∨
j = $∨i + sisj$

∨
j = $∨j + sjsi$

∨
i .

Note that the LHS is si(x) for x = $∨i + sisj$
∨
j and the RHS is sjsi(x). But

〈αi, x〉 = 〈αi, $∨i 〉+ 〈sjsiαi, $∨j 〉 = 1 + 〈−αi − αj , $∨j 〉 = 1− 1 = 0

and similarly 〈αj , x〉 = 0. But this means that si(x) = x− 〈x, α∨i 〉αi = x and likewise sj(x) = x.

Our next task is to verify the tropical Plücker relations for our MV polytopes of type A2.

Thus, suppose (Φ,Λ) has type A2. Assume s1 and s2 are right ascents of w ∈W .

When W = S3, this only occurs for w = 1 so the relation we need to check is

Ms1$∨1
+Ms2$∨2

= min
(
M$∨1

+Ms1s2$∨2
,M$∨2

+Ms2s1$∨1

)
(3.3)

Since the weight lattice is required to be semisimple, our ambient vector space V is not R3 is this case but
rather the quotient space R3/R(e1 +e2 +e3). The fundamental coweights are $∨1 = e1 and $∨2 = e1 +e2.

Proposition 3.4. All translates of the MV polytopes in type A2 satisfy the relation (3.3).

Proof. It suffices to show that the polytope MV(v) with vertices wt(v, w) for v ∈ B∞ from page 2 satisfies
(3.3). Suppose vi = (a, b, c) for i = (1, 2, 1). Define M• such that

• If ν∨ = $∨1 = e1 then Mν∨ = 0.

• If ν∨ = $∨2 = e1 + e2 then Mν∨ = 0.

• If ν∨ = s2$
∨
2 = e1 + e3 then Mν∨ = −b− c+ min(a, c).

• If ν∨ = s1$
∨
1 = e2 then Mν∨ = −a.

• If ν∨ = s1s2$
∨
2 = e2 + e3 then Mν∨ = −a− b.

• If ν∨ = s2s1$
∨
1 = e3 then Mν∨ = −b− c.
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Then MV(v) = P (M•) and it is straightforward to verify the necessary inequalities.

Definition 3.5. An MV polytope in RΛ is a generalized Weyl polytope P (M•) that satisfies the tropical
Plücker relations (3.2).

It follows from our proposition that any translate of the MV polytopes in type A2 are indeed MV polytopes
according to the general definition. Next time: more examples.

Why is (3.2) called the tropical Plücker relation?

For the GL(r,C) flag variety, the Plücker coordinates are in bijection with the chamber weights.

In detail, choose a matrix g ∈ G = GL(r,C) that may be projected onto the flag variety X = G/B. Let
S be a proper nonempty subset of I = {1, 2, . . . , r} and let pS be the minor formed with gij for i ∈ I
and r − |S| < j ≤ r. When |S| = |S′| the ratio pS/pS′ is constant on the coset gB so these ratios are
functions on X, and the Plücker coordinates pS are homogeneous coordinates on X.

On the other hand S corresponds to a weight of the form
∑
i∈S ei which are exactly the chamber weights.

Next week, we will describe a crystal structure on MV polytopes, which gives another model for B∞.
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