1 Last time: Lusztig's parametrization for simply-laced types

Let (Φ, Λ) be a simply-laced Cartan type with simple roots $\left\{\alpha_{i}: i \in I\right\}$ and Weyl group $W=\left\langle s_{i}: i \in I\right\rangle$.
The set $\operatorname{Red}(w)$ of reduced words for any $w \in W$ is connected by the braid relations
(B1) $\mathbf{i}=(\cdots, a, b, \cdots) \leftrightarrow(\cdots, b, a, \cdots)=\mathbf{j}$ if $s_{a} s_{b} \in W$ has order 2, along with
(B2) $\mathbf{i}=(\cdots, a, b, a, \cdots) \leftrightarrow(\cdots, b, a, b, \cdots)=\mathbf{j}$ if $s_{a} s_{b} \in W$ has order 3.
Define $\theta_{2}(a, b)=(b, a)$ and $\vartheta(a, b, c)=(b+c-\min (a, c), \min (a, c), a+b-\min (a, c))$.
Let $\mathcal{R}_{\mathbf{i}, \mathbf{j}}: \mathbb{Z}^{N} \rightarrow \mathbb{Z}^{N}$ be the maps indexed by $\mathbf{i}, \mathbf{j} \in \operatorname{Red}\left(w_{0}\right)$ satisfying $\mathcal{R}_{\mathbf{j}, \mathbf{k}} \circ \mathcal{R}_{\mathbf{i}, \mathbf{j}}=\mathcal{R}_{\mathbf{i}, \mathbf{k}}$ such that if \mathbf{i} and \mathbf{j} are as in (B1) or (B2) then $\mathcal{R}_{\mathbf{i}, \mathbf{j}}(a)$ is θ_{2} or ϑ applied to the corresponding entries in $a=\left(a_{1}, \ldots, a_{N}\right)$.
Define \mathcal{L} as the set of tuples $v=\left(v_{\mathbf{i}}\right)$ indexed by $\mathbf{i} \in \operatorname{Red}\left(w_{0}\right)$, where each $v_{\mathbf{i}} \in \mathbb{N}^{N}$ and $v_{\mathbf{j}}=\mathcal{R}_{\mathbf{i}, \mathbf{j}}\left(v_{\mathbf{i}}\right)$.
Given $v=\left(v_{\mathbf{i}}\right) \in \mathcal{L}$, define $\mathbf{w t}(v)=-\sum_{j=1}^{N} a_{j} \gamma_{j}$ where $v_{\mathbf{i}}=\left(a_{1}, a_{2}, \ldots, a_{N}\right)$ for arbitrary \mathbf{i} and

$$
\gamma_{1}=\alpha_{i_{1}}, \quad \gamma_{2}=s_{i_{1}}\left(\alpha_{i_{2}}\right), \quad \gamma_{3}=s_{i_{1}} s_{i_{2}}\left(\alpha_{i_{3}}\right), \quad \cdots
$$

Then $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}\right\}=\Phi^{+}$and this formula does not depend on the choice of $\mathbf{i} \in \operatorname{Red}\left(w_{0}\right)$.

For each $i \in I$, choose a word $\mathbf{i} \in \operatorname{Red}\left(w_{0}\right)$ such that $i_{1}=i$.
Then let $\varepsilon_{i}(v)=a_{1}$ where $v_{\mathbf{i}}=\left(a_{1}, \ldots, a_{N}\right)$. We define $e_{i}(v)=0$ if $a_{1}=0$.
If $a_{1} \neq 0$ then $e_{i}(v)=v^{\prime}$ where $v^{\prime} \in \mathcal{L}$ is the unique element with $v_{\mathbf{i}}^{\prime}=\left(a_{1}-1, a_{2}, \ldots, a_{N}\right)$.
We define $\varphi_{i}(v)$ by requiring that $\varphi_{i}(v)-\varepsilon_{i}(v)=\left\langle\mathbf{w t}(v), \alpha_{i}^{\vee}\right\rangle$.
Finally, $f_{i}(v)=v^{\prime \prime} \in \mathcal{L}$ where $v_{\mathbf{i}}^{\prime \prime}=\left(a_{1}+1, a_{2}, \ldots, a_{N}\right)$.
Key fact: all of these definitions of $e_{i}(v), f_{i}(v), \varepsilon_{i}(v), \varphi_{i}(v)$ are also independent of the choice of \mathbf{i}.
Theorem 1.1. In any simply-laced type, the crystal \mathcal{L} is isomorphic to \mathcal{B}_{∞}.
A root partition of a weight μ is a tuple $\left(k_{\alpha}\right)_{\alpha \in \Phi^{+}}$in which $k_{\alpha} \in \mathbb{N}$ and $\sum_{\alpha \in \Phi^{+}} k_{\alpha} \alpha=\mu$.
The Kostant partition function $P(\mu)$ computes the number of root partitions of μ.
Corollary 1.2. One has $\operatorname{ch}(\mathcal{L})=\operatorname{ch}\left(\mathcal{B}_{\infty}\right)=\sum_{\mu \in \Lambda^{+}} P(\mu) t^{-\mu}=\prod_{\alpha \in \Phi^{+}}\left(1-t^{-\alpha}\right)^{-1}$.

On seminormal crystals \mathcal{B}, there is a W-action in which s_{i} acts as the involution $\sigma_{i}: \mathcal{B} \rightarrow \mathcal{B}$ given by

$$
\sigma_{i}(x)=\left\{\begin{array}{ll}
f_{i}^{k}(x) & \text { if } k \geq 0 \\
e_{i}^{-k}(x) & \text { if } k<0
\end{array} \quad \text { where } k=\left\langle\mathbf{w t}(x), \alpha_{i}^{\vee}\right\rangle\right.
$$

This formula can be zero on \mathcal{L} so does not define a W-action. However, if we enlarge \mathcal{L} to a crystal $\widehat{\mathcal{L}}$ whose elements $v=\left(v_{\mathbf{i}}\right)$ allow views $v_{\mathbf{i}} \in \mathbb{Z}^{n}$ rather than just $v_{i} \in \mathbb{N}^{n}$, and we modify the definition of e_{i} accordingly to never act as zero, then we do get a Weyl group action in the expected way.

2 MV polytopes in type A_{2}

Our goal is to explain how the Lusztig parametrization of \mathcal{B}_{∞} encodes certain polytopes in the ambient vector space of the weight lattice. These will be call MV polytopes after Mirković and Vilonen.

A polytope is the higher dimension analogue of a polygon or polyhedron. The most accessible polytopes are the convex ones, which can be defined as intersections of a set of half-spaces in \mathbb{R}^{d}.

Here is the idea. Choose $v \in \mathcal{B}_{\infty}$ and let $w \in W$ have length r.
Select a reduced word $\left(i_{1}, i_{2}, \ldots, i_{r}\right) \in \operatorname{Red}(w)$.
Then complete this to a reduced word $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \in \operatorname{Red}\left(w_{0}\right)$ for the longest element of W.
Define positive roots $\gamma_{k}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k-1}}\left(\alpha_{i_{k}}\right)$ in the usual way.
The sequence $\gamma(\mathbf{i}):=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}\right)$ is a permutation of Φ^{+}and if $v_{\mathbf{i}}=\left(a_{1}, \ldots, a_{N}\right)$ then we define

$$
\mathbf{w} \mathbf{t}(v, w)=\sum_{j=1}^{r} a_{j} \gamma_{j} \in \Lambda
$$

By the argument we saw last class, this definition is independent of \mathbf{i}.
We have $\mathbf{w t}(v, 1)=0$ and $\mathbf{w t}\left(v, w_{0}\right)=-\mathbf{w} \mathbf{t}(v)$.
We will show that these weights are the vertices of a convex polytope, to be denoted MV (v).

First, we verify this for type A_{2}. Assume we are working in the A_{2} Cartan type. Write $\alpha_{i}=\mathbf{e}_{i}-\mathbf{e}_{i+1}$.
Let $v_{\mathbf{i}}=(a, b, c)$ with $\mathbf{i}=(1,2,1)$ and $v_{\mathbf{i}^{\prime}}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ with $\mathbf{i}^{\prime}=(2,1,2)$.
These are the only reduced words for $w_{0} \in W=S_{3}$ and we have

$$
\gamma(\mathbf{i})=\left(\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right) \quad \text { and } \quad \gamma\left(\mathbf{i}^{\prime}\right)=\left(\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}\right)
$$

We compute $\mathbf{w t}(v, w)$ for the six elements of the Weyl group:

- If $w=1$ then $\mathbf{w t}(v, w)=0$.
- If $w=s_{1}$ then $\mathbf{w t}(v, w)=a \alpha_{1}$.
- If $w=s_{1} s_{2}$ then $\mathbf{w t}(v, w)=(a+b) \alpha_{1}+b \alpha_{2}$.
- If $w=s_{2}$ then $\mathbf{w t}(v, w)=a^{\prime} \alpha_{2}$.
- If $w=s_{2} s_{1}$ then $\mathbf{w t}(v, w)=\left(a^{\prime}+b^{\prime}\right) \alpha_{2}+b^{\prime} \alpha_{1}$.
- If $w=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}=w_{0}$ then $\mathbf{w t}(v, w)=(a+b) \alpha_{1}+(b+c) \alpha_{2}=\left(a^{\prime}+b^{\prime}\right) \alpha_{2}+\left(b^{\prime}+c^{\prime}\right) \alpha_{1}$.

Last identity holds as we have $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\vartheta(a, b, c)$.

There are two cases. First assume $a \geq c$. Then

$$
\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=(b+c-\min (a, c), \min (a, c), a+b-\min (a, c))=(b, c, a+b-c)
$$

so we have:

- If $w=s_{2}$ then $\mathbf{w t}(v, w)=b \alpha_{2}$.
- If $w=s_{2} s_{1}$ then $\mathbf{w t}(v, w)=(b+c) \alpha_{2}+c \alpha_{1}$.

The corresponding picture is

In the other case we have $a \leq c$. Then $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=(b+c-a, a, b)$ so we have

- If $w=s_{2}$ then $\mathbf{w t}(v, w)=(b+c-a) \alpha_{2}$.
- If $w=s_{2} s_{1}$ then $\mathbf{w t}(v, w)=(b+c) \alpha_{2}+a \alpha_{1}$.

The corresponding picture is

For some a, b, c, these pictures can degenerate to situations where one or more of the six edges collapse to zero length. A polytope in the ambient vector space of the weight lattice that is a translate of one of these by a weight is called an $M V$ polytope for Cartan type A_{2}. We will give the general definition later.
An important property of the MV polytope corresponding to $v \in \mathcal{B}_{\infty}$ is that it has a lowest weight $\lambda_{\text {low }}=0$ and a highest weight $\lambda_{\text {high }}$. Given any reduced word $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{N}\right) \in \operatorname{Red}\left(w_{0}\right)$, let $v_{\mathbf{i}}=\left(a_{1}, \ldots, a_{N}\right)$ be the corresponding view. Then the sequence of weights

$$
\lambda_{\text {low }}, \quad \lambda_{\text {low }}+a_{1} \gamma_{1}(\mathbf{i}), \quad \lambda_{\text {low }}+a_{1} \gamma_{1}(\mathbf{i})+a_{2} \gamma_{2}(\mathbf{i}), \quad \ldots
$$

is a path from the lowest weight to the highest weight that travels around the edge of the polytope. The lengths of the segments of this path are $a_{1}, a_{2}, a_{3}, \ldots$ so the polytope encodes in its dimensions every view in the Lusztig parametrization.

In the polytopes we drawn above for type A_{2}, the path for $\mathbf{i}=(1,2,1)$ proceeds around the right edge which the path for $\mathbf{i}^{\prime}=(2,1,2)$ proceeds around the other side.

3 Tropical Plücker relations

So far we have assumed that (Φ, Λ) is a simply-laced Cartan type with ambient vector space V.
For simplicity, we now also assume that this Cartan type is semisimple, meaning the simple roots are a basis for V and the fundamental weights are the unique basis dual to the simple coroots.

Before we formalize MV polytopes we define a larger class of objects called generalized Weyl polytopes.
Write $\left\{\alpha_{i}: i \in I\right\}$ for the simple roots and $W=\left\langle s_{i}: i \in I\right\rangle$ for the Weyl group.
Let $\left\{\varpi_{i}^{\vee}: i \in I\right\}$ be the unique basis of V with $\left\langle\alpha_{i}, \varpi_{j}^{\vee}\right\rangle=\delta_{i j}$.
We call the elements ϖ_{i}^{\vee} fundamental coweights.
A vector of the form $w\left(\varpi_{i}^{\vee}\right)$ for $w \in W$ is a chamber coweight.
Let CW $=\left\{w\left(\varpi_{i}^{\vee}\right): w \in W, i \in I\right\}$ be the set of chamber coweights.
Recall from HW3 that there exists a permutation of I, today written $i \mapsto i^{\prime}$, such that $-w_{0} \alpha_{i}=\alpha_{i^{\prime}}$.
Lemma 3.1. If ν^{\vee} is a chamber coweight then so is $-\nu^{\vee}$.
Proof. Suppose $\nu^{\vee}=w \varpi_{i}^{\vee}$. Then $\left\langle\alpha_{j}, w_{0} \varpi_{i^{\prime}}^{\vee}\right\rangle=\left\langle w_{0} \alpha_{j}, \varpi_{i^{\prime}}^{\vee}\right\rangle=\left\langle-\alpha_{j^{\prime}}, \varpi_{i^{\prime}}^{\vee}\right\rangle=-\delta_{i^{\prime} j^{\prime}}=-\delta_{i j}$.
Since Λ is semisimple, we have $w_{0} \varpi_{i^{\prime}}^{\vee}=\varpi_{i}^{\vee}$ so $-\nu^{\vee}=-w \varpi_{i}^{\vee}=w w_{0} \varpi_{i^{\prime}}^{\vee} \in \mathrm{CW}$.

Now let us fix a collection M_{\bullet} of integers $M_{\nu^{\vee}} \in \mathbb{Z}$ for $\nu^{\vee} \in \mathrm{CW}$. Let

$$
P\left(M_{\bullet}\right)=\left\{x \in \mathbb{R} \Lambda:\left\langle x, \nu^{\vee}\right\rangle \geq M_{\nu^{\vee}} \text { for } \nu^{\vee} \in \mathrm{CW}\right\} .
$$

For $w \in W$, there is a unique vector $\mu_{w} \in \mathbb{R} \Lambda$ such that

$$
\left\langle\mu_{w}, w \varpi_{i}^{\vee}\right\rangle=M_{w \varpi_{i}^{\vee}} \text { for all } i \in I
$$

since these equations force μ_{w} to be in the intersection of $|I|$ independent hyperplanes in a real vector space of dimension $d=|I|$, and this intersection is consequently a single point.

Later, we will show that $\mu_{w}=\mathbf{w} \mathbf{t}(v, w)$ for some $v \in \mathcal{B}_{\infty}$.
From now on, we assume that the μ_{w} are vertices of the polytope $P\left(M_{\bullet}\right)$.
We do not require the vectors μ_{w} to be distinct, however.
Our assumption could fail if one of the $M_{\nu \vee}$ is $\ll 0$ in which case the hyperplane defined by $M_{\nu \vee}=\left\langle x, \nu^{\vee}\right\rangle$ could completely miss the polytope determined by the inequalities from the other chamber coweights. This would cause those μ_{w} on this hyperplane to not lie on the polytope.

Under our assumption, the set of vectors $\left\{\mu_{w}\right\}_{w \in W}$ is called a $G G M S$ datum, named for Gelfand, Goresky, MacPherson, and Serganova, and $P\left(M_{\bullet}\right)$ is called a generalized Weyl polytope.
If λ is dominant, then the convex hull of the Weyl group orbit $W \lambda$ is a generalized Weyl polytope.
A dominant orbit $W \lambda$ is sometimes called a Weyl polytope.
Proposition 3.2. Assume the vectors μ_{w} are vertices of the polytope $P\left(M_{\bullet}\right)$. Then

$$
\begin{equation*}
M_{w \varpi_{i}^{\vee}}+M_{w s_{i} \varpi_{i}^{\vee}} \leq \sum_{j \neq i}-\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle M_{w \varpi_{j}^{\vee}} \tag{3.1}
\end{equation*}
$$

We refer to (3.1) as the edge inequalities. It always holds that $-\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle$ is a nonnegative integer.
Proof. We claim that $w \varpi_{i}^{\vee}+w s_{i} \varpi_{i}^{\vee}=\sum_{j \neq i}-\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle w \varpi_{j}^{\vee}$.
To prove this, we may assume $w=1$. Then, since Λ is semisimple, it suffices to show that both sides have the same inner product with alpha α_{j}. If $j=i$ then these inner products are both zero since

$$
\left\langle\alpha_{i}, s_{i} \varpi_{i}^{\vee}\right\rangle=\left\langle s_{i} \alpha_{i}, \varpi_{i}^{\vee}\right\rangle=-\left\langle\alpha_{i}, \varpi_{i}^{\vee}\right\rangle=-1 .
$$

If $j \neq i$ then both inner products are $-\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle$ since

$$
\left\langle\alpha_{j}, s_{i} \varpi_{i}^{\vee}\right\rangle=\left\langle s_{i} \alpha_{j}, \varpi_{i}^{\vee}\right\rangle=\left\langle\alpha_{j}-\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle \alpha_{i}, \varpi_{i}^{\vee}\right\rangle=-\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle
$$

This proves our claim.

Now, we take the inner product of both sides or $w \varpi_{i}^{\vee}+w s_{i} \varpi_{i}^{\vee}=\sum_{j \neq i}-\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle w \varpi_{j}^{\vee}$ with μ_{w}. Since we have $\left\langle\mu_{w}, w \varpi_{i}^{\vee}\right\rangle=M_{w \varpi_{i}^{\vee}}$ and $\mu_{w} \in P\left(M_{\bullet}\right)$, it follows that $M_{w s_{i} \varpi_{i}^{\vee}} \leq\left\langle\mu_{w}, w s_{i} \varpi_{i}^{\vee}\right\rangle$ and

$$
M_{w \varpi_{i}^{\vee}}+M_{w s_{i} \varpi_{i}^{\vee}} \leq\left\langle\mu_{w}, w \varpi_{i}^{\vee}\right\rangle+\left\langle\mu_{w}, w s_{i} \varpi_{i}^{\vee}\right\rangle=\sum_{j \neq i}-\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle\left\langle\mu_{w}, w w_{j}^{\vee}\right\rangle=\sum_{j \neq i}-\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle M_{w \varpi_{j}^{\vee}}
$$

which is what we wanted to show.

An MV polytope will be a generalized Weyl polytope satisfying one additional family of relations, to be called the tropical Plücker relations. These are defined as the equalities

$$
\begin{equation*}
M_{w s_{i} \varpi_{i}^{\vee}}+M_{w s_{j} \varpi_{j}^{\vee}}=\min \left(M_{w \varpi_{i}^{\vee}}+M_{w s_{i} s_{j} \varpi_{j}^{\vee}}, M_{w \varpi_{j}^{\vee}}+M_{w s_{j} s_{i} \varpi_{i}^{\vee}}\right) \tag{3.2}
\end{equation*}
$$

for all $w \in W$ and $i, j \in I$ with $\ell\left(w s_{i}\right)>\ell(w)$ and $\ell\left(w s_{j}\right)>\ell(w)$ and $\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle=-1$.
(Recall that Φ is simply-laced so $\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle \in\{0,-1\}$ for all $i \neq j$.)
Here $\ell: W \rightarrow \mathbb{N}$ is the length function of the Weyl group, which counts the length of any reduced word.
One has $\ell\left(w s_{i}\right)>\ell(w)$ if and only if $w\left(\alpha_{i}\right) \in \Phi^{+}$.
There are more complicated versions of the tropical Plücker relations for non-simply-laced types.
Lemma 3.3. If $P\left(M_{\bullet}\right)$ satisfies the tropical Plücker relations, then so does $P\left(M_{\bullet}\right)+\lambda$ for every $\lambda \in \Lambda$.
Proof. Fix $\lambda \in \Lambda$. Then $P\left(M_{\bullet}\right)+\lambda=P\left(M_{\bullet}^{\prime}\right)$ where $M_{\nu^{\vee}}^{\prime}=M_{\nu^{\vee}}+\left\langle\lambda, \nu^{\vee}\right\rangle$.
Assume $P\left(M_{\bullet}\right)$ satisfies the tropical Plücker relations.
To show that $P\left(M_{\bullet}^{\prime}\right)$ also satisfies these relations, it is enough to check that

$$
\left\langle\lambda, w s_{i} \varpi_{i}^{\vee}\right\rangle+\left\langle\lambda, w s_{j} \varpi_{j}^{\vee}\right\rangle=\left\langle\lambda, w \varpi_{i}^{\vee}\right\rangle+\left\langle\lambda, w s_{i} s_{j} \varpi_{j}^{\vee}\right\rangle=\left\langle\lambda, w s_{j} \varpi_{i}^{\vee}\right\rangle+\left\langle\lambda, w s_{j} s_{i} \varpi_{i}^{\vee}\right\rangle .
$$

After replacing λ by $w \lambda$ we may assume $w=1$. Then we actually have

$$
s_{i} \varpi_{i}^{\vee}+s_{j} \varpi_{j}^{\vee}=\varpi_{i}^{\vee}+s_{i} s_{j} \varpi_{j}^{\vee}=\varpi_{j}^{\vee}+s_{j} s_{i} \varpi_{i}^{\vee}
$$

Note that the LHS is $s_{i}(x)$ for $x=\varpi_{i}^{\vee}+s_{i} s_{j} \varpi_{j}^{\vee}$ and the RHS is $s_{j} s_{i}(x)$. But

$$
\left\langle\alpha_{i}, x\right\rangle=\left\langle\alpha_{i}, \varpi_{i}^{\vee}\right\rangle+\left\langle s_{j} s_{i} \alpha_{i}, \varpi_{j}^{\vee}\right\rangle=1+\left\langle-\alpha_{i}-\alpha_{j}, \varpi_{j}^{\vee}\right\rangle=1-1=0
$$

and similarly $\left\langle\alpha_{j}, x\right\rangle=0$. But this means that $s_{i}(x)=x-\left\langle x, \alpha_{i}^{\vee}\right\rangle \alpha_{i}=x$ and likewise $s_{j}(x)=x$.
Our next task is to verify the tropical Plücker relations for our MV polytopes of type A_{2}.
Thus, suppose (Φ, Λ) has type A_{2}. Assume s_{1} and s_{2} are right ascents of $w \in W$.
When $W=S_{3}$, this only occurs for $w=1$ so the relation we need to check is

$$
\begin{equation*}
M_{s_{1} \varpi_{1}^{\vee}}+M_{s_{2} \varpi_{2}^{\vee}}=\min \left(M_{\varpi_{1}^{\vee}}+M_{s_{1} s_{2} \varpi_{2}^{\vee}}, M_{\varpi_{2}^{\vee}}+M_{s_{2} s_{1} \varpi_{1}^{\vee}}\right) \tag{3.3}
\end{equation*}
$$

Since the weight lattice is required to be semisimple, our ambient vector space V is not \mathbb{R}^{3} is this case but rather the quotient space $\mathbb{R}^{3} / \mathbb{R}\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\right)$. The fundamental coweights are $\varpi_{1}^{\vee}=\mathbf{e}_{1}$ and $\varpi_{2}^{\vee}=\mathbf{e}_{1}+\mathbf{e}_{2}$.

Proposition 3.4. All translates of the MV polytopes in type A_{2} satisfy the relation (3.3).
Proof. It suffices to show that the polytope $\operatorname{MV}(v)$ with vertices $\mathbf{w t}(v, w)$ for $v \in \mathcal{B}_{\infty}$ from page 2 satisfies (3.3). Suppose $v_{\mathbf{i}}=(a, b, c)$ for $\mathbf{i}=(1,2,1)$. Define M_{\bullet} such that

- If $\nu^{\vee}=\varpi_{1}^{\vee}=\mathbf{e}_{1}$ then $M_{\nu^{\vee}}=0$.
- If $\nu^{\vee}=\varpi_{2}^{\vee}=\mathbf{e}_{1}+\mathbf{e}_{2}$ then $M_{\nu \vee}=0$.
- If $\nu^{\vee}=s_{2} \varpi_{2}^{\vee}=\mathbf{e}_{1}+\mathbf{e}_{3}$ then $M_{\nu^{\vee}}=-b-c+\min (a, c)$.
- If $\nu^{\vee}=s_{1} \varpi_{1}^{\vee}=\mathbf{e}_{2}$ then $M_{\nu^{\vee}}=-a$.
- If $\nu^{\vee}=s_{1} s_{2} \varpi_{2}^{\vee}=\mathbf{e}_{2}+\mathbf{e}_{3}$ then $M_{\nu \vee}=-a-b$.
- If $\nu^{\vee}=s_{2} s_{1} \varpi_{1}^{\vee}=\mathbf{e}_{3}$ then $M_{\nu^{\vee}}=-b-c$.

Then $\operatorname{MV}(v)=P\left(M_{\bullet}\right)$ and it is straightforward to verify the necessary inequalities.

Definition 3.5. An $M V$ polytope in $\mathbb{R} \Lambda$ is a generalized Weyl polytope $P\left(M_{\bullet}\right)$ that satisfies the tropical Plücker relations 3.2 .

It follows from our proposition that any translate of the MV polytopes in type A_{2} are indeed MV polytopes according to the general definition. Next time: more examples.

Why is (3.2) called the tropical Plücker relation?
For the $\mathrm{GL}(r, \mathbb{C})$ flag variety, the Plücker coordinates are in bijection with the chamber weights.
In detail, choose a matrix $g \in G=\mathrm{GL}(r, \mathbb{C})$ that may be projected onto the flag variety $X=G / B$. Let S be a proper nonempty subset of $I=\{1,2, \ldots, r\}$ and let p_{S} be the minor formed with $g_{i j}$ for $i \in I$ and $r-|S|<j \leq r$. When $|S|=\left|S^{\prime}\right|$ the ratio $p_{S} / p_{S^{\prime}}$ is constant on the coset $g B$ so these ratios are functions on X, and the Plücker coordinates p_{S} are homogeneous coordinates on X.
On the other hand S corresponds to a weight of the form $\sum_{i \in S} \mathbf{e}_{i}$ which are exactly the chamber weights.

Next week, we will describe a crystal structure on MV polytopes, which gives another model for \mathcal{B}_{∞}.

