1 Last time: MV polytopes

Assume (Φ, Λ) is a simply-laced and semisimple Cartan type, so that the simple roots all have the same length and are a basis for the ambient vector space V, and the fundamental weights are the unique basis dual to the simple coroots.

Write $\left\{\alpha_{i}: i \in I\right\}$ for the simple roots and $W=\left\langle s_{i}: i \in I\right\rangle$ for the Weyl group.
Let $\left\{\varpi_{i}^{\vee}: i \in I\right\}$ be the unique basis of V with $\left\langle\alpha_{i}, \varpi_{j}^{\vee}\right\rangle=\delta_{i j}$.
Let $\mathrm{CW}=\left\{w\left(\varpi_{i}^{\vee}\right): w \in W, i \in I\right\}$ be the set of chamber coweights. We have $\mathrm{CW}=-\mathrm{CW}$.

Fix a collection M_{\bullet} of integers $M_{\nu^{\vee}} \in \mathbb{Z}$ for $\nu^{\vee} \in \mathrm{CW}$. Let

$$
P\left(M_{\bullet}\right)=\left\{x \in \mathbb{R} \Lambda:\left\langle x, \nu^{\vee}\right\rangle \geq M_{\nu^{\vee}} \text { for } \nu^{\vee} \in \mathrm{CW}\right\} .
$$

For $w \in W$, there is a unique vector $\mu_{w} \in \mathbb{R} \Lambda$ such that $\left\langle\mu_{w}, w \varpi_{i}^{\vee}\right\rangle=M_{w \varpi_{i}^{\vee}}$ for all $i \in I$.
Assume that the μ_{w} are vertices of the polytope $P\left(M_{\bullet}\right)$.
Then $P\left(M_{\bullet}\right)$ is called a generalized Weyl polytope. In this case, the following edge inequalities hold:

$$
\begin{equation*}
M_{w \varpi_{i}^{\vee}}+M_{w s_{i} \varpi_{i}^{\vee}} \leq \sum_{j \neq i}-\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle M_{w \varpi_{j}^{\vee}} \tag{1.1}
\end{equation*}
$$

An $M V$ polytope in $\mathbb{R} \Lambda$ is a generalized Weyl polytope satisfying the tropical Plücker relations:

$$
\begin{equation*}
M_{w s_{i} \varpi_{i}^{\vee}}+M_{w s_{j} \varpi_{j}^{\vee}}=\min \left(M_{w \varpi_{i}^{\vee}}+M_{w s_{i} s_{j} \varpi_{j}^{\vee}}, M_{w \varpi_{j}^{\vee}}+M_{w s_{j} s_{i} \varpi_{i}^{\vee}}\right) . \tag{1.2}
\end{equation*}
$$

Here, we require $w \in W$ and $i, j \in I$ with $\ell\left(w s_{i}\right)>\ell(w)$ and $\ell\left(w s_{j}\right)>\ell(w)$ and $\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle=-1$.
Nontrivial fact: any translate $P\left(M_{\bullet}\right)+\lambda($ for $\lambda \in \Lambda)$ of an MV polytope $P\left(M_{\bullet}\right)$ is also an MV polytope.
Example 1.1. Assume (Φ, Λ) has type A_{2}. Write $\alpha_{i}=\mathbf{e}_{i}-\mathbf{e}_{i+1}$.
Let $v \in \mathcal{B}_{\infty}$. Suppose $v_{\mathbf{i}}=(a, b, c)$ for $\mathbf{i}=(1,2,1)$ and $v_{\mathbf{i}^{\prime}}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ for $\mathbf{i}^{\prime}=(2,1,2)$.
These are the only reduced words for $w_{0} \in W=S_{3}$ and we have

$$
\gamma(\mathbf{i})=\left(\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{2}\right) \quad \text { and } \quad \gamma\left(\mathbf{i}^{\prime}\right)=\left(\alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}\right)
$$

where $\gamma_{k}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{k-1}}\left(\alpha_{i_{k}}\right)$. We define $\mathbf{w t}(v, w)=\sum_{j=1}^{\ell(w)} a_{j} \gamma_{j} \in \Lambda$.
These weights are the vertices of an MV polytope MV (v).

2 Crystal structure on MV polytopes

We will describe a crystal structure on MV polytopes of a given simply-laced, semisimple Cartan type.

Recall that \mathcal{L} is the set of tuples $v=\left(v_{\mathbf{i}}\right)$ with $v_{\mathbf{i}} \in \mathbb{N}^{N}$, indexed by reduced words $\mathbf{i} \in \operatorname{Red}\left(w_{0}\right)$.
There is a compatibility condition $v_{\mathbf{j}}=\mathcal{R}_{\mathbf{i}, \mathbf{j}}\left(v_{\mathbf{i}}\right)$ where $\mathcal{R}_{\mathbf{i}, \mathbf{j}}$ are the transition maps defined in Lecture 21 .
The weight of v with $v_{\mathbf{i}}=\left(a_{1}, a_{2}, \ldots, a_{N}\right)$ is $\mathbf{w t}(v)=-\sum_{j=1}^{N} a_{j} \gamma_{j}$ where $\gamma_{j}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{j-1}}\left(\alpha_{i_{j}}\right)$.

Let $\lambda_{\text {low }} \in \Lambda$ be a fixed element.
Given $w \in W$ with length $\ell(w)=l$, choose $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \in \operatorname{Red}\left(w_{0}\right)$ with $\left(i_{1}, \ldots, i_{l}\right) \in \operatorname{Red}(w)$.
Then define $\mathbf{w t}(v, w)=\lambda_{\text {low }}+\sum_{j=1}^{l} a_{j} \gamma_{j}$ where $\gamma_{j}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{j-1}}\left(\alpha_{i_{j}}\right)$.
This does not depend on the choice of reduced word \mathbf{i}.
We define $\operatorname{MV}(v)$ to be the convex hull of the set of weights $\{\mathbf{w t}(v, w) \in \Lambda: w \in W\}$, that is,

$$
\operatorname{MV}(v)=\left\{\sum_{w \in W} a_{w} \mathbf{w t}(v, w): a_{w} \geq 0 \text { and } \sum_{w \in W} a_{w}=1\right\}
$$

The highest weight vector of $\operatorname{MV}(v)$ is $\lambda_{\text {high }}=\mathbf{w t}\left(v, w_{0}\right)$.
As the notation suggests, $\operatorname{MV}(v)$ will be an MV polytope. But before showing this, our first task is to explain how $\operatorname{MV}(v)$ is a generalized Weyl polytope. We will need the following lemma.
Write \preceq for the partial order on Λ with $\mu \preceq \lambda$ if $\lambda-\mu=\sum_{i \in I} c_{i} \alpha_{i}$ with all $c_{i} \geq 0$.
Recall that W acts on the weight lattice by $s_{i}: \lambda \mapsto \lambda-\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle \alpha_{i}$.
Lemma 2.1. Let $w, w^{\prime} \in W$ and $v \in \mathcal{L}$. Then $w^{-1} \mathbf{w t}(v, w) \preceq w^{-1} \mathbf{w t}\left(v, w^{\prime}\right)$.
Proof. Suppose $i \in I$. We claim that $\mathbf{w t}\left(v, w s_{i}\right)-\mathbf{w t}(v, w)=c \cdot w\left(\alpha_{i}\right)$ for some $c \geq 0$.
We may assume $\ell\left(w s_{i}\right)>\ell(W)$ since otherwise we can interchange w and $w s_{i}$ as $s_{i}\left(\alpha_{i}\right)=-\alpha_{i}$.
Pick a reduced word $\left(i_{1}, \ldots, i_{k}\right)$ for w. Then $\left(i_{1}, \ldots, i_{k}, i\right)$ is a reduced word for $w s_{i}$.
We complete this to a reduced word $\mathbf{i} \in \operatorname{Red}\left(w_{0}\right)$. Suppose $v_{\mathbf{i}}=\left(a_{1}, \ldots, a_{N}\right)$.
Then $\mathbf{w t}\left(v, w s_{i}\right)-\mathbf{w t}(v, w)=a_{k+1} \gamma_{k+1}$ where $\gamma_{k+1}=w\left(\alpha_{i}\right)$, so our claim holds with $c=a_{k+1} \geq 0$.

Turning to the lemma, let $w^{-1} w^{\prime}=s_{j_{1}} \cdots s_{j_{l}}$ be a reduced expression.
Using the claim repeatedly, we deduce that

$$
w^{-1}\left(\mathbf{w} \mathbf{t}\left(v, w^{\prime}\right)-\mathbf{w} \mathbf{t}(v, w)\right)=\sum_{j=1}^{l} w^{-1}\left(\mathbf{w} \mathbf{t}\left(v, w s_{i_{1}} \cdots s_{i_{j}}\right)-\mathbf{w} \mathbf{t}\left(v, w s_{i_{1}} \cdots s_{i_{j-1}}\right)\right)
$$

is a nonnegative linear combination of the positive roots $\alpha_{i_{1}}, s_{i_{1}}\left(\alpha_{i_{2}}\right), s_{i_{1}} s_{i_{2}}\left(\alpha_{i_{3}}\right), \ldots$
Fix $v \in \mathcal{L}$. Let's explain how to realize $\operatorname{MV}(v)$ as a set of the form

$$
P\left(M_{\bullet}\right)=\left\{x \in \mathbb{R} \Lambda:\left\langle x, \nu^{\vee}\right\rangle \geq M_{\nu^{\vee}} \text { for } \nu^{\vee} \in \mathrm{CW}\right\}
$$

for some choice of integers $M_{\nu^{\vee}} \in \mathbb{Z}$ for $\nu^{\vee} \in \mathrm{CW}$.
Let $\nu^{\vee}=w \varpi_{i}^{\vee}$ be a chamber coweight. Then we have $\left\langle\mathbf{w t}\left(v, w^{\prime}\right), \nu^{\vee}\right\rangle=\left\langle w^{-1} \mathbf{w t}\left(v, w^{\prime}\right), \varpi_{i}^{\vee}\right\rangle$.
The inner product of ϖ_{i}^{\vee} with any α_{i} is nonnegative, so $\left\langle\mathbf{w} \mathbf{t}\left(v, w^{\prime}\right), \nu^{\vee}\right\rangle \geq\left\langle\mathbf{w} \mathbf{t}(v, w), \nu^{\vee}\right\rangle$ by the lemma. This holds whenever $w \varpi_{i}^{\vee}=\nu^{\vee}$. Hence $\left\langle\mathbf{w t}\left(v, w^{\prime}\right), \nu^{\vee}\right\rangle$ is minimized (over $w^{\prime} \in W$) when w^{\prime} belongs to

$$
S_{\nu^{\vee}}=\left\{w^{\prime} \in W: \nu^{\vee}=w^{\prime} \varpi_{i}^{\vee}\right\}
$$

which is a coset in W of the stabilizer $\left\{w^{\prime} \in W: w^{\prime} \varpi_{i}^{\vee}=\varpi_{i}^{\vee}\right\}$.
If $w^{\prime}, w^{\prime \prime} \in S_{\nu \vee}$ then

$$
\left\langle\mathbf{w} \mathbf{t}\left(v, w^{\prime}\right)-\mathbf{w} \mathbf{t}\left(v, w^{\prime \prime}\right), \nu^{\vee}\right\rangle=\left\langle\left(w^{\prime \prime}\right)^{-1} \mathbf{w} \mathbf{t}\left(v, w^{\prime}\right), \varpi_{i}^{\vee}\right\rangle-\left\langle\left(w^{\prime \prime}\right)^{-1} \mathbf{w} \mathbf{t}\left(v, w^{\prime \prime}\right), \varpi_{i}^{\vee}\right\rangle
$$

is a nonnegative linear combination of simple roots by the lemma. But we also have

$$
\left\langle\mathbf{w} \mathbf{t}\left(v, w^{\prime}\right)-\mathbf{w} \mathbf{t}\left(v, w^{\prime \prime}\right), \nu^{\vee}\right\rangle=\left\langle\left(w^{\prime}\right)^{-1} \mathbf{w} \mathbf{t}\left(v, w^{\prime}\right), \varpi_{i}^{\vee}\right\rangle-\left\langle\left(w^{\prime}\right)^{-1} \mathbf{w} \mathbf{t}\left(v, w^{\prime \prime}\right), \varpi_{i}^{\vee}\right\rangle
$$

which is a nonpositive linear combination of simple roots, by the same lemma.
Therefore $\left\langle\mathbf{w} \mathbf{t}\left(v, w^{\prime}\right)-\mathbf{w t}\left(v, w^{\prime \prime}\right), \nu^{\vee}\right\rangle=0$.
Thus if $w^{\prime}, w^{\prime \prime} \in S_{\nu^{\vee}}$ then $\mathbf{w t}\left(v, w^{\prime}\right)-\mathbf{w} \mathbf{t}\left(v, w^{\prime \prime}\right)$ is orthogonal to ν^{\vee}. It follows that the convex hull F_{ν} of the set of weights $\mathbf{w t}\left(v, w^{\prime}\right)$ with $w^{\prime} \in S_{\nu^{\vee}}$ is contained in a hyperplane $H_{\nu^{\vee}}$ orthogonal to ν^{\vee}.
Define $M_{\nu^{\vee}}$ to be the constant value of $\left\langle\mathbf{w} \mathbf{t}\left(v, w^{\prime}\right), \nu^{\vee}\right\rangle$ for $w^{\prime} \in S_{\nu^{\vee}}$.
Proposition 2.2. For each $v \in \mathcal{L}$, the set $\operatorname{MV}(v)=P\left(M_{\bullet}\right)$ is a generalized Weyl polytope.
Proof. Every $x \in \operatorname{MV}(v)$ is a convex combination of $\mathbf{w t}(v, w)$ for $w \in W$.
Thus, for each $\nu^{\vee} \in \mathrm{CW}$ we have $\left\langle x, \nu^{\vee}\right\rangle \geq M_{\nu^{\vee}}$ for $x \in \mathrm{MV}(v)$, with equality on the hyperplane $H_{\nu^{\vee}}$.
This means $F_{\nu \vee}$ is a face of the convex hull of the weights $\mathbf{w t}(v, w)$ for $w \in W$, and $\operatorname{MV}(v)=P\left(M_{\bullet}\right)$.
We follow this proposition with a stronger result.
Theorem 2.3. Let $v \in \mathcal{L}$. Then $\operatorname{MV}(v)=P\left(M_{\bullet}\right)$ is an MV polytope.
Moreover, for each $w \in W$ the unique element μ_{w} with $\left\langle\mu_{w}, w \varpi_{i}^{\vee}\right\rangle=M_{w \varpi_{i}^{\vee}}$ for all i is $\mu_{w}=\mathbf{w t}(v, w)$.
Proof. To show that $\mathrm{MV}(v)$ is an MV polytope we need to check the tropical Plücker relation.
We verified this in type A_{2} last time.
Since (Φ, Λ) is simply-laced, it suffices to show how the general relation follows from the A_{2} case.
For this, suppose $i, j \in I$ are such that $\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle=-1$ and let $w \in W$ be such that $\ell\left(w s_{i}\right)>\ell(w)$ and $\ell\left(w s_{j}\right)>\ell(w)$. This implies (by standard but maybe not so obvious results in the theory of Coxeter systems) that $\ell\left(w s_{i} s_{j} s_{i}\right)=\ell(w)+3$ and that $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$.
Choose a reduced word $\left(i_{1}, \ldots, i_{k}\right)$ for w.
Then $\left(i_{1}, \ldots, i_{k}, i, j, i\right)$ and $\left(i_{1}, \ldots, i_{k}, j, i, j\right)$ are both reduced words for $w s_{i} s_{j} s_{i}$. Complete these to reduced words \mathbf{i} and \mathbf{j} for the longest element $w_{0} \in W$. Write $v_{\mathbf{i}}=\left(a_{1}, \ldots, a_{N}\right)$ and $v_{\mathbf{j}}=\left(b_{1}, \ldots, b_{N}\right)$.

Define as usual $\vartheta(a, b, c)=(b+c-\min (a, c), \min (a, c), a+b-\min (a, c))$.
Then by the definition of the transition maps $\mathcal{R}_{\mathbf{i}, \mathbf{j}}$ from Lecture 21, we have

$$
\left(b_{k+1}, b_{k+2}, b_{k+3}\right)=\vartheta\left(a_{k+1}, a_{k+2}, a_{k+3}\right)
$$

while all other terms in $v_{\mathbf{i}}$ and $v_{\mathbf{j}}$ coincide. To simplify our notation let

$$
(a, b, c)=\left(a_{k+1}, a_{k+2}, a_{k+3}\right) \quad \text { and } \quad\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=\left(b_{k+1}, b_{k+2}, b_{k+3}\right)=\vartheta(a, b, c)
$$

The simple roots α_{i} and α_{j} generate a type A_{2} root system Φ^{\prime} inside Φ, and the triple (a, b, c) is an element of the Lusztig parametrization of the \mathcal{B}_{∞} crystal for Φ^{\prime}.

Using the discussion from last lecture, we know that the six (not necessarily distinct) weights

$$
0, \quad a \alpha_{1}, \quad a \alpha_{1}+b\left(\alpha_{1}+\alpha_{2}\right), \quad a \alpha_{1}+b\left(\alpha_{1}+\alpha_{2}\right)+c \alpha_{2}, \quad a^{\prime} \alpha_{2}, \quad a^{\prime} \alpha_{2}+b^{\prime}\left(\alpha_{1}+\alpha_{2}\right)
$$

are the vertices of an MV polytope $P\left(M_{\bullet}^{\prime}\right)$ for the type A_{2} root system Φ^{\prime}, where $M_{\nu \vee}^{\prime}$ are the integers specified in the proof of Proposition 3.4 from Lecture 22.

The affine map $x \mapsto w x+\mathbf{w t}(v, w)$ takes these weights to the six weights $\mathbf{w t}(v, w y)$ for $y \in\left\langle s_{i}, s_{j}\right\rangle \cong S_{3}$.

Since translates of MV polytopes are still MV polytopes, it follows that we can deduce the tropical Plücker relation involving $M_{w y \varpi_{i}^{\vee}}$ and $M_{w y \varpi_{j}^{\vee}}$ for $y \in\left\langle s_{i}, s_{j}\right\rangle$ from the tropical Plücker relations for $P\left(M_{\bullet}^{\prime}\right)$, which we already know to be valid. This proves that MV (v) is an MV polytope.

The argument that $\mu_{w}=\mathbf{w t}(v, w)$ is a little technical. The strategy is to first prove this for a particular MV polytope, given by the Weyl polytope whose vertices are the elements in the W-orbit of the Weyl vector $\rho=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$. This MV polytope is realized by taking $\lambda_{\text {low }}=-\rho$ and $M_{\nu^{\vee}}=-1$ for all chamber coweights ν^{\vee}. The element $v \in \mathcal{L}$ such that $\operatorname{MV}(v)$ is the Weyl polytope has $v_{\mathbf{i}}=(1,1, \ldots, 1)$ for all \mathbf{i}.
One can show that for the Weyl polytope one has $\mathbf{w t}(v, w)=\mu_{w}=w(-\rho)$. Specifically, choose a reduced word $\left(i_{1}, \ldots, i_{k}\right)$ for $w \in W$ and complete it to a reduced word $\mathbf{i} \in \operatorname{Red}\left(w_{0}\right)$. Then

$$
\mathbf{w} \mathbf{t}(v, w)=\lambda_{\text {low }}+\gamma_{1}(\mathbf{i})+\cdots+\gamma_{k}(\mathbf{i})=-\rho+\sum_{j=1}^{k} \gamma_{j}(\mathbf{i}) .
$$

The roots $\gamma_{1}(\mathbf{i}), \ldots, \gamma_{k}(\mathbf{i})$ are the elements of Φ^{+}with $w^{-1}(\alpha) \in \Phi^{-}$so

$$
\mathbf{w t}(v, w)=\rho+\sum_{\substack{\alpha \in \Phi^{+} \\ w^{-1}(\alpha) \in \Phi^{-}}} \alpha=w(-\rho) .
$$

On the other hand, this Weyl polytope is invariant under the action of W on Λ, and the action must be compatible with the action on chamber coweights. Therefore $\mu_{w}=w\left(\mu_{1}\right)=w(-\rho)$.

To deduce that $\mu_{w}=\mathbf{w t}(v, w)$ for a general MV polytope, one then argues that the desired identity remains valid, by continuity, as we deform the Weyl polytope through the space of data M_{\bullet} that satisfy the edge and tropical Plücker relations. However, one needs to justify when any MV polytope can be obtained by this process of deformation.

Let \mathcal{B} be either \mathcal{B}_{∞} or \mathcal{B}_{λ} where λ is a dominant weight. If $\mathcal{B}=\mathcal{B}_{\infty}$ then take $\lambda=0$.
Then \mathcal{B} is a highest weight crystal with highest weight λ, and we may embed $\mathcal{B} \hookrightarrow \mathcal{T}_{\lambda} \otimes \mathcal{L}$.
Suppose $v \in \mathcal{B}$ goes to $t_{\lambda} \otimes u \in \mathcal{T}_{\lambda} \otimes \mathcal{L}$ under this embedding. We define $v_{\mathbf{i}}=u_{\mathbf{i}} \in \mathbb{N}^{N}$ for $\mathbf{i} \in \operatorname{Red}\left(w_{0}\right)$.

The convex hull $\operatorname{MV}(v)$ of the weights $\mathbf{w t}(v, w)=\lambda_{\text {low }}+\sum_{j=1}^{\ell(w)} a_{j} \gamma_{j}$ for $w \in W$ is an MV polytope.
For convenience set $\lambda_{\text {low }}=\mathbf{w t}(v):=\lambda-\sum_{j=1}^{N} a_{j} \gamma_{j}$.
Then MV (v) has lowest weight $\mathbf{w t}(v)$ and highest weight $\lambda_{\text {high }}=\lambda$.

The crystal structure on \mathcal{B} induces a crystal structure on MV polytopes. Assume $f_{i}(v) \neq 0$.
To define the action of f_{i} on $\operatorname{MV}(v)$, choose a reduced word $\mathbf{i} \in \operatorname{Red}\left(w_{0}\right)$ with $i_{1}=i$.
Then if $v_{\mathbf{i}}=\left(a_{1}, a_{2}, \ldots, a_{N}\right)$, we have $\left(f_{i}(v)\right)_{\mathbf{i}}=\left(a_{1}+1, a_{2}, \ldots, a_{N}\right)$.
This means that the face of $\operatorname{MV}(v)$ adjacent to the lowest weight vector whose bounding hyperplane is

$$
\left\langle x \varpi_{i}^{\vee}\right\rangle=M_{\varpi_{i}^{\vee}} \quad \text { for } M_{\varpi_{i}^{\vee}}=\left\langle\mathbf{w} \mathbf{t}(v), \varpi_{i}^{\vee}\right\rangle
$$

is pushed out, increasing $M_{\varpi_{i}^{\vee}}$ by one. Likewise, the e_{i} operators act on the set of MV polytopes MV (v) by either pushing one bounding hyperplane in by one, or by sending $\operatorname{MV}(v) \mapsto 0$.

3 The *-involution

Let G be a reductive Lie group with maximal torus T and maximal unipotent subgroup N^{+}. Then G has an involution $\star: G \rightarrow G$ such that $\left(g_{1} g_{2}\right)^{\star}=g_{2}^{\star} g_{1}^{\star}$ that preserves T and N^{+}and induces a bijection $\alpha \mapsto-w_{0} \alpha$ of the positive roots. For $G=\mathrm{GL}(n, \mathbb{C})$, the involution is $g^{\star}=w_{0} g^{T} w_{0}$ where w_{0} is the permutation matrix formed by reversed the order of the columns in the identity matrix.

The \star-involution on \mathcal{B}_{∞} is the tropicalization of the antiautomorphism of N^{+}induced by $\star: G \rightarrow G$.
Let $\mathbf{i}=\left(i_{1}, \ldots, i_{N}\right) \in \operatorname{Red}\left(w_{0}\right)$. Let $\mathbf{i}^{\prime}=\left(i_{N}^{\prime}, \ldots, i_{1}^{\prime}\right)$ where $i \mapsto i^{\prime}$ is the permutation with $-w_{0} \alpha_{i}=\alpha_{i^{\prime}}$.
Proposition 3.1. There is a weight-preserving bijection $\star: \mathcal{L} \rightarrow \mathcal{L}$ such that of $v_{\mathbf{i}}=\left(a_{1}, \ldots, a_{N}\right)$ then

$$
v_{\mathbf{i}^{\prime}}^{\star}=\left(a_{N}, \ldots, a_{1}\right)
$$

Proof sketch. Check that if $v_{\mathbf{i}^{\prime}}^{\star}$ is as given then $\mathcal{R}_{\mathbf{i}^{\prime}, \mathbf{j}^{\prime}}\left(v_{\mathbf{i}^{\prime}}^{\star}\right)=v_{\mathbf{j}^{\prime}}^{\star}$ and $\mathbf{w t}\left(v^{\star}\right)=\mathbf{w} \mathbf{t}(v)$. This is straightforward in the case when \mathbf{i}^{\prime} and \mathbf{j}^{\prime} are related by a single braid relation. The weight computation follows from the general identity $\gamma\left(\mathbf{i}^{\prime}\right)=\left(\gamma_{N}(\mathbf{i}), \ldots, \gamma_{1}(\mathbf{i})\right)$.

This means that the \star-involution of \mathcal{L} is the tropicalization of the geometric map $\star: G \rightarrow G$.
In detail, the geometric map has the effect on N^{+}of sending

$$
x_{i_{1}}\left(a_{1}\right) \cdots x_{i_{N}}\left(a_{n}\right) \mapsto x_{i_{N}^{\prime}}\left(a_{N}\right) \cdots x_{i_{1}^{\prime}}\left(a_{1}\right)
$$

and tropicalizing gives precisely the description in the previous result.
We have now defined the \star-involution for both \mathcal{B}_{∞} and \mathcal{L}, which are isomorphic crystals.
Theorem 3.2. If we identify $\mathcal{L} \cong \mathcal{B}_{\infty}$, then our two definitions of \star coincide.

The proof of this result is omitted; it is due to Berenstein and Zelevinsky using the theory of quantum groups; Bump and Schilling outline a strategy for self-contained combinatorial proof of Chapter 15, using an embedding $\mathcal{L} \hookrightarrow \mathcal{B}_{i} \otimes \mathcal{L}$ analogous to $\psi_{i}: \mathcal{B}_{\infty} \hookrightarrow \mathcal{B}_{i} \otimes \mathcal{B}_{\infty}$.
As for \mathcal{B}_{∞} in Lectures 18-20, we may use \star to define a modified crystal structure on the set \mathcal{L}.
We write $\varepsilon_{i}^{\star}(v)=\varepsilon_{i}\left(v^{\star}\right)$ and $\varphi_{i}^{\star}(v)=\varphi_{i}\left(v^{\star}\right)$ and define e_{i}^{\star} and f_{i}^{\star} by conjugating e_{i} and f_{i} by \star.

The \star-involution acts on MV polytopes in a simple way: $\operatorname{MV}\left(v^{\star}\right)=-\operatorname{MV}(v):=\{-x: x \in \operatorname{MV}(v)\}$.
Whereas f_{i} applied to $\operatorname{MV}(v)$ pushes out a bottom face, f_{i}^{\star} pushes out a top face. In general,

$$
f_{i}^{\star}: \operatorname{MV}(v) \mapsto-f_{i}(-\operatorname{MV}(v))
$$

and likewise for e_{i}^{\star}. Finally,

$$
\varepsilon_{i}(v)=\max \left\{k: \lambda_{\text {low }}+k \alpha_{i} \in \operatorname{MV}(v)\right\} \quad \text { and } \quad \varepsilon_{i}^{\star}(v)=\max \left\{k:-k \alpha_{i} \in \operatorname{MV}(v)\right\}
$$

For proofs of these identities, see Proposition 15.30 in Bump and Schilling's book.

4 MV polytopes and the finite crystals \mathcal{B}_{λ}

Let $\lambda \in \Lambda^{+}$be a dominant weight. Then we have a normal crystal \mathcal{B}_{λ} with highest weight λ.
Since our Cartan type is simply-laced, \mathcal{B}_{λ} is a Stembridge crystal.
The following results are due to Kamnitzer.

Proposition 4.1. Let P be an MV polytope whose highest weight is λ. Then (i) $M_{w_{0} s_{i} \cdot \varpi_{i}^{\vee}} \geq\left\langle w_{0} \lambda, \varpi_{i}^{\vee}\right\rangle$ for all $i \in I$ if and only if (ii) P is contained in the Weyl polytope that is the convex hull of $W \cdot \lambda$.
The proof of this proposition appearing in the literature uses the affine Grassmannian and is not selfcontained. Bump and Schilling note that a more direct proof would be desirable.

Theorem 4.2. Let λ be a dominant weight. Suppose that P is an MV polytope with highest weight λ. Then $P=\operatorname{MV}(v)$ for some $v \in \mathcal{B}_{\lambda}$ if and only if P is contained in the Weyl polytope that is the convex hull of the W-orbit of λ.

Proof. Some relatively straightforward algebraic manipulations show that

$$
M_{w_{0} s_{i^{\prime}} \varpi_{i^{\prime}}^{\vee}}=-\left\langle w_{0} \lambda, \varpi_{i^{\prime}}^{\vee}\right\rangle=\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle-\varepsilon_{i}^{\star}(v) .
$$

The criterion in the previous proposition for $\operatorname{MV}(v)$ to be contained in the convex hull of $W \cdot \lambda$ is equivalent to the assumption that $\varepsilon_{i}^{\star}(v) \leq\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle$. This is equivalent to $v \in \mathcal{B}_{\lambda}$ by Theorem 3.4 in Lecture 19 .

