
MATH 6150I — Combinatorics of crystal bases (Spring 2020) Lecture 23

1 Last time: MV polytopes

Assume (Φ,Λ) is a simply-laced and semisimple Cartan type, so that the simple roots all have the same
length and are a basis for the ambient vector space V , and the fundamental weights are the unique basis
dual to the simple coroots.

Write {αi : i ∈ I} for the simple roots and W = 〈si : i ∈ I〉 for the Weyl group.

Let {$∨i : i ∈ I} be the unique basis of V with 〈αi, $∨j 〉 = δij .

Let CW = {w($∨i ) : w ∈W, i ∈ I} be the set of chamber coweights. We have CW = −CW.

Fix a collection M• of integers Mν∨ ∈ Z for ν∨ ∈ CW. Let

P (M•) = {x ∈ RΛ : 〈x, ν∨〉 ≥Mν∨ for ν∨ ∈ CW}.

For w ∈W , there is a unique vector µw ∈ RΛ such that 〈µw, w$∨i 〉 = Mw$∨i
for all i ∈ I.

Assume that the µw are vertices of the polytope P (M•).

Then P (M•) is called a generalized Weyl polytope. In this case, the following edge inequalities hold:

Mw$∨i
+Mwsi$∨i

≤
∑
j 6=i

−〈αj , α∨i 〉Mw$∨j
. (1.1)

An MV polytope in RΛ is a generalized Weyl polytope satisfying the tropical Plücker relations:

Mwsi$∨i
+Mwsj$∨j

= min
(
Mw$∨i

+Mwsisj$∨j
,Mw$∨j

+Mwsjsi$∨i

)
. (1.2)

Here, we require w ∈W and i, j ∈ I with `(wsi) > `(w) and `(wsj) > `(w) and 〈αi, α∨j 〉 = −1.

Nontrivial fact: any translate P (M•) + λ (for λ ∈ Λ) of an MV polytope P (M•) is also an MV polytope.

Example 1.1. Assume (Φ,Λ) has type A2. Write αi = ei − ei+1.

Let v ∈ B∞. Suppose vi = (a, b, c) for i = (1, 2, 1) and vi′ = (a′, b′, c′) for i′ = (2, 1, 2).

These are the only reduced words for w0 ∈W = S3 and we have

γ(i) = (α1, α1 + α2, α2) and γ(i′) = (α2, α1 + α2, α1)

where γk = si1si2 · · · sik−1
(αik). We define wt(v, w) =

∑`(w)
j=1 ajγj ∈ Λ.

These weights are the vertices of an MV polytope MV(v).

2 Crystal structure on MV polytopes

We will describe a crystal structure on MV polytopes of a given simply-laced, semisimple Cartan type.

Recall that L is the set of tuples v = (vi) with vi ∈ NN , indexed by reduced words i ∈ Red(w0).

There is a compatibility condition vj = Ri,j(vi) where Ri,j are the transition maps defined in Lecture 21.

The weight of v with vi = (a1, a2, . . . , aN ) is wt(v) = −
∑N
j=1 ajγj where γj = si1si2 · · · sij−1(αij ).
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Let λlow ∈ Λ be a fixed element.

Given w ∈W with length `(w) = l, choose i = (i1, . . . , iN ) ∈ Red(w0) with (i1, . . . , il) ∈ Red(w).

Then define wt(v, w) = λlow +
∑l
j=1 ajγj where γj = si1si2 · · · sij−1(αij ).

This does not depend on the choice of reduced word i.

We define MV(v) to be the convex hull of the set of weights {wt(v, w) ∈ Λ : w ∈W}, that is,

MV(v) =

{∑
w∈W

awwt(v, w) : aw ≥ 0 and
∑
w∈W

aw = 1

}
.

The highest weight vector of MV(v) is λhigh = wt(v, w0).

As the notation suggests, MV(v) will be an MV polytope. But before showing this, our first task is to
explain how MV(v) is a generalized Weyl polytope. We will need the following lemma.

Write � for the partial order on Λ with µ � λ if λ− µ =
∑
i∈I ciαi with all ci ≥ 0.

Recall that W acts on the weight lattice by si : λ 7→ λ− 〈λ, α∨i 〉αi.

Lemma 2.1. Let w,w′ ∈W and v ∈ L. Then w−1wt(v, w) � w−1wt(v, w′).

Proof. Suppose i ∈ I. We claim that wt(v, wsi)−wt(v, w) = c · w(αi) for some c ≥ 0.

We may assume `(wsi) > `(W ) since otherwise we can interchange w and wsi as si(αi) = −αi.

Pick a reduced word (i1, . . . , ik) for w. Then (i1, . . . , ik, i) is a reduced word for wsi.

We complete this to a reduced word i ∈ Red(w0). Suppose vi = (a1, . . . , aN ).

Then wt(v, wsi)−wt(v, w) = ak+1γk+1 where γk+1 = w(αi), so our claim holds with c = ak+1 ≥ 0.

Turning to the lemma, let w−1w′ = sj1 · · · sjl be a reduced expression.

Using the claim repeatedly, we deduce that

w−1(wt(v, w′)−wt(v, w)) =

l∑
j=1

w−1
(
wt(v, wsi1 · · · sij )−wt(v, wsi1 · · · sij−1)

)
is a nonnegative linear combination of the positive roots αi1 , si1(αi2), si1si2(αi3), . . . .

Fix v ∈ L. Let’s explain how to realize MV(v) as a set of the form

P (M•) = {x ∈ RΛ : 〈x, ν∨〉 ≥Mν∨ for ν∨ ∈ CW}

for some choice of integers Mν∨ ∈ Z for ν∨ ∈ CW.

Let ν∨ = w$∨i be a chamber coweight. Then we have 〈wt(v, w′), ν∨〉 = 〈w−1wt(v, w′), $∨i 〉.

The inner product of $∨i with any αi is nonnegative, so 〈wt(v, w′), ν∨〉 ≥ 〈wt(v, w), ν∨〉 by the lemma.

This holds whenever w$∨i = ν∨. Hence 〈wt(v, w′), ν∨〉 is minimized (over w′ ∈W ) when w′ belongs to

Sν∨ = {w′ ∈W : ν∨ = w′$∨i },

which is a coset in W of the stabilizer {w′ ∈W : w′$∨i = $∨i }.

If w′, w′′ ∈ Sν∨ then

〈wt(v, w′)−wt(v, w′′), ν∨〉 = 〈(w′′)−1wt(v, w′), $∨i 〉 − 〈(w′′)−1wt(v, w′′), $∨i 〉
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is a nonnegative linear combination of simple roots by the lemma. But we also have

〈wt(v, w′)−wt(v, w′′), ν∨〉 = 〈(w′)−1wt(v, w′), $∨i 〉 − 〈(w′)−1wt(v, w′′), $∨i 〉

which is a nonpositive linear combination of simple roots, by the same lemma.

Therefore 〈wt(v, w′)−wt(v, w′′), ν∨〉 = 0.

Thus if w′, w′′ ∈ Sν∨ then wt(v, w′)−wt(v, w′′) is orthogonal to ν∨. It follows that the convex hull Fν∨

of the set of weights wt(v, w′) with w′ ∈ Sν∨ is contained in a hyperplane Hν∨ orthogonal to ν∨.

Define Mν∨ to be the constant value of 〈wt(v, w′), ν∨〉 for w′ ∈ Sν∨ .

Proposition 2.2. For each v ∈ L, the set MV(v) = P (M•) is a generalized Weyl polytope.

Proof. Every x ∈ MV(v) is a convex combination of wt(v, w) for w ∈W .

Thus, for each ν∨ ∈ CW we have 〈x, ν∨〉 ≥Mν∨ for x ∈ MV(v), with equality on the hyperplane Hν∨ .

This means Fν∨ is a face of the convex hull of the weights wt(v, w) for w ∈W , and MV(v) = P (M•).

We follow this proposition with a stronger result.

Theorem 2.3. Let v ∈ L. Then MV(v) = P (M•) is an MV polytope.

Moreover, for each w ∈W the unique element µw with 〈µw, w$∨i 〉 = Mw$∨i
for all i is µw = wt(v, w).

Proof. To show that MV(v) is an MV polytope we need to check the tropical Plücker relation.

We verified this in type A2 last time.

Since (Φ,Λ) is simply-laced, it suffices to show how the general relation follows from the A2 case.

For this, suppose i, j ∈ I are such that 〈αi, α∨j 〉 = −1 and let w ∈ W be such that `(wsi) > `(w) and
`(wsj) > `(w). This implies (by standard but maybe not so obvious results in the theory of Coxeter
systems) that `(wsisjsi) = `(w) + 3 and that sisjsi = sjsisj .

Choose a reduced word (i1, . . . , ik) for w.

Then (i1, . . . , ik, i, j, i) and (i1, . . . , ik, j, i, j) are both reduced words for wsisjsi. Complete these to
reduced words i and j for the longest element w0 ∈W . Write vi = (a1, . . . , aN ) and vj = (b1, . . . , bN ).

Define as usual ϑ(a, b, c) = (b+ c−min(a, c),min(a, c), a+ b−min(a, c)).

Then by the definition of the transition maps Ri,j from Lecture 21, we have

(bk+1, bk+2, bk+3) = ϑ(ak+1, ak+2, ak+3)

while all other terms in vi and vj coincide. To simplify our notation let

(a, b, c) = (ak+1, ak+2, ak+3) and (a′, b′, c′) = (bk+1, bk+2, bk+3) = ϑ(a, b, c).

The simple roots αi and αj generate a type A2 root system Φ′ inside Φ, and the triple (a, b, c) is an
element of the Lusztig parametrization of the B∞ crystal for Φ′.

Using the discussion from last lecture, we know that the six (not necessarily distinct) weights

0, aα1, aα1 + b(α1 + α2), aα1 + b(α1 + α2) + cα2, a′α2, a′α2 + b′(α1 + α2),

are the vertices of an MV polytope P (M ′•) for the type A2 root system Φ′, where M ′ν∨ are the integers
specified in the proof of Proposition 3.4 from Lecture 22.

The affine map x 7→ wx+wt(v, w) takes these weights to the six weights wt(v, wy) for y ∈ 〈si, sj〉 ∼= S3.
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Since translates of MV polytopes are still MV polytopes, it follows that we can deduce the tropical
Plücker relation involving Mwy$∨i

and Mwy$∨j
for y ∈ 〈si, sj〉 from the tropical Plücker relations for

P (M ′•), which we already know to be valid. This proves that MV(v) is an MV polytope.

The argument that µw = wt(v, w) is a little technical. The strategy is to first prove this for a particular
MV polytope, given by the Weyl polytope whose vertices are the elements in the W -orbit of the Weyl
vector ρ = 1

2

∑
α∈Φ+ α. This MV polytope is realized by taking λlow = −ρ and Mν∨ = −1 for all chamber

coweights ν∨. The element v ∈ L such that MV(v) is the Weyl polytope has vi = (1, 1, . . . , 1) for all i.

One can show that for the Weyl polytope one has wt(v, w) = µw = w(−ρ). Specifically, choose a reduced
word (i1, . . . , ik) for w ∈W and complete it to a reduced word i ∈ Red(w0). Then

wt(v, w) = λlow + γ1(i) + · · ·+ γk(i) = −ρ+

k∑
j=1

γj(i).

The roots γ1(i), . . . , γk(i) are the elements of Φ+ with w−1(α) ∈ Φ− so

wt(v, w) = ρ+
∑
α∈Φ+

w−1(α)∈Φ−

α = w(−ρ).

On the other hand, this Weyl polytope is invariant under the action of W on Λ, and the action must be
compatible with the action on chamber coweights. Therefore µw = w(µ1) = w(−ρ).

To deduce that µw = wt(v, w) for a general MV polytope, one then argues that the desired identity
remains valid, by continuity, as we deform the Weyl polytope through the space of data M• that satisfy
the edge and tropical Plücker relations. However, one needs to justify when any MV polytope can be
obtained by this process of deformation.

Let B be either B∞ or Bλ where λ is a dominant weight. If B = B∞ then take λ = 0.

Then B is a highest weight crystal with highest weight λ, and we may embed B ↪→ Tλ ⊗ L.

Suppose v ∈ B goes to tλ ⊗ u ∈ Tλ ⊗ L under this embedding. We define vi = ui ∈ NN for i ∈ Red(w0).

The convex hull MV(v) of the weights wt(v, w) = λlow +
∑`(w)
j=1 ajγj for w ∈W is an MV polytope.

For convenience set λlow = wt(v) := λ−
∑N
j=1 ajγj .

Then MV(v) has lowest weight wt(v) and highest weight λhigh = λ.

The crystal structure on B induces a crystal structure on MV polytopes. Assume fi(v) 6= 0.

To define the action of fi on MV(v), choose a reduced word i ∈ Red(w0) with i1 = i.

Then if vi = (a1, a2, . . . , aN ), we have (fi(v))i = (a1 + 1, a2, . . . , aN ).

This means that the face of MV(v) adjacent to the lowest weight vector whose bounding hyperplane is

〈x$∨i 〉 = M$∨i
for M$∨i

= 〈wt(v), $∨i 〉

is pushed out, increasing M$∨i
by one. Likewise, the ei operators act on the set of MV polytopes MV(v)

by either pushing one bounding hyperplane in by one, or by sending MV(v) 7→ 0.
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3 The ?-involution

Let G be a reductive Lie group with maximal torus T and maximal unipotent subgroup N+. Then G
has an involution ? : G→ G such that (g1g2)? = g?2g

?
1 that preserves T and N+ and induces a bijection

α 7→ −w0α of the positive roots. For G = GL(n,C), the involution is g? = w0g
Tw0 where w0 is the

permutation matrix formed by reversed the order of the columns in the identity matrix.

The ?-involution on B∞ is the tropicalization of the antiautomorphism of N+ induced by ? : G→ G.

Let i = (i1, . . . , iN ) ∈ Red(w0). Let i′ = (i′N , . . . , i
′
1) where i 7→ i′ is the permutation with −w0αi = αi′ .

Proposition 3.1. There is a weight-preserving bijection ? : L → L such that of vi = (a1, . . . , aN ) then

v?i′ = (aN , . . . , a1).

Proof sketch. Check that if v?i′ is as given then Ri′,j′(v
?
i′) = v?j′ and wt(v?) = wt(v). This is straightfor-

ward in the case when i′ and j′ are related by a single braid relation. The weight computation follows
from the general identity γ(i′) = (γN (i), . . . , γ1(i)).

This means that the ?-involution of L is the tropicalization of the geometric map ? : G→ G.

In detail, the geometric map has the effect on N+ of sending

xi1(a1) · · ·xiN (an) 7→ xi′N (aN ) · · ·xi′1(a1)

and tropicalizing gives precisely the description in the previous result.

We have now defined the ?-involution for both B∞ and L, which are isomorphic crystals.

Theorem 3.2. If we identify L ∼= B∞, then our two definitions of ? coincide.

The proof of this result is omitted; it is due to Berenstein and Zelevinsky using the theory of quantum
groups; Bump and Schilling outline a strategy for self-contained combinatorial proof of Chapter 15, using
an embedding L ↪→ Bi ⊗ L analogous to ψi : B∞ ↪→ Bi ⊗ B∞.

As for B∞ in Lectures 18-20, we may use ? to define a modified crystal structure on the set L.

We write ε?i (v) = εi(v
?) and ϕ?i (v) = ϕi(v

?) and define e?i and f?i by conjugating ei and fi by ?.

The ?-involution acts on MV polytopes in a simple way: MV(v?) = −MV(v) := {−x : x ∈ MV(v)}.

Whereas fi applied to MV(v) pushes out a bottom face, f?i pushes out a top face. In general,

f?i : MV(v) 7→ −fi(−MV(v))

and likewise for e?i . Finally,

εi(v) = max{k : λlow + kαi ∈ MV(v)} and ε?i (v) = max{k : −kαi ∈ MV(v)}.

For proofs of these identities, see Proposition 15.30 in Bump and Schilling’s book.

4 MV polytopes and the finite crystals Bλ

Let λ ∈ Λ+ be a dominant weight. Then we have a normal crystal Bλ with highest weight λ.

Since our Cartan type is simply-laced, Bλ is a Stembridge crystal.

The following results are due to Kamnitzer.
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Proposition 4.1. Let P be an MV polytope whose highest weight is λ. Then (i) Mw0si·$∨i ≥ 〈w0λ,$
∨
i 〉

for all i ∈ I if and only if (ii) P is contained in the Weyl polytope that is the convex hull of W · λ.

The proof of this proposition appearing in the literature uses the affine Grassmannian and is not self-
contained. Bump and Schilling note that a more direct proof would be desirable.

Theorem 4.2. Let λ be a dominant weight. Suppose that P is an MV polytope with highest weight λ.
Then P = MV(v) for some v ∈ Bλ if and only if P is contained in the Weyl polytope that is the convex
hull of the W -orbit of λ.

Proof. Some relatively straightforward algebraic manipulations show that

Mw0si′$
∨
i′

= −〈w0λ,$
∨
i′〉 = 〈λ, α∨i 〉 − ε?i (v).

The criterion in the previous proposition for MV(v) to be contained in the convex hull of W ·λ is equivalent
to the assumption that ε?i (v) ≤ 〈λ, α∨i 〉. This is equivalent to v ∈ Bλ by Theorem 3.4 in Lecture 19.
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