Lecture 23

1 Last time: MV polytopes

Assume (Φ, Λ) is a simply-laced and semisimple Cartan type, so that the simple roots all have the same length and are a basis for the ambient vector space V, and the fundamental weights are the unique basis dual to the simple coroots.

Write $\{\alpha_i : i \in I\}$ for the simple roots and $W = \langle s_i : i \in I \rangle$ for the Weyl group.

Let $\{\varpi_i^{\vee} : i \in I\}$ be the unique basis of V with $\langle \alpha_i, \varpi_i^{\vee} \rangle = \delta_{ij}$.

Let $\mathsf{CW} = \{w(\varpi_i^{\vee}) : w \in W, i \in I\}$ be the set of *chamber coweights*. We have $\mathsf{CW} = -\mathsf{CW}$.

Fix a collection M_{\bullet} of integers $M_{\nu^{\vee}} \in \mathbb{Z}$ for $\nu^{\vee} \in \mathsf{CW}$. Let

$$P(M_{\bullet}) = \{ x \in \mathbb{R}\Lambda : \langle x, \nu^{\vee} \rangle \ge M_{\nu^{\vee}} \text{ for } \nu^{\vee} \in \mathsf{CW} \}.$$

For $w \in W$, there is a unique vector $\mu_w \in \mathbb{R}\Lambda$ such that $\langle \mu_w, w \varpi_i^{\vee} \rangle = M_{w \varpi_i^{\vee}}$ for all $i \in I$.

Assume that the μ_w are vertices of the polytope $P(M_{\bullet})$.

Then $P(M_{\bullet})$ is called a generalized Weyl polytope. In this case, the following edge inequalities hold:

$$M_{w\varpi_i^{\vee}} + M_{ws_i\varpi_i^{\vee}} \le \sum_{j \ne i} -\langle \alpha_j, \alpha_i^{\vee} \rangle M_{w\varpi_j^{\vee}}.$$
(1.1)

An *MV polytope* in $\mathbb{R}\Lambda$ is a generalized Weyl polytope satisfying the *tropical Plücker relations*:

$$M_{ws_i\varpi_i^{\vee}} + M_{ws_j\varpi_j^{\vee}} = \min\left(M_{w\varpi_i^{\vee}} + M_{ws_is_j\varpi_j^{\vee}}, M_{w\varpi_j^{\vee}} + M_{ws_js_i\varpi_i^{\vee}}\right).$$
(1.2)

Here, we require $w \in W$ and $i, j \in I$ with $\ell(ws_i) > \ell(w)$ and $\ell(ws_j) > \ell(w)$ and $\langle \alpha_i, \alpha_j^{\vee} \rangle = -1$. Nontrivial fact: any translate $P(M_{\bullet}) + \lambda$ (for $\lambda \in \Lambda$) of an MV polytope $P(M_{\bullet})$ is also an MV polytope.

Noncrivial fact. any translate $I(m_{\bullet}) \neq \lambda$ (for $\lambda \in \Lambda$) of an inverse polytope $I(m_{\bullet})$ is also an inverse.

Example 1.1. Assume (Φ, Λ) has type A_2 . Write $\alpha_i = \mathbf{e}_i - \mathbf{e}_{i+1}$. Let $v \in \mathcal{B}_{\infty}$. Suppose $v_i = (a, b, c)$ for $\mathbf{i} = (1, 2, 1)$ and $v_{\mathbf{i}'} = (a', b', c')$ for $\mathbf{i}' = (2, 1, 2)$. These are the only reduced words for $w_0 \in W = S_3$ and we have

$$\gamma(\mathbf{i}) = (\alpha_1, \alpha_1 + \alpha_2, \alpha_2)$$
 and $\gamma(\mathbf{i}') = (\alpha_2, \alpha_1 + \alpha_2, \alpha_1)$

where $\gamma_k = s_{i_1} s_{i_2} \cdots s_{i_{k-1}}(\alpha_{i_k})$. We define $\mathbf{wt}(v, w) = \sum_{j=1}^{\ell(w)} a_j \gamma_j \in \Lambda$. These weights are the vertices of an MV polytope $\mathrm{MV}(v)$.

2 Crystal structure on MV polytopes

We will describe a crystal structure on MV polytopes of a given simply-laced, semisimple Cartan type.

Recall that \mathcal{L} is the set of tuples $v = (v_{\mathbf{i}})$ with $v_{\mathbf{i}} \in \mathbb{N}^{N}$, indexed by reduced words $\mathbf{i} \in \operatorname{Red}(w_{0})$. There is a compatibility condition $v_{\mathbf{j}} = \mathcal{R}_{\mathbf{i},\mathbf{j}}(v_{\mathbf{i}})$ where $\mathcal{R}_{\mathbf{i},\mathbf{j}}$ are the transition maps defined in Lecture 21. The weight of v with $v_{\mathbf{i}} = (a_{1}, a_{2}, \ldots, a_{N})$ is $\mathbf{wt}(v) = -\sum_{j=1}^{N} a_{j}\gamma_{j}$ where $\gamma_{j} = s_{i_{1}}s_{i_{2}}\cdots s_{i_{j-1}}(\alpha_{i_{j}})$.

Let $\lambda_{\text{low}} \in \Lambda$ be a fixed element.

Given $w \in W$ with length $\ell(w) = l$, choose $\mathbf{i} = (i_1, \ldots, i_N) \in \operatorname{Red}(w_0)$ with $(i_1, \ldots, i_l) \in \operatorname{Red}(w)$. Then define $\mathbf{wt}(v, w) = \lambda_{\text{low}} + \sum_{j=1}^{l} a_j \gamma_j$ where $\gamma_j = s_{i_1} s_{i_2} \cdots s_{i_{j-1}}(\alpha_{i_j})$. This does not depend on the choice of reduced word \mathbf{i} .

We define MV(v) to be the *convex hull* of the set of weights $\{wt(v, w) \in \Lambda : w \in W\}$, that is,

$$\mathrm{MV}(v) = \left\{ \sum_{w \in W} a_w \mathbf{wt}(v, w) : a_w \ge 0 \text{ and } \sum_{w \in W} a_w = 1 \right\}.$$

The highest weight vector of MV(v) is $\lambda_{high} = \mathbf{wt}(v, w_0)$.

As the notation suggests, MV(v) will be an MV polytope. But before showing this, our first task is to explain how MV(v) is a generalized Weyl polytope. We will need the following lemma.

Write \leq for the partial order on Λ with $\mu \leq \lambda$ if $\lambda - \mu = \sum_{i \in I} c_i \alpha_i$ with all $c_i \geq 0$.

Recall that W acts on the weight lattice by $s_i : \lambda \mapsto \lambda - \langle \lambda, \alpha_i^{\vee} \rangle \alpha_i$.

Lemma 2.1. Let $w, w' \in W$ and $v \in \mathcal{L}$. Then $w^{-1}\mathbf{wt}(v, w) \preceq w^{-1}\mathbf{wt}(v, w')$.

Proof. Suppose $i \in I$. We claim that $\mathbf{wt}(v, ws_i) - \mathbf{wt}(v, w) = c \cdot w(\alpha_i)$ for some $c \ge 0$.

We may assume $\ell(ws_i) > \ell(W)$ since otherwise we can interchange w and ws_i as $s_i(\alpha_i) = -\alpha_i$.

Pick a reduced word (i_1, \ldots, i_k) for w. Then (i_1, \ldots, i_k, i) is a reduced word for ws_i .

We complete this to a reduced word $\mathbf{i} \in \operatorname{Red}(w_0)$. Suppose $v_{\mathbf{i}} = (a_1, \ldots, a_N)$.

Then $\mathbf{wt}(v, ws_i) - \mathbf{wt}(v, w) = a_{k+1}\gamma_{k+1}$ where $\gamma_{k+1} = w(\alpha_i)$, so our claim holds with $c = a_{k+1} \ge 0$.

Turning to the lemma, let $w^{-1}w' = s_{j_1} \cdots s_{j_l}$ be a reduced expression.

Using the claim repeatedly, we deduce that

$$w^{-1}(\mathbf{wt}(v,w') - \mathbf{wt}(v,w)) = \sum_{j=1}^{l} w^{-1} \left(\mathbf{wt}(v,ws_{i_1}\cdots s_{i_j}) - \mathbf{wt}(v,ws_{i_1}\cdots s_{i_{j-1}}) \right)$$

is a nonnegative linear combination of the positive roots α_{i_1} , $s_{i_1}(\alpha_{i_2})$, $s_{i_1}s_{i_2}(\alpha_{i_3})$, ...

Fix $v \in \mathcal{L}$. Let's explain how to realize MV(v) as a set of the form

$$P(M_{\bullet}) = \{ x \in \mathbb{R}\Lambda : \langle x, \nu^{\vee} \rangle \ge M_{\nu^{\vee}} \text{ for } \nu^{\vee} \in \mathsf{CW} \}$$

for some choice of integers $M_{\nu^{\vee}} \in \mathbb{Z}$ for $\nu^{\vee} \in \mathsf{CW}$.

Let $\nu^{\vee} = w \overline{\omega}_i^{\vee}$ be a chamber coweight. Then we have $\langle \mathbf{wt}(v, w'), \nu^{\vee} \rangle = \langle w^{-1} \mathbf{wt}(v, w'), \overline{\omega}_i^{\vee} \rangle$.

The inner product of ϖ_i^{\vee} with any α_i is nonnegative, so $\langle \mathbf{wt}(v, w'), \nu^{\vee} \rangle \ge \langle \mathbf{wt}(v, w), \nu^{\vee} \rangle$ by the lemma. This holds whenever $w \varpi_i^{\vee} = \nu^{\vee}$. Hence $\langle \mathbf{wt}(v, w'), \nu^{\vee} \rangle$ is minimized (over $w' \in W$) when w' belongs to

$$S_{\nu^\vee}=\{w'\in W:\nu^\vee=w'\varpi_i^\vee\},$$

which is a coset in W of the stabilizer $\{w' \in W : w'\varpi_i^{\vee} = \varpi_i^{\vee}\}$. If $w', w'' \in S_{\nu^{\vee}}$ then

$$\langle \mathbf{wt}(v,w') - \mathbf{wt}(v,w''), \nu^{\vee} \rangle = \langle (w'')^{-1} \mathbf{wt}(v,w'), \varpi_i^{\vee} \rangle - \langle (w'')^{-1} \mathbf{wt}(v,w''), \varpi_i^{\vee} \rangle$$

is a nonnegative linear combination of simple roots by the lemma. But we also have

$$\langle \mathbf{wt}(v,w') - \mathbf{wt}(v,w''), \nu^{\vee} \rangle = \langle (w')^{-1} \mathbf{wt}(v,w'), \varpi_i^{\vee} \rangle - \langle (w')^{-1} \mathbf{wt}(v,w''), \varpi_i^{\vee} \rangle$$

which is a nonpositive linear combination of simple roots, by the same lemma.

Therefore $\langle \mathbf{wt}(v, w') - \mathbf{wt}(v, w''), \nu^{\vee} \rangle = 0.$

Thus if $w', w'' \in S_{\nu^{\vee}}$ then $\mathbf{wt}(v, w') - \mathbf{wt}(v, w'')$ is orthogonal to ν^{\vee} . It follows that the convex hull $F_{\nu^{\vee}}$ of the set of weights $\mathbf{wt}(v, w')$ with $w' \in S_{\nu^{\vee}}$ is contained in a hyperplane $H_{\nu^{\vee}}$ orthogonal to ν^{\vee} .

Define $M_{\nu^{\vee}}$ to be the constant value of $\langle \mathbf{wt}(v, w'), \nu^{\vee} \rangle$ for $w' \in S_{\nu^{\vee}}$.

Proposition 2.2. For each $v \in \mathcal{L}$, the set $MV(v) = P(M_{\bullet})$ is a generalized Weyl polytope.

Proof. Every $x \in MV(v)$ is a convex combination of wt(v, w) for $w \in W$.

Thus, for each $\nu^{\vee} \in \mathsf{CW}$ we have $\langle x, \nu^{\vee} \rangle \geq M_{\nu^{\vee}}$ for $x \in \mathrm{MV}(v)$, with equality on the hyperplane $H_{\nu^{\vee}}$.

This means $F_{\nu^{\vee}}$ is a face of the convex hull of the weights $\mathbf{wt}(v, w)$ for $w \in W$, and $MV(v) = P(M_{\bullet})$. \Box

We follow this proposition with a stronger result.

Theorem 2.3. Let $v \in \mathcal{L}$. Then $MV(v) = P(M_{\bullet})$ is an MV polytope.

Moreover, for each $w \in W$ the unique element μ_w with $\langle \mu_w, w \overline{\omega}_i^{\vee} \rangle = M_{w \overline{\omega}_i^{\vee}}$ for all *i* is $\mu_w = \mathbf{wt}(v, w)$.

Proof. To show that MV(v) is an MV polytope we need to check the tropical Plücker relation.

We verified this in type A_2 last time.

Since (Φ, Λ) is simply-laced, it suffices to show how the general relation follows from the A_2 case.

For this, suppose $i, j \in I$ are such that $\langle \alpha_i, \alpha_j^{\vee} \rangle = -1$ and let $w \in W$ be such that $\ell(ws_i) > \ell(w)$ and $\ell(ws_j) > \ell(w)$. This implies (by standard but maybe not so obvious results in the theory of Coxeter systems) that $\ell(ws_is_js_i) = \ell(w) + 3$ and that $s_is_js_i = s_js_is_j$.

Choose a reduced word (i_1, \ldots, i_k) for w.

Then $(i_1, \ldots, i_k, i, j, i)$ and $(i_1, \ldots, i_k, j, i, j)$ are both reduced words for $ws_i s_j s_i$. Complete these to reduced words **i** and **j** for the longest element $w_0 \in W$. Write $v_i = (a_1, \ldots, a_N)$ and $v_j = (b_1, \ldots, b_N)$.

Define as usual $\vartheta(a, b, c) = (b + c - \min(a, c), \min(a, c), a + b - \min(a, c)).$

Then by the definition of the transition maps $\mathcal{R}_{i,j}$ from Lecture 21, we have

$$(b_{k+1}, b_{k+2}, b_{k+3}) = \vartheta(a_{k+1}, a_{k+2}, a_{k+3})$$

while all other terms in v_i and v_j coincide. To simplify our notation let

 $(a, b, c) = (a_{k+1}, a_{k+2}, a_{k+3})$ and $(a', b', c') = (b_{k+1}, b_{k+2}, b_{k+3}) = \vartheta(a, b, c).$

The simple roots α_i and α_j generate a type A_2 root system Φ' inside Φ , and the triple (a, b, c) is an element of the Lusztig parametrization of the \mathcal{B}_{∞} crystal for Φ' .

Using the discussion from last lecture, we know that the six (not necessarily distinct) weights

0, $a\alpha_1$, $a\alpha_1 + b(\alpha_1 + \alpha_2)$, $a\alpha_1 + b(\alpha_1 + \alpha_2) + c\alpha_2$, $a'\alpha_2$, $a'\alpha_2 + b'(\alpha_1 + \alpha_2)$,

are the vertices of an MV polytope $P(M'_{\bullet})$ for the type A_2 root system Φ' , where M'_{ν} are the integers specified in the proof of Proposition 3.4 from Lecture 22.

The affine map $x \mapsto wx + \mathbf{wt}(v, w)$ takes these weights to the six weights $\mathbf{wt}(v, wy)$ for $y \in \langle s_i, s_j \rangle \cong S_3$.

Since translates of MV polytopes are still MV polytopes, it follows that we can deduce the tropical Plücker relation involving $M_{wy\varpi_i^{\vee}}$ and $M_{wy\varpi_j^{\vee}}$ for $y \in \langle s_i, s_j \rangle$ from the tropical Plücker relations for $P(M'_{\bullet})$, which we already know to be valid. This proves that MV(v) is an MV polytope.

The argument that $\mu_w = \mathbf{wt}(v, w)$ is a little technical. The strategy is to first prove this for a particular MV polytope, given by the Weyl polytope whose vertices are the elements in the *W*-orbit of the Weyl vector $\rho = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$. This MV polytope is realized by taking $\lambda_{\text{low}} = -\rho$ and $M_{\nu\nu} = -1$ for all chamber coweights ν^{\vee} . The element $v \in \mathcal{L}$ such that MV(v) is the Weyl polytope has $v_{\mathbf{i}} = (1, 1, \dots, 1)$ for all \mathbf{i} .

One can show that for the Weyl polytope one has $\mathbf{wt}(v, w) = \mu_w = w(-\rho)$. Specifically, choose a reduced word (i_1, \ldots, i_k) for $w \in W$ and complete it to a reduced word $\mathbf{i} \in \text{Red}(w_0)$. Then

$$\operatorname{wt}(v,w) = \lambda_{\operatorname{low}} + \gamma_1(\mathbf{i}) + \dots + \gamma_k(\mathbf{i}) = -\rho + \sum_{j=1}^k \gamma_j(\mathbf{i}).$$

The roots $\gamma_1(\mathbf{i}), \ldots, \gamma_k(\mathbf{i})$ are the elements of Φ^+ with $w^{-1}(\alpha) \in \Phi^-$ so

$$\mathbf{wt}(v,w) = \rho + \sum_{\substack{\alpha \in \Phi^+ \\ w^{-1}(\alpha) \in \Phi^-}} \alpha = w(-\rho).$$

On the other hand, this Weyl polytope is invariant under the action of W on Λ , and the action must be compatible with the action on chamber coweights. Therefore $\mu_w = w(\mu_1) = w(-\rho)$.

To deduce that $\mu_w = \mathbf{wt}(v, w)$ for a general MV polytope, one then argues that the desired identity remains valid, by continuity, as we deform the Weyl polytope through the space of data M_{\bullet} that satisfy the edge and tropical Plücker relations. However, one needs to justify when any MV polytope can be obtained by this process of deformation.

Let \mathcal{B} be either \mathcal{B}_{∞} or \mathcal{B}_{λ} where λ is a dominant weight. If $\mathcal{B} = \mathcal{B}_{\infty}$ then take $\lambda = 0$.

Then \mathcal{B} is a highest weight crystal with highest weight λ , and we may embed $\mathcal{B} \hookrightarrow \mathcal{T}_{\lambda} \otimes \mathcal{L}$.

Suppose $v \in \mathcal{B}$ goes to $t_{\lambda} \otimes u \in \mathcal{T}_{\lambda} \otimes \mathcal{L}$ under this embedding. We define $v_{\mathbf{i}} = u_{\mathbf{i}} \in \mathbb{N}^N$ for $\mathbf{i} \in \operatorname{Red}(w_0)$.

The convex hull MV(v) of the weights $wt(v, w) = \lambda_{low} + \sum_{j=1}^{\ell(w)} a_j \gamma_j$ for $w \in W$ is an MV polytope.

For convenience set $\lambda_{\text{low}} = \mathbf{wt}(v) := \lambda - \sum_{j=1}^{N} a_j \gamma_j$.

Then MV(v) has lowest weight wt(v) and highest weight $\lambda_{high} = \lambda$.

The crystal structure on \mathcal{B} induces a crystal structure on MV polytopes. Assume $f_i(v) \neq 0$.

To define the action of f_i on MV(v), choose a reduced word $\mathbf{i} \in \text{Red}(w_0)$ with $i_1 = i$.

Then if $v_{\mathbf{i}} = (a_1, a_2, \dots, a_N)$, we have $(f_i(v))_{\mathbf{i}} = (a_1 + 1, a_2, \dots, a_N)$.

This means that the face of MV(v) adjacent to the lowest weight vector whose bounding hyperplane is

$$\langle x \varpi_i^{\vee} \rangle = M_{\varpi_i^{\vee}} \qquad \text{for } M_{\varpi_i^{\vee}} = \langle \mathbf{wt}(v), \varpi_i^{\vee} \rangle$$

is pushed out, increasing $M_{\varpi_i^{\vee}}$ by one. Likewise, the e_i operators act on the set of MV polytopes MV(v) by either pushing one bounding hyperplane in by one, or by sending $MV(v) \mapsto 0$.

3 The *****-involution

Let G be a reductive Lie group with maximal torus T and maximal unipotent subgroup N^+ . Then G has an involution $\star : G \to G$ such that $(g_1g_2)^{\star} = g_2^{\star}g_1^{\star}$ that preserves T and N^+ and induces a bijection $\alpha \mapsto -w_0\alpha$ of the positive roots. For $G = \operatorname{GL}(n, \mathbb{C})$, the involution is $g^{\star} = w_0g^Tw_0$ where w_0 is the permutation matrix formed by reversed the order of the columns in the identity matrix.

The *-involution on \mathcal{B}_{∞} is the tropicalization of the antiautomorphism of N^+ induced by $\star : G \to G$.

Let $\mathbf{i} = (i_1, \ldots, i_N) \in \operatorname{Red}(w_0)$. Let $\mathbf{i}' = (i'_N, \ldots, i'_1)$ where $i \mapsto i'$ is the permutation with $-w_0 \alpha_i = \alpha_{i'}$.

Proposition 3.1. There is a weight-preserving bijection $\star : \mathcal{L} \to \mathcal{L}$ such that of $v_i = (a_1, \ldots, a_N)$ then

$$v_{\mathbf{i}'}^{\star} = (a_N, \dots, a_1).$$

Proof sketch. Check that if $v_{\mathbf{i}'}^{\star}$ is as given then $\mathcal{R}_{\mathbf{i}',\mathbf{j}'}(v_{\mathbf{i}'}^{\star}) = v_{\mathbf{j}'}^{\star}$ and $\mathbf{wt}(v^{\star}) = \mathbf{wt}(v)$. This is straightforward in the case when \mathbf{i}' and \mathbf{j}' are related by a single braid relation. The weight computation follows from the general identity $\gamma(\mathbf{i}') = (\gamma_N(\mathbf{i}), \ldots, \gamma_1(\mathbf{i}))$.

This means that the \star -involution of \mathcal{L} is the tropicalization of the geometric map $\star : G \to G$.

In detail, the geometric map has the effect on N^+ of sending

$$x_{i_1}(a_1)\cdots x_{i_N}(a_n)\mapsto x_{i'_N}(a_N)\cdots x_{i'_1}(a_1)$$

and tropicalizing gives precisely the description in the previous result.

We have now defined the \star -involution for both \mathcal{B}_{∞} and \mathcal{L} , which are isomorphic crystals.

Theorem 3.2. If we identify $\mathcal{L} \cong \mathcal{B}_{\infty}$, then our two definitions of \star coincide.

The proof of this result is omitted; it is due to Berenstein and Zelevinsky using the theory of quantum groups; Bump and Schilling outline a strategy for self-contained combinatorial proof of Chapter 15, using an embedding $\mathcal{L} \hookrightarrow \mathcal{B}_i \otimes \mathcal{L}$ analogous to $\psi_i : \mathcal{B}_\infty \hookrightarrow \mathcal{B}_i \otimes \mathcal{B}_\infty$.

As for \mathcal{B}_{∞} in Lectures 18-20, we may use \star to define a modified crystal structure on the set \mathcal{L} . We write $\varepsilon_i^{\star}(v) = \varepsilon_i(v^{\star})$ and $\varphi_i^{\star}(v) = \varphi_i(v^{\star})$ and define e_i^{\star} and f_i^{\star} by conjugating e_i and f_i by \star .

The *-involution acts on MV polytopes in a simple way: $MV(v^*) = -MV(v) := \{-x : x \in MV(v)\}$. Whereas f_i applied to MV(v) pushes out a bottom face, f_i^* pushes out a top face. In general,

$$f_i^\star : \mathrm{MV}(v) \mapsto -f_i(-\mathrm{MV}(v))$$

and likewise for e_i^{\star} . Finally,

 $\varepsilon_i(v) = \max\{k : \lambda_{\text{low}} + k\alpha_i \in MV(v)\}$ and $\varepsilon_i^{\star}(v) = \max\{k : -k\alpha_i \in MV(v)\}.$

For proofs of these identities, see Proposition 15.30 in Bump and Schilling's book.

4 MV polytopes and the finite crystals \mathcal{B}_{λ}

Let $\lambda \in \Lambda^+$ be a dominant weight. Then we have a normal crystal \mathcal{B}_{λ} with highest weight λ . Since our Cartan type is simply-laced, \mathcal{B}_{λ} is a Stembridge crystal.

The following results are due to Kamnitzer.

Proposition 4.1. Let *P* be an MV polytope whose highest weight is λ . Then (i) $M_{w_0 s_i \cdot \varpi_i^{\vee}} \geq \langle w_0 \lambda, \varpi_i^{\vee} \rangle$ for all $i \in I$ if and only if (ii) *P* is contained in the Weyl polytope that is the convex hull of $W \cdot \lambda$.

The proof of this proposition appearing in the literature uses the affine Grassmannian and is not selfcontained. Bump and Schilling note that a more direct proof would be desirable.

Theorem 4.2. Let λ be a dominant weight. Suppose that P is an MV polytope with highest weight λ . Then P = MV(v) for some $v \in \mathcal{B}_{\lambda}$ if and only if P is contained in the Weyl polytope that is the convex hull of the *W*-orbit of λ .

Proof. Some relatively straightforward algebraic manipulations show that

$$M_{w_0 s_{i'} \varpi_{i'}^{\vee}} = -\langle w_0 \lambda, \varpi_{i'}^{\vee} \rangle = \langle \lambda, \alpha_i^{\vee} \rangle - \varepsilon_i^{\star}(v).$$

The criterion in the previous proposition for MV(v) to be contained in the convex hull of $W \cdot \lambda$ is equivalent to the assumption that $\varepsilon_i^*(v) \leq \langle \lambda, \alpha_i^{\vee} \rangle$. This is equivalent to $v \in \mathcal{B}_{\lambda}$ by Theorem 3.4 in Lecture 19. \Box