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1 Further topics

In this final lecture for our course, we survey some additional topics related to crystals and crystal bases.

This exposition follows Chapter 16 of Bump and Schilling’s book; see the book for more references.

We provide only a brief overview of each topic, without attempt at comprehensiveness.

2 Kirillov-Reshetikhin crystals

In this course we have only discussed crystals associated to classical root systems.

These arise as the root systems of finite-dimensional Lie algebras.

There are all affine root systems associated to affine Kac-Moody Lie algebras.

For affine Lie algebras, there are finite-dimensional representations that are no longer highest weight.

There is a special class of finite-dimensional modules of the quantum groups associated to affine root
systems, called Kirillov-Reshetikin (KR) modules. First studied around 1987.

Results of Okado and Schilling in 2007-2008 showed KR modules admit crystal bases.

These bases lead to notions of Kirillov-Reshetikhin (KR) crystals Bk,s.

KR crystals are labeled by positive integers k and s, where k is in the index set of the underlying classical
root system. The characters of KR crystals satisfy a system of functional equations called the Q-system.

Here is the type A construction of KR crystals.

The index set of affine type A
(1)
r is I = {0, 1, 2, . . . , r}.

By discarding the index 0, an A
(1)
r crystal may be regarded as an Ar crystal.

Via this branching process, the KR crystal Bk,s becomes the type Ar crystal SSYTr+1(µ) for µ = (sk) =
(s, s, s, . . . , s) the partition of sk with all parts equal to s.

The crystal operators f0 and e0 can be defined in terms of the promotion operator pr.

The Bender-Knuth involution BKi on semistandard tableaux is defined as follows. For a tableau T , ignore
all entries except i and i+ 1, and ignore all columns containing both i and i+ 1. You are then left with
a disjoint set of rows of the form ia(i+ 1)b. Form BKi(T ) by changing each of these to be ib(i+ 1)a:

T =

1 1 1 2 2 3 3

2 2 2 3

3

;

2 3 3

2 2 ;

1 1 1 1 2 2 3

2 3 3 3

3

= BK2(T ).

Then we define pr(T ) = BKr ◦ · · · ◦ BK2 ◦ BK1(T ).

Each BKi is an involution so pr is invertible.

Finally, our crystal operators for Bk,s are f0 = pr−1 ◦ f1 ◦ pr and e0 = pr−1 ◦ e1 ◦ pr.

This formula can be seen as exploiting the rotational symmetry of the affine Dynkin diagram of A
(1)
r .

The pr operator is complicated but this completely specifies the crystal Bk,s for affine type A.
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3 Littelmann path and alcove path models

The Littelmann path model is another way of constructing the elements of our usual Kashiwara crystals,
in a way that comes with naturally associated crystal operators.

Here are the details. Fix a Cartan type (Φ,Λ).

Let [0, 1]Q = [0, 1] ∩Q. A Littelmann path is a piecewise linear mapping

π : [0, 1]Q → Λ⊗Z Q

such that π(0) = 0 and π(1) ∈ Λ. Two paths π1, π2 are considered to be the same if there is a piecewise-
linear nondecreasing, surjective, continuous map φ : [0, 1]Q → [0, 1]Q such that π1 = π2 ◦ φ.

There are associated root operators acting on these paths.

Let hα(t) = 〈π(t), α∨〉 for each α ∈ Φ and set mα = mint∈[0,1]Q{hα(t)}.

Let `α(t) and rα(t) be nondecreasing mappings on [0, 1]Q defined by

`α(t) = min
t≤s≤1

{1, hα(s)−mα} and rα(t) = 1− min
0≤s≤t

{1, hα(s)−mα}.

We have `α(t) = 0 until the last time that hα(s) = mα and rα(t) = 1 after the first time that hα(s) = mα.

Define new paths π` and πr by

π`(t) = π(t)− `α(t)α and πr(t) = π(t) + rα(t)α.

The root operators are now defined by

fαπ =

{
π` if `(1) = 1

0 otherwise
and eαπ =

{
πr if r(0) = 0

0 otherwise.

We can view Littelmann paths as a crystal for the operators ei = eαi
and fi = fαi

.

Joseph and Kashiwara showed in the mid-1990s that this provides another construction for the Kashiwara
crystals corresponding to highest weight representations of any (symmetrizable Kac-Moody) Lie algebra.

This is a useful perspective. For example, Stembridge originally formulated his crystal axioms as prop-
erties characterizing the Littelmann path model.

There is also an alcove path model due to Lenart and Postnikov from around 2008.

This is a discrete analogue of the path model, in which rather than allowing any piecewise-linear path
from 0 to some weight λ, elements are given by sequences of adjacent alcoves cut out by affine hyperplanes.

4 Kyoto path model

Integrable representations for Kac-Moody Lie algebras are the “correct” generalization of finite-dimensional
representations for finite-dimensional complex Lie algebras. The Kyoto path model is a construction of
crystals corresponding to such representations, for affine Kac-Moody Lie algebras.

This is based on the notion of a perfect crystal.

The weight lattice for an affine Kac-Moody Lie algebra has the form

Λ = Zδ ⊕
⊕
i∈I

Z$i

where I = {0, 1, 2, . . . , r}, $i is a fundamental weight, and δ is the null root.
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The set of dominant weights is Λ+ =
⊕

i∈I N$i.

Each irreducible integrable representation of a Kac-Moody Lie algebra has a unique highest weight element
whose weight is dominant. This also holds for the crystal derived from such a representation.

The set of level ` weights in Λ+ is

Λ+
` = {λ ∈ Λ+ : 〈c, λ〉 = `},

where c is the canonical central element of the affine Kac-Moody Lie algebra.

Write Λ for the weight lattice of the underlying classical Lie algebra, obtained by dropping the 0-node of
the affine Dynkin diagram.

Suppose B is a crystal for our affine Kac-Moody Lie algebra. Write wt : B → Λ for the weight function of
the crystal branched to the Cartan type obtained by dropping the 0-node of the affine Dynkin diagram.

Define ε(b) =
∑
i∈I εi(b)$i and ϕ(b) =

∑
I∈I ϕi(b)$i.

Definition 4.1. For each positive integer `, we say that B is perfect of level ` if

1. B ⊗ B is connected.

2. There exists λ ∈ Λ such that
wt(B) ⊂ λ+

∑
i∈I\{0}

Z≤0αi

and there is a unique element b ∈ B with classical weight wt(b) = λ.

3. For all b ∈ B it holds that 〈c, ε(b)〉 ≥ `.

4. For all ω ∈ Λ+
` , there exists unique elements bω, b

ω ∈ B with ε(bω) = ω = ϕ(bω).

The last condition is the most important. It implies that ε, ϕ : Bmin → Λ+
` are bijections where

Bmin = {b ∈ B : 〈c, ε(b)〉 = `}.

The Kyoto path model constructs an integrable highest weight crystal B(λ) with highest weight element
uλ for each dominant weight λ ∈ Λ+.

The model is recursive, making use of the following crystal isomorphism.

Given λ0 ∈ Λ+
` and a perfect crystal B0 of level `, there is a unique crystal isomorphism

B(λ0)
∼−→ B0 ⊗ B(λ1)

with uλ0
7→ b0 ⊗ uλ1

, where b0 is the unique element of B0 such that ϕ(b0) = λ0 and ε(b0) = λ1.

Iterating this isomorphism gives

B(λ0)
∼−→ B0 ⊗ B1 ⊗ · · · ⊗ BN ⊗ B(λN+1).

As N →∞, this models B(λ) as a semi-infinite tensor product of perfect crystals of level ` = 〈c, λ〉.

Certain Kirillov-Reshetikhin crystals are perfect and can be used in this construction to build the infinite-
dimensional highest weight crystals B(λ) for λ ∈ Λ+.

5 Crystals on rigged configurations

Fix a (finite) Cartan type (Φ,Λ) of rank r.

A rigged configuation is a sequence (ν(1), . . . , ν(r)) of r partitions ν(i) along with a set of riggings.
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Riggings are nonnegative integer labels attached to each part of each partition, which are bounded by
certain vacancy numbers depending on a related shape or tensor product of crystals.

This somewhat technical definition arises in the study of exactly solvable lattice models.

Rigged configurations index the solutions of certain Bethe equations.

A rigged configuration has a shape λ and a weight µ. In type Ar there is a shape- and weight-preserving
bijection between rigged configurations and semistandard Young tableaux. Semistandard tableaux of
shape λ and weight µ are also in bijection with the highest weight elements of weight λ in

SSYTr+1(µ1)⊗ SSYTr+1(µ2)⊗ · · ·

Based on this enumerative fact, it is natural to look for a generalization of the set of rigged configurations
with a crystal structure, in which the rigged configurations defined above are the highest weight elements.

Schilling identified such crystals for simply-laced types around 2006. Schilling and Scimshaw have con-
structed analogous crystals of rigged configurations in the non-simply-laced cases.

There are also rigged configuration models for B∞ and just a few years ago Salisbury and Scrimshaw
described the ?-involution in terms of this model.

6 Modular branching rules of the symmetric group

The representation theory of the symmetric group Sn over C is well-understood.

All representations are completely reducible, the irreducible representations are indexed by partitions of
n, and there are many explicit models for representations.

Many open questions remain about the representations of Sn over fields F of characteristic ≤ n. For such
fields, Maschke’s theorem may fail and representations may not be completely reducible.

Modular representation theory refers to the study of representations in this setting.

Work of Dipper and James in the 1980s showed that the modular representation theory of Sn in prime
characteristic p is closely related to the representation theory the corresponding Iwahori-Hecke algebra
Hn(q) with its parameter q = e2πi/p specialized to a pth root of unity. Here, Hn(q) is a certain algebra
over C(q) with a basis indexed by Sn, which becomes the group algebra for Sn when we set q = 1.

Assume q = e2πi/p. Then the representation theory of Hn(q) is related in a surprising way to crystals,

through an analogy where induction / restriction ↔ to the operators ei / fi in affine A
(1)
p−1 crystals.

Lascoux, Leclerc, and Thibon conjectured in 1996 a very precise connection between crystal bases over
affine Kac-Moody algebras and projective indecomposable modules over the Iwahori-Hecke algebras.

They also conjectured an efficient combinatorial algorithm for computing the multiplicities of the irre-
ducible Hn(q)-modules in the Specht modules Sλ — these multiplicities are called decomposition numbers.

Ariki proved these conjectures in 1996. This area has led to many interesting developments in represen-
tation theory in in the last two decades, such as the discovery of KLR algebras.

7 Crystals of Lie superalgebras

Lie superalgebras (or graded Lie algebras) are generalizations of Lie algebras that have a Z/2Z grading,
which reflects a geometry in which both commuting and anti-commuting variables can interact.

A super vector space V = V0 ⊕ V1 is a vector space with a Z/2Z grading.

The elements of V0 or V1 are homogeneous. The elements of V0 are even while the elements of V1 are odd.
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If a ∈ V is nonzero and homogeneous then let |a| = i where a ∈ Vi.

One writes dim (V ) = (m|n) where m = dim (V0) and n = dim (V1).

A Lie superalgebra is a supervector space with a bilinear operations [·, ·] that satisfies

[b, a] = −(−1)|a||b|[a, b] and [a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]].

An example of gl(m|n) = End(V ) for a super vector space V = V0 ⊕ V1 with dim (V ) = (m|n).

The Z/2Z grading in this case is defined by setting

End(V )0 = End(V0)⊕ End(V1) and End(V )1 = Hom(V0, V1)⊕Hom(V1, V0).

The bracket operation is defined by [a, b] = ab − (−1)|a||b|ba for homogeneous elements a, b ∈ End(V ),
and extended to all elements by linearity.

Kac classified the finite-dimensional Lie superalgebras in the 1970s.

There are quantum groups associated to Lie superalgebras, leading to a theory of crystal bases.

Benkart, Kang, and Kashiwara gave the first tableau model of crystals for gl(m|n) in 2000.

Jeong showed the existence of crystal bases for all finite-dimensional Lie superalgebras in 2001.

Like GL(n), the connected crystals for the Lie superalgebra gl(n|m) have characters indexed by partitions,
given by the supersymmetric Schur functions (sometimes called hook Schur functions).

The definition of these functions goes as follows.

Let λ be a partition and let α = (α1, . . . , αn) and β = (β1, . . . , βm) be sequences of variables.

Denote the Schur function sλ in all n+m variables αi and βj as sλ(α, β). Then

sλ(α, β) =
∑
µ,ν

cλµ,νsµ(α)sν(β).

The supersymmetric Schur functions sλ(α|β) is similarly given by

sλ(α|β) :=
∑
µ,ν

cλµ,νsµ(α)sνT (β)

where νT is the transpose of ν. The terms sµ(α) and sνT (β) are zero if `(µ) > n or `(νT ) > m.

Dualities analogous to Schur-Weyl duality exist for the crystals of gl(m|n) and related Lie superalgebras.

There is also a generalization of the Cauchy identity for supersymmetric Schur functions:∑
λ

sλ(α|β)sλ(γ|δ) =

∏
i,j(1 + αiδj)

∏
k,`(1 + βkγ`)∏

p,q(1− αpγq)
∏
s,t(1− βsδt)

.

This extends both the Cauchy identity and the dual Cauchy identity.

Another notable duality if Sergeev duality which is an analogue of Schur-Weyl duality.

It concerns the projective representations of the symmetric group, i.e., homomorphisms Sn → PGL(Cm).

These may be identified as ordinary representations of nontrivial central extensions of Sn.

Another notable Lie superalgebra is the queer Lie superalgebra q(n).

Sergeev duality relates the representations of q(n) to the projective representations of Sk in a way that is
analogous to how Schur-Weyl duality relates the representations of GL(n) to the representations of Sk.

The theory of crystals bases for q(n) has been developed only recently, by Grantcharov, Jung, Kang,
Kashiwara, and Kim in the last decade. There are many interesting questions left to be explained
concerning these crystals.
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And that brings us to the end of the course! There are a couple of other further topics discussed in
Chapter 16 in Bump and Schilling’s book that I have not had time to include today (the Nakajima
monomial model, Tokuyama’s formula, etc.). Consult the book if you are interested.
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