Notebook 15 – Math 2121, Fall 2021
In this notebook we explore more random matrices and their eigenvalues.
Last time we saw that the eigenvalues of a large orthogonal matrix chosen uniformly at random are, with high probability, evenly spaced complex numbers in the unit circle
This means that the process of choosing a random eigenvalue of a very large, uniformly random orthogonal matrix is indistiguishable from choosing an element of
Today we will examine a similar phenomenon for random symmetric matrices.
All matrices today have real entries.
A square matrix
3×3 Matrix{Int64}:
1 3 5
3 0 6
5 6 2
All eigenvalues of a symmetric matrix are real numbers. For example:
-5.3258
-2.2393
10.5651
Compare with the eigenvalues of a random (non-symmetric) square matrix:
-0.616878-0.483371im
-0.616878+0.483371im
-0.148978+0.0im
-0.0739519-0.50909im
-0.0739519+0.50909im
0.370464-0.528065im
0.370464+0.528065im
0.738654+0.0im
0.87464+0.0im
4.62409+0.0im
Here is a proof of this fact in general.
Assume
Suppose
The product
is a positive real number since
On the other hand we have both
and, because
These expressions are equal, but the number
The set of symmetric
Here is a different way of sampling a random symmetric matrix.
First, we generate a random matrix with entries from the standard normal distribution.
5000
Now to get a random symmetric matrix, we can just form the sum
To make later plots nicer, we also divide by the normalizing constant
5000×5000 Matrix{Float64}:
-0.00762735 -0.00839509 0.00283356 … -0.00623271 0.00374244 -0.00661463
-0.00839509 0.0102949 -0.00884654 -0.0056233 0.000217301 -0.0096792
0.00283356 -0.00884654 0.0229113 0.00176405 -0.00233944 0.00427864
3.95906e-5 -8.645e-5 -0.00112023 -0.00405236 0.00124829 -0.00813669
0.00241812 0.000690574 0.00379743 -0.00498116 0.00155456 0.00771613
-0.00506289 -0.00326857 -0.00877366 … 0.0028971 -0.00281076 -0.00480432
-0.00771719 0.0109026 0.00850002 0.00854183 0.00714828 -0.00378453
⋮ ⋱
0.00683102 -0.00293006 0.00159171 -0.00428931 0.00441445 0.00174952
0.00451836 0.00975552 -0.0104133 … 0.00257625 -0.00338708 -0.00745812
-0.00676979 -0.011701 -0.00597049 -0.0107335 0.00902357 -0.00275118
-0.00623271 -0.0056233 0.00176405 -0.000608546 -0.00379707 0.00189137
0.00374244 0.000217301 -0.00233944 -0.00379707 0.00629238 0.00544397
-0.00661463 -0.0096792 0.00427864 0.00189137 0.00544397 0.00489177
true
Here are the (real) eigenvalues of this matrix, in sorted order: