Math 5112 - Lecture # 10

Math 5112 - Lecture # 10

Last time: representations and characters of (finite) groups

Let k be an algebraically closed field.

A representation of a group & is an (algebra) repn

(v,p) of the group algebra K[G].

This means that p(K[6]) = End(V) all linear maps V+V
0(6) CGLCV) invertible linear maps V+V

Assume G is a finite group.

Maschke's theorem The group algebra k[G] is Senisimple if and only if Char(k) does not divide IGI.

means all irreducible G-report are finite-dim, and all finite-dim G-report are direct sums of irr, report

Assume (V,ρ) is a fin. dim. G-repn. Then its character is the linear map $\chi_{(V,\rho)}:k[G]+k$ with $g \mapsto trace(\rho(g))$ for $g \in G$. In this case $dimV = x(v_{1}p)$ (1)

Sometimes called the degree

Say that $x_{(v,p)}$ is irreducible if (v,p) is.

Let Irr(G) demote set of irreducible characters of G. Some things that always hold:

- (i) If $(v,p) \cong (v',p')$ then x(v,p) = x(v',p')

When K[G] is semisimple, the following helds:

- 3) Irr(6) is a basis for vector space of class functions
- If Char(k) = 0, then X(v,p) = X(v',p') if and only if (v,p) = (v',p'). Poesn't hold if Chan(k) > 0.
- G $\approx x(0)^2 = |G|$

If (V,p) is a G-rept with dimV=1, then X(v,p)=pSuppose K=C and G is cyclic group of order $n\geq 1$ generated by X. Let X_m be map $G(G) \neq G$ with $X_i \mapsto J^m J$ where $J=e^{\frac{2\pi J-1}{n}}$. Then $Im(G)=\{x_{0i},x_{1i},x_{2i},...,x_{mi}\}$. When a finite group is abelian (meaning that the group algebra is commutative), every irreducible reprise 1-2 inventional. (This is true of all commutative algebras)

If $\lambda: Y \mapsto \gamma dt$ If $\lambda: X \mapsto \gamma dt$ If $\lambda: X \mapsto \gamma dt$ In a nector Wobse then $\lambda: M_{+} \to \Lambda_{*}$ is with $\lambda: M_{+} \to \Lambda_{*}$ is with $\lambda: M_{+} \to \Lambda_{*}$

If (V, P_{i}) is a reproof a group G then the deal reproof (V^{*}, P_{i*}) where $P_{V*}(g) = (P_{V}(g)^{*})^{*} = (P_{V}(g)^{*})^{*} P_{V}(g^{*})^{*}$ for $g \in G$.

Fact $\chi_{(V_i,p)}(g) = \chi_{(V_i,p)}(g^*)$ \(\frac{1}{2}\) \(\frac{1}2\) \(\fra

If (V, pv) and (W, pw) are G-repris then the tensor product reprise (1000), product where

Non 1- bilding bildin for dec' reg' mem.

bren (d) is the purent was red of dec' reg' mem.

Fact If dim V <00, dimb <00 then x (vew, prem) = x (vp.) x (m.p.)

Remark AG-repris a left K[G]-module. K[G] is often a Noncommutative algebra.

Earlier we emphasized that if A is a noncommunitative algebra then the terror product of two left A-modules is not a well-defined left A-module in general. than to explain the tensor product of group repris? Solution: tensor product of two left A-modules does have structure of a left AQA - module. In particular tensor brogney or (1 br) and (Mbm) it a rebu of K[6]@K[6]. Special property of group algebras: kiclekicl has a subalgebra k-spontgoglgeG] = kicl

thence and klega kleg - Leber Cour por riemery at a

Today: more special properties of chanacters.

Everywhere today, G is a finite group and k = C.

Given and functions fife: G-10, define

$$(\xi_1, \xi_2) = \frac{1}{161} \sum_{g \in G} f_1(g) f_2(g)$$

This form (-,-) is Hernitian and linear in for conjugate linear in for

means (f,f) irparitive and real for f &C

The Irreducible chang of G on G under (',')

Specifically,
$$(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$$
 for $x, y \in Inv(6)$

Moreover, for any findin. G-repas (VIR), (WIPW),
We have $(x_{(V_iR)}, x_{(W_iPW)}) = din Home (W_iV)$ marphisms of KTG)-repas $W \to V$

Pf Suffices to prove this by Schur's Lemma

Let $x_{v} = x_{(v, p_{v})}$ and $x_{w} = x_{(w, p_{w})}$. Then $(x_{v}, x_{w}) = \frac{1}{161966} \sum_{g \in G} x_{v}(g) x_{w}(g^{-1}) = \frac{1}{161966} \sum_{g \in G} x_{v}(g) x_{w}(g^{-1}) = x_{v}(g^{-1})$ where we define IT = 161 29 E K[G].

Mote that $g\pi = \pi$ for all $g \in G$.

If X is any G-repri and $x \in X$ then $\int \pi x \in X^G \frac{det}{det} \left\{ v \in X \mid gv = v \mid y \in G \right\}$ is a subrepriet X.

If X is irreducible then X is either X or O.

Thus TT acts on any G-repr X at projection $X \to X$. $X \to X_X$ (TT) = $dim(X^G)$ for any findin G-repr X.

Now to compute $x_{V \otimes w^*}(T) = dim (V \otimes W^*)^G$ observe that (elements of $V \otimes w^*) \Leftrightarrow (Imean maps W+V)$ (identify $z_{v, \otimes t_i}$ with map $w \mapsto z_{t, (w)v_i}$) and $G_{invariant}$ elements correspond to elements of Homg (w,v)

Thus $\dim (v \otimes w^*)^6 = \dim \operatorname{Hom}_G(w,v)$.

Thus dim (V@W) = dim Homo (W,V). D Actually (V@W) = Homo (W,V) as vector spaces (should wheck this!)

For $g \in G$ let $Z_g = \{h \in G \mid gh = hg\}$ centralizer subgroup of g.

Fact Size of $\chi_g \stackrel{\text{def}}{=} \{\chi_g \chi' \mid \chi \in G\}$ is $\frac{|G|}{|Z_g|}$

Thm Let
$$g, h \in G$$
. Then

 $\sum \psi(g) \psi(h) = \begin{cases} 1 Zg1 & \text{if } \chi_g = \chi_h \\ 0 & \text{otherwise.} \end{cases}$

Pf 5ketch Since G[G] is semisimple, we have

OGTGT
$$\cong \bigoplus End(V_{\psi})$$
 where V_{ψ} is an image.

G-repr with character ψ .

This trace is just $\#\{x \in G \mid x = gxh^{-1}\}\$ $= \#\{x \in G \mid g = xhx^{-1}\} = \{0 \text{ if } g, h \text{ not conjugate}\}$ $= \|X\| \text{ otherwise. } 0$

Unitary repost A finite dim repor (V, ρ) of a group G(over k=0) is unitary if there is a positive definite Hermitian form $(\cdot, \cdot): V \times V \rightarrow C$ with $(\rho(q) \times \rho(q) y) = (x, y) \forall x, y \in V, g \in G$

Prop If 161 < 00 then any finite dim 6-repuir unitary.

Pf Pick and basis [vi] for V.

Consider the positive det. Hermitian form a V with

$$\langle v_i, v_j \rangle = \begin{cases} 0 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Then the form $(X,Y) \stackrel{\text{def}}{=} Z < P_V(9)X, P_V(9)Y$

makes V unitary. D

Prop If (V/P) is a fin. dim. unitary repr of (not necessarily finite) group G, then (V/P) is

Sen. simple | completely reducible (direct sum of irreducible subrepris)

If $U \neq V$ then let $U^{\perp} = [V \in V \mid (u,v) = 0 \; \forall \; u \in V]$ Then $V = U \oplus U^{\perp}$ and both U, U^{\perp} are subrepa, so result follow by induction on dimension. \square Matrix elements Assume Gisa finite group and k = 0 (as we have been doing so far).

Let (V, Pv) be an irred. G-repn. Chaose a positive det. Hermitian form (:,) on V that is G-invariant, making (V, Pv) unitary. Let [v:]:EI be an onthonormol basis of V

Define $f_{ij}(q) = (p_{ij})v_{i},v_{j} = (p_{ij})v_{i},v_{j} = (p_{ij})v_{i},v_{j} = (p_{ij})v_{i},v_{j} = (p_{ij})v_{i},v_{j} = (p_{ij})v_{i},v_{i} = (p$

Each tij is a map G-> C, called a matrix den.

Prop. The relialed matrix elements

(as V ranges over all isomorphism closses of irred G-report and is range over the indices of an orthonormal basis of V) give an orthonormal basis of the space of all functions G-+C (for the form

$$(\xi_{1},\xi_{2}) = \frac{1}{161} \underbrace{\xi_{1}(g)}_{966} \underbrace{\xi_{1}(g)}_{162} \underbrace{\xi_{2}(g)}_{162}$$

Pf (See text book)

Note that 4 of such matrix elements is $2(dmv)^2 = 164$

Character tables Suppose G is a finite group.

Choose representatives 1=91,92,~, 9r for distinct

Conjugacy classes in G. Suppose

 $\underline{11} = \chi, \chi_2, \ldots, \chi_r$ are the element of Irr(6)

the character with g is 1

Then every thing you want to know about Irr (G) is encoded by the matrix

called the Changeter table of G

Ex If G = 53 symmetric group on 3 letters, then
the character table is

Using the Character table + orthogonality relations from today, you can compute sizes of all conjugacy classes / centralizer subgroups in G, and decompose products of characters into irreducibles.