Math 5112 - Lecture # 23

Math 5112-Lecture #23

plast time we assumed D = Sets Last time: Let C and D be categories. Assume C enriched over $V + \frac{mems}{Hom_c(X,Y) \in D}$ A function $F: C \to D$ is representable (and represented prouve opject XEC) if F is naturally isomorphic to the functor

 $Hom_{\mathcal{C}}(X, \bullet) : \mathcal{C} \to \mathcal{D}$

Note: Home(x, e) is a functor C + D
Home (e,x) is a functor Cop + D

Sometimes

call this a

"contravariant

functor C+D"

Adjoint functors Let C and D be bully small color. with functions F: C+D and G: D+C. F is left adjoint to G or G is right adjoint to F or F and G are adjoint if...

the functors Homp(F[.],.): Cop x D -> Set Home (0, 5[.1]): Cop x 7 -> Set are naturally isomorphic. (I've not defined product category CopxD ... this is what have morning expect

Abelian Categories

- A category C is abelian if
- (1) C is enriched over Abelian Groups
- 3 there is a zero object
- 3) for any morphism f: A+B in C, the objects ker(f), inagell), and wher(f) are all in C
- (a) Ever, injective | surjective morphism is "normal"

 (cardition)

general categorical definitions of ten, image, collen are more complicated than you would expect More concrete definition: an abelian Category is just a category equivalent to a full subcategory of left modules over some ring closed under finite (1), images, kernels, and cokennels

A complex in an abelian category C is a diagram $A_0 = (A_1 + A_2 + A_3 + A_4 + A_4 + A_4 + A_4 + A_4 + A_4 + A_5 + A$

we view any finite diagram

as the infinite chain

Cohomology groups of A. are quotients

A. is exact if H'(A.) =0 YnEZ.

A. is short exact if it has form

(~+0+0+)のナスナソナスナの(+0+0+0)

Complexes in C form their own category in which morphisms for A. + B. one Commuting diagrams

Exact functors Let C and D be abelian categories with a functor F: C-+D.

F is additive if Home (X, Y) + Home (F[X], FTY])

The flat of the first of the firs

is an abelian group homonorphim.

In this case one can show that F[x@y] = F[x]@F[y]

Def The functor F is

• left exact if F is additive and O op F[X] op F[Y] op F[Z] is exact for any exact sequence O op X op Y op ZI means $O = \ker f$, image $f = \ker g$

· right exact if Fis add the and

F[x] + F[y] + F[Z] +0

is exact whenever X+Y+Z+O is exact.

· exact if F is both left- and night-exact

Def An abelian category is semisimple if any 8h at exact sequence 0 + x + y + z + 0 splits in the sense that it is isomorphic as a complex to 0 + x + x + z + 0

Ex If char(k) does not divide (G) for a finite group G, then Repk(G) is semisimple.

To see this! consider an exact sequence of G-rephs

ロサメナイヤママロ

Then x = imagelf) = ker(g) = a subrepresentation of y

Since every Grepn over k is completely reducible, we have

4 direct sum of meducibles

Y / Kerl9) = Z and Y = X&Z

Can show theck that between Semisimple Categories every

additive function is exact.

Ex (Left but not right exact)

Consider Homc (A, .): C -> Abelier groups.

This is left exact because if 0 + x + y = 2 is exact then we have another sequence

O -> Homc(A, X) -+ Homc(A, Y) + Homc(A, Z)

Homc(A,0)

This is exact as 0 for =0 iff 0=0 as fingestive

3 gofo 0=0 as gof =0 and if go v=0 then

 $g(\psi(q)) = 0$ $\forall a \in A \implies \psi(a) = f(x_a)$ for a unique $x_a \in X$ and can check that formula $\phi(q) \stackrel{\text{def}}{=} x_a$ is in $\text{Hom}_c(A, X)$ with $f \circ \phi = \psi$.

However, Homc (A, .) not always right exact.

Consider $C = rings = \mathbb{Z}$ -modules and $A = \mathbb{Z}/2\mathbb{Z}$.

OF ISIT F IF O O TIAL FLOOD

9Nes 0 -> Hom (A, Z) -> Hom(A, A) +0

But 0 -> (nonzero) +0 is nover exact.

Ex If A is an algebra and X is a right A-module then the function $X \otimes_A \circ : (left A-) + (4belian)$ is right but not left exact.

(Again take X = 7/27, A = 7/2, and apply functor to 0 + 7/2 + 7/2 + 7/2 + 6)

Projective modules Let A be a k-algebra Let P be a left A-module The tollowing properties are equivalent: O If a: M+N 11 a surjecture morphism of lest A-modules and $\nu: P+N : I any marphism$ then I morphism M: P+M such that Commutes.

M P JV M T N 4v = don

- 3 If $x': h \rightarrow P$ is surjective morphism then

 3 morphism $\mu: P \rightarrow m$ such that $x \circ \mu = idp$ (say that $x'' \circ pht''$)
- 3) There exists a left A-module Q such that PEQ is a free left A-module.

Free means isomorphic to the module of maps $f:X \to A$ with $f'(A-\{0\})$ finite. For some set X.

4) Homa (P, .) is an exact functor

A-mad -+ Abellan Groups.

Pf $0 \Rightarrow 0$ since 0 is 0 with N=P, v=id

2) => 3) since there it always a free module M

and a surjective marphism &: M +P

and if this splits then PA tork & M

Because if P is free itself then
Hown (0,0) is always exact and
if the direct sum of two completes is
exact then each summand must be exact

Finally, (4) =30 because if K is kernel of a: M+N then the requence 0-+K4M+N+0 is exact, so if applying thomp (P,0) to this gnes another exact sequence surjective 0 + Homa (P,K) + Homa (P,N) +0 MOX CON

then for any ufflown (P,N) there is Mf Hamp (P,M) with xom = v as desired. D

We say that P is a projective (left A-) module when these equivolent properties hold.

Def A projective resolution of a left A-module M is an exact sequence

··· ナアナアナアナアナアナア

Such that P; is a projective left A-module for all i zo. Ex. Any module has a projective resolution (in which every P; Is a free module)

We define projective right A-modules and projective resolutions of right A-modules in some way, just replacing "left" by "right" as appropriate. Def (Tor) Let M be a right A-module with projective resolution P., Let N be a left Amodule. For integers i zo, define Tor, (M,N) = Tor, (M,N) to be the (-i)th cohomology group of the complex $(\cdots \to b^5 \otimes^4 u \to b' \otimes^4 u \to b' \otimes^4 u \to 0)$

Ex Toro (M,N) = POBAN / Ker (POMH POBAN) = MBAN +W exercise

Tor is the "derived functor" of the tensor product Def (Ext) Let M be a left A-module with projective resolution P., let N be another left A-module. For i =0 define $E_{X}+A'(M,N)=E_{X}+A'(M,N)$

to be the ith cohomology group of (O -+ HOMA (PO, N) -> HOMA (P, N) -> ...) Ex Exto(M,N) = Ker(Homa(Po,N) -+ Homa(P,N) = [\$\phi \chap \text{Homy (Po,N)} \ \karp \nomage \text{pmage (P, +Pe)} } = Homa (M, N) 1' HW exercise

Ext is the "derived function" of Hom

HW exercise: up to = (in strong sense), neither fxt (MIN)

nor Tori (MIN) depend on the Choice of P.

- OThere definitions don't make it very clear houto compute any thing (but this can be done)
- @ Difficult conjectures (thing in algebra (reporthry often have a way of being rephrased as concise statements involving Ext, Tor, etc.