Math 5 112 - Lecture ${ }^{\#} 25$

Math 5112-Lecture \#25
Last time: let k be a field
let A be a finite dimensional k-algebra
[Below: module means left module]
Suppose $M_{1}, M_{2}, M_{3}, \ldots, M_{n}$ are a complete list of non-isomarphic irreducible A-modules.
The For each i, there is a unique-up-to-isomophism indecomposoble, finitely generated, projective A-module P_{i}

(Call P_{i} the projective cover of M_{i}.)

Moreover, it holds that $A \cong \bigoplus_{i=1}^{n}(\underbrace{\left.\operatorname{dim} M_{i}\right)} P_{i}$ and $P_{1}, P_{2}, P_{3}, \ldots, P_{n}$ are a
Complete list of non-isomerphic,

$$
=P_{i} \oplus P_{i} \oplus \cdots \notin P_{i}
$$

$$
\operatorname{dim} M_{i} \text { Summand }
$$

finitely generated indecomporables projective A-modules.

Rom k If A is semisimple, thenever. A-module is completely reducible, and so any irreducible A-male is already projective so we would have $P_{i}=M_{i}$ in theorem

Dimension Let A be a ring and let M be a left A-module.

Def The projective dimension $\operatorname{pd}(M)$ of M is the length of the shortest finite projective resolution $\cdots \rightarrow P_{d+1} \rightarrow P_{d}+P_{d-1} \rightarrow \ldots+P_{1}+P_{0}+M \rightarrow 0$ where this resolution is said to be finite of length d if $P_{d} \neq 0$ and $P_{d+1}=P_{d+2}=P_{d+3}=\cdots=0$.
If no finite projective resolution exists for M then we define $\operatorname{pd}(M)=\infty$.

Ex If M is already projective then

$$
\cdots \rightarrow 0 \rightarrow 0 \rightarrow \cdots \rightarrow 0_{p_{1}} \rightarrow \underset{p_{0}}{M} M \rightarrow 0
$$

is a projective resdution of length zero, so $\operatorname{pd}(M)=0$.
Conversely, can only have $p d(m)=0$ if M is projective.
Thm $\operatorname{pd}(M) \leq d$ if and only if $\operatorname{Ext}^{i}(M, N)=0$
for all $i>d$ for every left A-macule N.

Def The ring A has left (respectively, right) homological dimension d if every left (resp, right)
A-module M has $p d(M) \leq d$ and equality holds for some choice of M.

If no such O exists then there is same A -module M with $p d(M)=\infty$, and in this case we say that A has infinite homological dimension.
Pip Hondogical dim of $K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is n (variables commute)
(varisbed commute)
[As sketched in text book, thill cost
An be shown using the syzygies thin.]
(variables do not comminute)
Prop Homological dim of $k\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ is 1
(left)
[This means that for every module M over the free algebra, there is a short exact sequence
$0 \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$ (with P_{i} projective) but not overs module M is projective.

Blocks m sometimes used in literature without a very standard definition. all definitions will be variations on the followings.

Let A be a finite-dimensianal k-algebra. Assume k is algeloracally closed.
Define $\operatorname{Mod} A \stackrel{\text { def }}{=}$ category of left A-molas
FMod $\xlongequal{\text { def }}=$ full subcategory of finite-dim. A -modules.

Def Two irreducible modules $X, Y \in F M_{0 d_{A}}$ are linked if there are modules $M_{0}, M_{1}, M_{2}, \ldots, M_{n} \in F M_{0} d_{A}$ such that $x \cong M_{0}, Y \cong M_{n}$, and for each $0 \leq i<n_{n}$, either Ext ${ }^{\prime}\left(M_{i}, M_{i+1}\right) \neq 0$ or $\operatorname{Ext}^{\prime}\left(M_{i+1}, M_{i}\right) \neq 0$. [Note that if $X \cong Y$, then can take $n=0$ to conclude that X, Y are lin eeo]

Recall that a Jordan-Höbler series for $M \in \operatorname{Mod}_{A}$ is any sequence $0=M_{0} \subset M_{1} \subset M_{2} \subset \cdots \subset M_{h}=M$ such that each $M_{i} \in \operatorname{Mod} A$ and each $Q_{i} \stackrel{\text { def }}{=} M_{i} / M_{i-1}$ is irreducible.

Fact Each ME FMod 1 has a Jordan-Hïder series and the quotient modules $Q_{1}, Q_{2}, \ldots, Q_{n}$ are uniquely determined up to \cong and permutation of indices.
Thus, well-detined to say " x appears in the JordanHölder series of m " to mean that $X \cong Q_{i}$ for same i.

Def (1) A module $M \in F M$ Mod A belongs to a block if all of the irremeable modules appearing in its JordanHölder series are linked.
(2) Two modules $M, N \in F M_{0} \cap$ belong to the same black if all irreducibes modules appearing in the Jortan-Hïlder series for M are linked to those in N
Rok $E x t^{\prime}(M, N) \stackrel{\operatorname{del}}{=} \frac{\operatorname{ker}\left(\operatorname{Hom}_{1}(P, N)+\operatorname{Hom}_{A}\left(P_{2}, N\right)\right)}{\operatorname{image}\left(\operatorname{Hom}_{1}\left(P_{0}, N\right)+\operatorname{Hom}_{A}(P, N)\right)}$
for some projective resolution $\cdots \rightarrow P_{1}+P_{0}+M+O$.

We saw a more concrete construction of $\operatorname{exx}^{\prime}(M, V)$ for M,N $\in \operatorname{MOd}_{A} A$, without referring to project we resolutions, in HW3:

$$
\begin{aligned}
& E x t^{\prime}(M, N)=Z^{\prime}(M, N) / B^{\prime}(M, N) \\
& \text { 1-cocyles 1-cobamaries } \\
& \cong\left\{\begin{array}{c}
\text { vector space spanned by isomenphism } \\
\text { classes of } A \text {-modules } U \text { that are } \\
\text { "nontrivial extensions" of } M, N \text { in } \\
\text { sense that } M C U \text { ard } U / M \cong N \\
\text { and } U \nsubseteq M \oplus N
\end{array}\right\}
\end{aligned}
$$

For example, it A is semisimple, then every $M \in F \operatorname{Mod}_{A}$ is a direct sum $M=\underset{i \in I}{\oplus} M_{i}^{\oplus n_{i}}$ where each $M_{\text {i }}$ is irreducible, and so X appears in the Jordom-Häder series for M iff $X \cong M_{i}$ where $n_{i} \neq 0$. In this case $\operatorname{Ext}^{\prime}(M, N)=0$ whenever M, N are irreducible, [If $M C U$ and $N \cong M / U$ then $U \cong M \oplus U / M$]

$$
\cong M O N
$$

and so each block consists of all modules isomorphic to an element of $[M, M \oplus M, M \oplus M \oplus M, \ldots]$ for some irreducible $M \in F M O d A$.

Prop. If A is semisimple then we have a bijection [blocks] $\longleftrightarrow\left[\begin{array}{c}\text { isomorphism classes } \\ \text { of irreducible } A \text {-modules }\end{array}\right]$

Prop If M is indecomposable with Jordan-Hëter Series $\quad 0=M_{0} \subset M_{1} \subset M_{2} \subset-\subset M_{n}=M$ and $Q_{i} \stackrel{\operatorname{det}}{=} M_{i} / M_{i-1}$ then Q_{1}, Q_{2}, n, Q_{n} are all linked so M belongs to a block.

If If $n=1$ then M is irreducible, hence in a block If $n=2$ then M is a nontrivial extension of $Q_{1}=M$, and $Q_{2}=M / Q_{1}$ Since if $M \cong Q_{1} \oplus Q_{2}$ then M wold be decomposable s so $\left(\times x^{\prime}\left(Q_{1}, Q_{2}\right) \neq 0\right.$ and result follows. If $n>2$, assume b. induction that $Q_{1}, Q_{2}, \cdots, Q_{n 1}$ are ininked
and then apply $n=2$ (case to m / Q_{n-2}. D
Can also show:
prop Each block contains a unique isomorphism class of indecomposables modules.

Finite abelion categories and Marts equivalence
Let C be an abelian Category that is k-linear and of finite length, in sense that for each $A \in C$ there exists $0=A_{0} \subset A_{1} \subset A_{2} \subset \ldots C A_{n}=A$ where
each $A_{i} \in C, n<\infty$, and $A_{i} \mid A_{14}$ is irreducible.
Also assume that if $A \in C$ is irreducible then $\operatorname{Hom}_{C}(A, A) \cong K$.

Def If C has finitely many isomaphiom classes of irreducible objects and "has enough projectwes" (in sense that every object is a quotient of a projective object), thenwe sass that C is a finite abelion category an object P such that $\operatorname{Hom}_{c}(P, \bullet)$ is exact functor

Def A_{n} object $P \in C$ is called a projective generator if P is projective and every object in C is a quotient of $P^{\oplus n}$ for some $n>0$.
Ex If $C=\operatorname{Mod}_{A}$ then the free A-module A itself is a projective generator, when A is a finte-dm. algebra
Fact Assume C is finite abelion category. Then C has a projective generator.
Idea: take ans projective object that contains the direct sum of all irreducible objed / \cong as a quotient.

Thin $A n_{1}$ finite abelion category C is equivalent to the category of modules of same finite dimensional k-algebra B.
Explicitly, $C \cong \operatorname{Mod}_{B}$ where $B=\operatorname{End}(P)^{\circ p}$
for any projective generator $P \in A$, via

$$
M^{\epsilon C} \longmapsto \operatorname{Hom}(P, M)^{\in F \operatorname{Moo} B}
$$

Def Two (finite-bimensianal) k-algeloras A and B are morita equivalent if the categories FMod A and $F M_{B} d_{B}$ are equivalent.

Def A finite-dim. k-algebra B is basic if $B / \operatorname{Rad}(B)$ is commutative.
The (1) Any finite a belion category C is equivalent to FMod B for a basic algebra B that is unique up to \cong.
(2) Ans finite-dima algebra A is Morita equivalent to a unique (up to \cong) basic algebra B with $\operatorname{dim} B \leq \operatorname{dim} A$.

