MATH 2121 — Linear algebra (Fall 2022) Lecture 2

This document is intended as an exact transcript of the lecture, with extra summary and vocabulary
sections for your convenience. By design, the material covered in lecture is exactly the same as what is in
these notes. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs,
and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

e A matrix is in echelon form if looks something like this:

0 0 5 *x =x x * ok %k *
0O 0 0 6 *x =x *x k% *
00 0 00 0 —7 % =« *
00 0 0 0 O 0 0 0 09
00 0 0 0 O 0 0 O 0

Here each * can be any number. A matrix is in reduced echelon form if it looks like this:

0 01 0 x *x 0 *x *x 0
00 01 = = 0 % %= 0
00 0 0 0 0 1 = %= 0 (1)
00 0 O0O0O0OO0OTO0OTO0I1
000 O0OO0OO0OOTU OO OTU O

e Each matrix A is row equivalent to exactly one matrix in reduced echelon form, denoted RREF(A).

e There is an algorithm to compute RREF(A), called row reduction. The algorithm gives a sequence
of row operations that we perform on A to obtain RREF(A). The algorithm is hard to summarize
in one line, but it’s not too complicated; you will want to become very familiar with the definition.

e The matrices A and RREF(A) are row equivalent. If A is the augmented matrix of a linear system,
then RREF(A) is the augmented matrix of another system with the same solutions. Key advantage:
it is easy to read off the form of all solutions to the linear system corresponding to RREF(A).

e The pivot positions in a matrix A are the locations of the leading 1s in RREF(A). To find these,
you must first compute RREF(A). If RREF(A) is (1)) then the pivot positions are (1,3), (2,4), (3,7),
(4,10). The pivot columns are the columns with pivots; in the example, these are 3, 4, 7, 10.

Here’s again with the pivot positions in boxes:

OOOOH
OOOHO
SO O ¥ ¥
OOHOO
OO ¥ ¥ *
OHOOO

OO O O O
OO O O O
OO O ¥ ¥
O DO * X X

e Consider a linear system in n variables with augmented matrix A.
— The variable x; is a basic variable if i is a pivot column of A.
— All non-basic variables are free variables.

— The system has 0 solutions if the last column of A has a pivot (e.g., if RREF(A) is ().

If this doesn’t occur, then the system has only one solution if all variables are basic.

If there is at least one free variable and the system has a solution, then it has infinitely many.
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1 Last time: linear systems and row operations

Here’s what we did last time: a system of linear equations or linear system is a list of equations

1121 + @122 + - -+ a1y, = by

21T + G22T2 + -+ - + A2p Ty = bo

Am1%1 + AGm2aT2 + -+ + AmpTn = bm
where x1, %2, ..., %, are variables and each a;; and b; for 1 <7 <m and 1 < j < n is a number.
The coefficient matriz and augmented matriz of such a system are respectively

(05 5 A1n (05 5 A1n b1

and
Aml - Qmn Aml - Qmn bm
The coefficient matrix is m x n: it has m rows and n columns.
The augmented matrix has one extra column, so has size m x (n + 1).

A solution to a linear system is a list of numbers (s1, $2, .. ., $,) such that setting z1 = s1, 2 = 9, ...
Ty = Sp, all at the same time, makes each equation in the system a true statement.

Two linear systems are equivalent if they have the same solutions.
Important fact: Any linear system has either 0, 1, or infinitely many solutions.
We solve a linear system by performing row operations on its augmented matrix.
The following are row operations:

(1) Replace one row by the sum of itself and a multiple of another row.

(2) Multiply all entries in one row by a fixed nonzero number.

(3) Interchange two rows.

Let’s do an example to see these rules in action.

Example. Consider the linear system

x1 +2x9 +5x3 =1

1 2 5 1
x1 + 23 =0 which has augmented matrix 1010
To+a3="7T 0117
Adding —1 times the second row to the first is an example of row operation (1):
1 2 5 1 O 0 2 4 1
101 0]|]—1]1 010
0117 o1 1 7
Next let’s add —2 times the last row to the first row:
0 2 4 1 ) 0O 0 2 -13
101 0]—=1]101 0
0117 0 1 1 7
Now lets use rule (3) to swap some rows:
00 2 —-13 @) 0 1 1 7 5 1 01 0
1o1 ol %l1o0o1 ol %lo11 7
01 1 7 0 0 2 -13 00 2 -13
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Now lets scale the third row by 1/2:

1ol 0] 1001 0
011 7013011 7
00 2 —13 00 1 -13/2

10 1 0] ,, [t 00 1327 ~[1 00 132
01 1 7151011 715101 0 27/2
00 1 —13/2 0 0 1 —13/2 0 0 1 —13/2

Two linear systems are row equivalent if their augmented matrices can be transformed to each other by
a sequence of zero or more row operations.
Theorem. Row equivalent linear systems are equivalent, which means they have the same solutions.

Therefore the original system in our example has the same solutions as the system corresponding to the
last matrix, which consists of the three equations

zy =13/2
Ty = 27/2
x5 = —13/2.

This system has only one solution (13/2,27/2, —13/2), so the original system also has only one solution.

2 Row reduction to echelon form

The goal today is to give an algorithm to determine whether a linear system has 0, 1, or infinitely many
solutions, and to find out what these solutions are when they exist.

The algorithm will be called row reduction to echelon form and will formalize the way we solved the
linear system in the last example. Sometimes, this algorithm is also called Gaussian elimination.

Key ideas:
e For some linear systems it is easy to determine all solutions.
e We want to describe the special form of augmented matrices that correspond to such systems.
e Then we want to find a way to transform any matrix to this special form using row operations.

e Row operations don’t change the solution set, so the solutions to an “easy” linear system are the
same as any other linear system with a row equivalent augmented matrix.

To motivate what will be called the (reduced) echelon form of a matrix, let’s consider what kinds of linear
systems are easy to solve. Think of each equation in the system as giving a way to express the first
variable that appears with nonzero coefficient in terms of the others. For example,

3xo + 214 + 515 =1 can be rewritten as expressing 1z, = % (1 —2x4 — bxs) .

With this in mind, here are some properties that would make it easier to solve a linear system:
(E1) The equations in our system should be ordered so any trivial equations 0 = 0 are listed at the end.

(E2) If the first variable appearing in an equation is x; then the first variable appearing in the next
equation should be a later variable x; with ¢ < j. (Since the given equation “determines” z; we
don’t need other equations to start with z;.)



MATH 2121 — Linear algebra (Fall 2022) Lecture 2

If we have a linear system in this form then we can solve it by choosing arbitrary values for any variables
that are never the first variable in an equation (call these free variables), and then expressing each variable
that does appear as the first variable in some equation (call these basic variables) in terms of these.

However, when expressing the basic variables in terms of the free variables, we need to go through the
equations in the system in reverse order because the equation that determines a given basic variable
x; may involve both free variables and basic variables x; with i < j. Consider this example:

Example. Here is a linear system in variables x1, xa, 23, 24 with properties (E1) and (E2):

201 +x2+2x3 =1
3xr3 + 314 =35
0 =0.

The free variables are x9 and x4. The basic variables are 1 and x3. If we set x9 = a and x4 = b then

3z3+3x4=5 = w3=305-3x4)=356-3b)=2-b

and now we can substitute this into the first equation to figure out x; in terms of a and b:

201 +aatas=1 = zy=3(1-azp—as)=3(1-a—(53-b)=—5—3a+3b
so the general solution is (z1, xe, T3, x4) = (f% — %a + %b, a,% — b, b) where a,b € R are arbitrary.

This linear system is consistent with infinitely many solutions.

A few other properties that would make this solution process even easier to carry out:
(R1) The coefficient of the first variable x; appearing in an equation should be 1.
(R2) The first variable x; appearing in an equation should not appear in any earlier equations.

If these properties also hold, then we can solve our linear system in the same way, but we won’t have to
do any arithmetic besides moving free variables to the right side of each equation. Also, when expressing
the basic variables in terms of the free variables, we can go through the equations in any order.

Example. Here is a linear system in variables x1, z2, x3, x4 with properties (E1)-(E2) and (R1)-(R2):

W=

1 1

T1+ 5%2 — 5T4 =
Tr3 + T4

0 g

O wiw

The free variables are 29 and x4. The basic variables are ;1 and x3. If we set x9 = a and z4 = b then

$1+%$2—%$4:—% = xlz—%—%a—i—%b while x3+x4:g = .’Egzg—b
so the general solution is (z1, x2, T3, x4) = (—% — %a —+ %b, a,% — b, b) where a,b € R are arbitrary.

This set of solutions is the same as before (in fact, the augmented matrices in both examples are row
equivalent), but notice how much easier it is here to express z; and x3 in terms of the other variables.

We now discuss what properties (E1)-(E2) and (R1)-(R2) mean in terms of the augmented matrix.
A row in a matrix [ a b ... =z ] is monzero if not every entry in the row is zero.

A nonzero column in a matrix is defined similarly.

The leading entry in a row of a matrix is the first nonzero entry from left going right.

For example, [ 0 0 7 0 5 | has leading entry 7. The leading entry occurs in column 3.
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Definition. A matrix with m rows and n columns is in echelon form if it has the following properties:
(E1) If a row is nonzero, then every row above it is also nonzero.

(E2) The leading entry in a nonzero row is strictly to the right of the leading entry of any earlier row.
The second property implies this additional property of a matrix in echelon form:

(E3) If a row is nonzero, then every entry below its leading entry in the same column is zero.

Some examples are helpful to understand this definition. The following is in echelon form:

OO OO
o O OO
O O O Ut
O O O ¥
O O ¥ ¥
O O ¥ *
O N *x ¥
O ¥ *x ¥
O * % ¥
© % ¥ *

Here each * can be replaced by an arbitrary number.

[an}
(e}
at

The matrix is also in echelon form.

O O *x ¥
O O *x ¥
O O ¥ ¥
O O *x *
O O *x ¥
O O *x ¥

The matrix is not in echelon form: condition (E2) fails.

S oo™ S OO *

S O * ¥
O O ¥ ¥
O ¥ ¥
O ¥ ¥ ¥
O ¥ ¥ ¥
O * % ¥

The matrix is not in echelon form: conditions (E2) and (E3) fail.

o O O O O OO o O O

S *x ¥
N % ¥
* % ¥

o O OO o O OO o O O
o O Uto o O ot o o O O

o
O O ¥ ¥
O O ¥ *
jan}
O * % ¥
© % ¥ *

A sort of degenerate case: every one-row matrix is in echelon form. (Why?)

*
0

0

The only one-column matrices in echelon form are ones like where * can be any number.

There is a more restrictive version of echelon form that will be useful.

Definition. A matrix in echelon form is reduced if
(R1) Each nonzero row has leading entry 1.
(R2) The leading 1 in each nonzero row is the only nonzero number in its column.

A matrix in echelon form that is reduced is said to be in reduced echelon form.

The following matrix is in echelon form but is not reduced:

0 0 5 *x *x * % x %
0 0 0 6 * * * * * =
00 0 0 0 0 7 x x =x
00 0 0 0 O0O0O0O009
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But we can apply row operations to turn it into reduced echelon form:

001 0 = x 0 % % 0
00 01 = = 0 % % 0
00 0 0 0 O0 1T %« % 0
0000 O0OO0O0OTO0TO0I1

The fundamental theorem of today is the following:

Theorem. Each matrix A is row equivalent to exactly one matrix RREF(A) in reduced echelon form.

The proof of this result is included in an appendix of the textbook. By the end of today, the result should
at least seem plausible, once we understand how to construct the matrix RREF(A) from A.

We call RREF(A) the (row) reduced echelon form of A.
A pivot position in a matrix A is the location containing a leading 1 in the reduced echelon form for A.
A pivot column in a matrix A is a column containing a pivot position.

If a matrix E is in echelon form and is row equivalent to A, then we say that E is an echelon form of A.

Proposition. In any echelon form E of a matrix A, the locations of the leading entries are the same.

This means we can compute the pivot positions of A from any echelon form F, and we do not necessarily
have to compute the unique reduced echelon form RREF(A) which can take more work.

Example. Suppose

A:

o O O
— o =

0
0
1

Q0 w N w

Let’s find RREF(A). Add —1 times first row to third row, then —2/3 times first row to second row:

03 10 0310 0 [3] 10
A:O2OOHO2OOHOOO
03 1 1 000 1 0 0 0 1]

The last matrix is in echelon form, but is not reduced. Pivot positions are boxed. To get to the reduced
echelon form, rescale rows 1 and 2 by 1/3 and —3/2, then add a multiple of the second row to the first:

0 3 1 0 01 1/3 0 01 00
00 -2/3 0|—=]00 1 0|—=1]0 0 1 0| =RREF(A).
0 0 0 1 0 0 0 1 0 0 01

Columns 2, 3, and 4 are the pivot columns.

We sometimes refer to an entry in a pivot position of a matrix as a pivot.

We are now ready to describe the row reduction algorithm. Let’s first go over what this algorithm does
to another specific matrix. Then we’ll say what the procedure is for a generic matrix.

Example (Row reduction to echelon form, for a specific matrix).

Input: for the general algorithm, the input is an m x n matrix A. Suppose this matrix is

0 3 —6 6
A=1|3 -7 8 —5
3 -9 12 -9

Procedure:
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1. Begin with the leftmost nonzero column.
This is a pivot column. The pivot position is the top position of the column.
For our matrix, the leftmost nonzero column is the first column; the pivot position is boxed:
0] 3 6 6
3 -7 8 -5
3 -9 12 -9
2. Select a nonzero entry in the current pivot column.
If needed, perform a row operation to swap the row with this entry and the top row.

For example, we can select the 3 in the second row of the first column and then swap rows 1 and 2:

0] 3 6 6 3] -7 8 -5
3 7 8 5|—=| 0 3 -6 6
3 -9 12 -9 3 -9 12 -9

3. Use row operations to create zeros below the boxed pivot position:

3] -7 8 -5 3] -7 8 -5
0O 3 6 6|—=| 0 3 -6 6
3 -9 12 -9 0 -2 4 —4

4. Repeat steps 1-3 on the bottom right submatrix:

3|-7 8 =5 3|-7 8 =5 3|-7] 8 =5
ol[38] 6 6|—=|0|[38] 6 6|—=|0] 3[]-6 6
0]-2 4 —4 0 0 0 0 0 o] 0 0

3] -7 8 -5

5. We now have a matrix in echelon form: 0 -6 6
o 0 0 o0

Start with the row containing the rightmost pivot position in our matrix, now in echelon form.

Rescale rightmost pivot, then cancel entries above rightmost pivot position in same column:

3 -7 8 =5 3 -7 8 =5 3 0 -6 9
0 3] 6 6|—=|0 1] -2 2|=>|0[1] -2 2
0 0 0 0 0 0 0 0 0 0 0 0
Repeat with the next pivot position, going right to left:
0 -6 9 0 -2 3
01 -2 2| — 01 -2 2
00 00 00 00
10 -2 3
The result is the reduced echelon form RREF(A)=| 0 1 -2 2
0 0 0 0

With this example in mind, we should now be able to follow the steps in the general algorithm:

Algorithm (Row reduction to echelon form, for a generic matrix).
Input: an m X n matrix A.

Procedure:
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1. Begin with the leftmost nonzero column.

This is a pivot column. The pivot position is the top position of the column.
2. Select a nonzero entry in the current pivot column.

If needed, perform a row operation to swap the row with this entry and the top row.
3. Use row operations to create zeros in the entries below the pivot position.

4. Cover the row containing the current pivot position, and then apply the previous steps to the
(m — 1) x n submatrix that remains. Repeat until the entire matrix is in echelon form.

5. Start with the row containing the rightmost pivot position in our matrix, now in echelon form.
Use row operations to rescale this row to have leading entry 1.
Then use row operations to create zeros in the entries in the same column above each leading entry.
Repeat this for each successive pivot position going left, until the matrix is in reduced echelon form.

Output: RREF(A).

3 Solutions of linear systems

We now return to the problem of solving linear systems.
We talked about basic variables and free variables earlier.
The formal definition is: for a linear system in variables x1, o, . .., z, with augmented matrix matrix A,

the variable x; is basic if ¢ is a pivot column of A and is free if ¢ is not a pivot column of A.

Example. If a linear system has augmented matrix A with

1 0 -5 1 0 5$3 =1
RREF(A)=|[ 0 1 1 4 then the system is equivalent to Lo+ a3 =4
00 00 0=0.

The pivot columns of A are 1 and 2, so the basic variables are x; and x2. The only free variable is x3.

To find all solutions to the system, choose any values for the free variables and then solve for the
basic variables. In the above system, we have z; = 523 + 1 and x5 = 4 — x3.

Hence all solutions to this system have the form (s1, s2,s3) = (5a + 1,4 —a,a) for a € R.

Theorem. Consider a linear system whose augmented matrix is A.
e The system has 0 solutions (and is inconsistent) if the last column of A contains a pivot.

In this case RREF(A) has a row of the form [ 0 0 ... 0 1 | so our system is equivalent to a
linear system containing the false equation 0 = 1.

e The system has only 1 solution if there are no free variables and the last column is not a pivot.

e Otherwise, the system has infinitely many solutions.

Once we have computed RREF(A) and identified the free and basic variables, we can write down all
solutions to the system (if there are solutions) exactly as in our earlier examples: by letting each free
variable be arbitrary, and then solving for the basic variables in terms of the free variables.
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4

Vocabulary

Keywords from today’s lecture:

1.

Leading entry in a row of a matrix.

The first nonzero entry in a given row, going left to right.

Example: The leading entry in the second row of is 8.

= O O
(2 S el o
S 0N

Echelon form.

A matrix is in echelon form if it has these properties:
(a) If a row is nonzero, then every row above it is also nonzero.
(b) The leading entry in one row is in a column to the right of the leading entry in each row above.

(c) If a row is nonzero, then every entry below its leading entry in the same column is zero.

00511112 3 01
Example: 0006 6 7 6 4 5 02
0 00O0O0O0OO0OO0OO0 O0Y9
000 O0O0OO0OTO0OTO0F® 0

Reduced echelon form

A matrix that is in echelon form, has 1 as the leading entry in each nonzero row, and has no other
nonzero entries in the same column as a leading entry in a row.

For each matrix A, there is a unique matrix RREF(A) in reduced echelon form that is row equivalent
to A. This is the row reduced echelon form of A.

0010110230
00016 70435 .

Example: 00000G0GO0TG 0. 0 1|8 reduced echelon form.
00 0 O0OO0OO0OTO0OTO OO O0OSF®

Pivot position and pivot column of a matrix.

The location (respectively, column) containing a leading 1 in the reduced echelon form for A.

03 10 01 0 0
Example: f A= 0 2 0 0 | then RREF(4A)=| 0 0 1 0
0 3 11 0 0 01
The pivot positions of A are (1,2) and (2, 3) and (3,4). The pivot columns of A are 2 and 3 and 4.

Basic variables and free variables of a linear system.

If A is the augmented matrix of a linear system in 1,22,...,2, and ¢ € {1,2,...,n} is a pivot
column in A then the variable z; is basic; otherwise x; is free.

0 3 1 0 3xo+x3=0
Example: A= | 0 2 0 0 | is the augmented matrix of ¢ 225 =0
03 11 3xg +x3 =1.

In previous example, saw that pivot columns of A are 2, 3, and 4. So x2 and 3 are basic variables
while x; is free. Since the last column of A is a pivot column, the linear system has 0 solutions.
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