
MATH 2121 — Linear algebra (Fall 2022) Lecture 5

This document is intended as an exact transcript of the lecture, with extra summary and vocabulary
sections for your convenience. By design, the material covered in lecture is exactly the same as what is in
these notes. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs,
and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

Linear independence:

• Vectors v1, v2, . . . , vp ∈ Rn are linearly independent if the only way to express

0 = c1v1 + c2v2 + · · ·+ cpvp

for c1, c2, . . . , cp ∈ R is by taking c1 = c2 = · · · = cp = 0. This happens if and only if

{0} 6= R-span{v1} 6= R-span{v1, v2} 6= R-span{v1, v2, v3} 6= · · · 6= R-span{v1, v2, . . . , vp}.

• If the vectors are not linearly independent, then they are linearly dependent . This happens when

R-span{v1, v2, . . . , vi−1} = R-span{v1, v2, . . . , vi}

for at least one i ∈ {1, 2, . . . , p}. Here we interpret “R-span{v1, v2, . . . , vi−1}” to be {0} if i = 1.

• Two or more vectors are linearly dependent if one of the vectors is in the span of all of the others.

• If p > n then any vectors v1, v2, . . . , vp ∈ Rn are linearly dependent.

• A list of vectors v1, v2, . . . , vp ∈ Rn is linearly dependent if the n× p matrix

A =
[
v1 v2 . . . vp

]
has at least one column that is not a pivot column.

Functions and linearity:

• Writing f : X → Y means that f is a function that transforms inputs x ∈ X to outputs f(x) ∈ Y .

The set X is called the domain while Y is called the codomain of f .

The range of f is the subset range(f) = {f(x) : x ∈ X} of Y .

• Let m, n be positive integers. If f : Rn → Rm is a function then the following mean the same thing:

– For any u, v ∈ Rn and c ∈ R it holds that f(u + v) = f(u) + f(v) and f(c · v) = c · f(v).

– There exists an m× n matrix A such that f(v) = Av for all v ∈ Rn.

Such functions f are said to be linear . The matrix A is called the standard matrix of f .

• Every linear function f : Rn → Rm has exactly one standard matrix.

• If f : Rn → Rm is linear then its standard matrix is A =
[
f(e1) f(e2) . . . f(en)

]
where

e1 =


1
0
0
...
0

 ∈ Rn, e2 =


0
1
0
...
0

 ∈ Rn, e3 =


0
0
1
...
0

 ∈ Rn, . . . en =


0
0
...
0
1

 ∈ Rn.
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1 Last time: multiplying vectors and matrices

Given a matrix A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 and a vector v =


v1
v2
...

vn

 ∈ Rn we define

Av = v1


a11
a21

...
am1

+ v2


a12
a22

...
am2

+ · · ·+ vn


a1n
a2n

...
amn

 ∈ Rm.

We refer to Av as the product of A and v, or the vector given by multiplying v by A.

Example. We have

[
1 2 3
5 6 7

] −1
0
1

 = −
[

1
5

]
+ 0

[
2
6

]
+

[
3
7

]
=

[
−1 + 0 + 3
−5 + 0 + 7

]
=

[
2
2

]
.

If A is an m× n matrix and x =


x1

x2

...
xn

 and b ∈ Rm, then we call Ax = b a matrix equation.

A matrix equation Ax = b has the same solutions as the linear system with augmented matrix
[
A b

]
.

Theorem. Let A be an m× n matrix. The following are equivalent:

1. Ax = b has a solution for any b ∈ Rm.

2. The span of the columns of A is all of Rm.

3. A has a pivot position in every row.

Example. The matrix equation  1 3 4
−4 2 −6
−3 −2 −7

 x1

x2

x3

 =

 b1
b2
b3


may fail to have a solution since

RREF

 1 3 4
−4 2 −6
−3 −2 −7

 =

 1 0 ∗
0 1 ∗
0 0 0


has pivot positions only in rows 1 and 2.

2 Linear independence

We briefly introduced the notion of linear independence last time.

Suppose we have some vectors v1, v2, . . . , vp ∈ Rn. Recall that the span of a set of vectors is the set of all
possible linear combinations that can be formed using the vectors. If you have a smaller set of vectors
inside a bigger set, then the span of the smaller set is always contained in the span of the bigger set.
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Moreover, if y = c1v1 + c2v2 + · · · + cpvp for ci ∈ R is any linear combination of our vectors then
R-span{v1, v2, . . . , vp} = R-span{v1, v2, . . . , vp, y}, since if a1, . . . , ap, b ∈ R then

a1v1 + · · ·+ apvp + by = (a1 + bc1)v1 + (a2 + bc2)v2 + · · ·+ (ap + bcp)vp ∈ R-span{v1, v2, . . . , vp}.

If S and T are sets then we write S ⊆ T to mean that every element of S is also an element of T .

Definition. Consider the p sets given by

{0} ⊆ R-span{v1} ⊆ R-span{v1, v2} ⊆ R-span{v1, v2, v3} ⊆ · · · ⊆ R-span{v1, v2, . . . , vp}.

The vectors v1, v2, . . . , vp are linearly independent if these sets are all distinct. That is, if R-span{v1} is
strictly bigger than the set {0} consisting of just the zero vector, and R-span{v1, v2} is strictly bigger
than R-span{v1}, and R-span{v1, v2, v3} is strictly bigger than R-span{v1, v2}, and so on.

Example. If v1 =

 1
0
0

, v2 =

 0
1
0

, v3 =

 0
0
1

 then v1, v2, v3 are linearly independent, since


 0

0
0

 ( R-span{v1} =


 a

0
0

 : a ∈ R

 ( R-span{v1, v2} =


 a

b
0

 : a, b ∈ R

 ( R-span{v1, v2, v3} =


 a

b
c

 : a, b, c ∈ R

 .

Here we write S ( T to mean that both S ⊆ T and S 6= T .

Example. If v1 =

 1
−1

0

, v2 =

 0
1
−1

, v3 =

 −1
0
1

 then v1, v2, v3 are not linearly independent as

R-span{v1, v2} = R-span{v1, v2,−v1 − v2} = R-span{v1, v2, v3}.

When vectors are not linearly independent, we say they are linearly dependent .

A linear dependence among v1, v2, . . . , vp is a way of writing the zero vector as a linear combination
0 = c1v1 + c2v2 + · · ·+ cpvp for some scalar coefficients c1, c2, . . . , cp ∈ R that are not all zero.

If 0 = c1v1 + c2v2 + · · ·+ cpvp is a linear dependence then the matrix equation

[
v1 v2 . . . vp

]


x1

x2

...
xp

 = 0

has two solutions given by (0, 0, . . . , 0) and (c1, c2, . . . , cp).

Proposition (Another characterization of linear independence). The vectors v1, v2, . . . , vp ∈ Rn are
linearly independent if and only if no linear dependence exists among them.

Proof. If i is minimal such that there exists a linear dependence c1v1 + c2v2 + · · ·+ civi = 0 then we must
have ci 6= 0 (since if ci = 0 then c1v1 + c2v2 + · · ·+ ci−1vi−1 = 0 would be a shorter dependence). Then

vi = − c1
ci
v1 − c2

ci
v2 − · · · − ci−1

ci
vi−1

so R-span{v1, v2, . . . , vi−1} = R-span{v1, v2, . . . , vi}.

Conversely, if R-span{v1, v2, . . . , vi−1} = R-span{v1, v2, . . . , vi} then vi ∈ R-span{v1, v2, . . . , vi−1}, which
means vi = a1v1 + a2v2 + . . . ai−1vi−1 for some coefficients a1, a2, . . . , ai−1 ∈ R. But then we get a linear
dependence c1v1 + c2v2 + · · ·+ civi = 0 by taking c1 = a1, c2 = a2, . . . , ci−1 = ai−1 and ci = −1.
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How to determine if v1, v2, . . . , vp ∈ Rn are linearly independent.

• Form the n× p matrix A =
[
v1 v2 . . . vp

]
.

• Reduce A to echelon form to find its pivot columns.

• If every column of A is a pivot column, then the vectors are linearly independent.

If some column of A is not a pivot column, then the vectors are linearly dependent.

Example. The vectors

 1
0
−1

,

 2
3
5

, and

 5
9

16

 are linearly dependent since

A =

 1 2 5
0 3 9
−1 5 16

 ∼
 1 2 5

0 3 9
0 7 21

 ∼
 1 2 5

0 1 3
0 1 3

 ∼
 1 0 −1

0 1 3
0 0 0

 = RREF(A)

where ∼ denotes row equivalence. The last matrix has no pivot position in column 3. In fact, we have

−

 1
0
−1

+ 3

 2
3
5

−
 5

9
16

 =

 0
0
0

 = 0.

The vectors

 1
0
−1

,

 2
3
5

, and

 5
9

15

 are linearly independent, since

A =

 1 2 5
0 3 9
−1 5 15

 ∼
 1 2 5

0 3 9
0 7 20

 ∼
 1 2 5

0 1 3
0 0 −1

 ∼
 1 0 0

0 1 0
0 0 1

 = RREF(A).

Every column of A contains a pivot position, so the linear system with coefficient matrix A has no free
variables, so Ax = 0 have no nontrivial solutions, meaning the columns of A are linearly independent.

Facts about linear independence.

1. A single vector v is linearly independent if and only if v 6= 0.

2. A list of vectors in Rn is linearly dependent if it includes the zero vector.

3. Vectors v1, v2, . . . , vp ∈ Rn are linearly dependent if and only if some vector vi is a linear combination
of the other vectors v1, . . . , vi−1, vi+1, . . . , vp.

We saw this in the previous example:

 5
9

16

 = 3

 2
3
5

−
 1

0
−1

.

4. If p > n then any list of p vectors in Rn is linearly dependent.

Example. The vectors v1 =

[
1
2

]
, v2 =

[
1
3

]
, and v3 =

[
5

60

]
are linearly dependent since 3 > 2.

3 Linear transformations

A function f takes an input x from some set X and produces an output f(x) in another set Y .

We write f : X → Y to mean that f is a function that takes inputs from X and gives outputs in Y .

The set X is called the domain of the function f . The set Y is called the codomain of f .
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A function has three components: a choice of domain, a choice of codomain, and a formula/rule/algorithm
to assign an output in the codomain to each input in the domain. Two functions are the same only when
all three of these components are equal.

For example, the formula f(x) =
√
x defines a function X → Y with X = {x ∈ R : x ≥ 0} and Y = R.

The formula f(x) =
√
x also defines a function X → X with X = {x ∈ R : x ≥ 0}. We consider this to

be a different function from the previous example, because it has a different codomain.

The formula f(x) = |x| defines a function R→ R.

For every x in the domain X of f , we get an output f(x).

It is possible that some values y in the codomain Y may never occur as outputs of f .

The image of an input x in X under f is the output f(x). The range of the function f (sometimes called
the image of f) is the set range(f) = {f(x) : x ∈ X} of images of all inputs in the domain. This is the
subset of the codomain Y which gives all actual outputs of f .

Definition. Let f : Rn → Rm be a function whose domain and codomain are sets of vectors. The
function f is a linear transformation (also called a linear function) if both of these properties hold:

(1) f(u + v) = f(u) + f(v) for all vectors u, v ∈ Rn.

(2) f(cv) = cf(v) for all vectors v ∈ Rn and scalars c ∈ R.

Example. If A is an m × n matrix and T : Rn → Rm is the function with the formula T (v) = Av for
v ∈ Rn then T is a linear function.

Linear transformations have some additional properties worth noting:

Proposition. If f : Rn → Rm is a linear transformation then

(3) f(0) = 0.

(4) f(u− v) = f(u)− f(v) for u, v ∈ Rn.

(5) f(au + bv) = af(u) + bf(v) for all a, b ∈ R and u, v ∈ Rn.

Proof. We have 2f(0) = f(0 + 0) = f(0) so f(0) = 0.

We have f(u− v) = f(u) + f(−v) = f(u) + (−1)f(v) = f(u)− f(v).

Finally, we have f(au + bv) = f(au) + f(bv) = af(u) + bf(v).

Example. Suppose A =

 1 −3
3 5
−1 7

 and T : R2 → R3 is the function defined by T (v) = Av.

(a) The image of a vector v ∈ R2 under T is by definition T (v) = Av.

The image of v =

[
2
−1

]
under T is T

([
2
−1

])
=

 1 −3
3 5
−1 7

[ 2
−1

]
=

 5
1
−9

.

(b) Is the range of T all of R3? If it was, then (from results last time) A would have a pivot position
in every row. This is impossible since each column can only contain one pivot position, but A has
three rows and only two columns. Therefore range(T ) 6= R3.

4
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The fundamental theorem relating matrices and linear transformations:

Theorem. Suppose T : Rn → Rm is a linear transformation. Then there is a unique m × n matrix A
such that T (v) = Av for all v ∈ Rn.

Moral: matrices uniquely represent linear transformations Rn → Rm.

Proof. Define e1, e2, . . . , en ∈ Rn as the vectors

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en−1 =


0
...
0
1
0

 , and en =


0
...
0
0
1


so that ei has a 1 in the ith row and 0 in all other rows.

Define ai = T (ei) ∈ Rm and A =
[
a1 a2 a3 . . . an

]
. If w is any vector w =


w1

w2

...
wn

 ∈ Rn then

T (w) = T (w1e1 + · · ·+ wnen) = w1T (e1) + · · ·+ wnT (en) = w1a1 + · · ·+ wnan = Aw.

Thus A is one matrix such that T (v) = Av for all vectors v ∈ Rn.

To show that A is the only such matrix, suppose B is a m× n matrix with T (v) = Bv for all v ∈ Rn.

Then T (ei) = Aei = Bei for all i = 1, 2, . . . , n.

But Aei and Bei are the ith columns of A and B. For example,

[
1 2 3 4
5 6 7 8

]
e3 =

[
1 2 3 4
5 6 7 8

]
0
0
1
0

 =

[
3
7

]
.

Therefore A and B have the same columns, so they are the same matrix: A = B.

We call the matrix A in this theorem the standard matrix of the linear transformation T .

Example. Suppose T : Rn → Rn is the function T (v) = 3v.

This is a linear transformation. What is the standard matrix A of T?

As we saw in the proof of the theorem, the standard matrix of T : Rn → Rn is

A =
[
T (e1) T (e2) . . . T (en)

]
=
[

3e1 3e2 . . . 3en
]

=


3 0 . . . 0
0 3 · · · 0
...

...
. . .

...
0 0 · · · 3

 .

In words, A is the matrix with 3 in each position (1, 1), (2, 2), . . . , (n, n) and 0 in all other positions.

One calls such a matrix diagonal .

5
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Example. Suppose T : Rn → R is the function

T




v1
v2
...

vn


 =

[
v1 v2 . . . vn

]


v1
v2
...

vn

 = v21 + v22 + · · ·+ v2n.

This function is not linear: we have T (2v) = 4T (v) 6= 2T (v) for any nonzero vector v ∈ Rn.

Example. Suppose T : Rn → Rn is the function

T




v1
v2
...

vn


 =


vn
...

v2
v1

 .

This function is a linear transformation. (Why?) Its standard matrix is

A =
[
T (e1) T (e2) . . . T (en−1) T (en)

]
=
[
en en−1 . . . e2 e1

]
=


1

1

. .
.

1
1

 .

In the matrix on the right, we adopt the convention of only writing the nonzero entries: all positions in
the matrix which are blank contain zero entries.
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4 Vocabulary

Keywords from today’s lecture:

1. Linearly independent vectors.

Vectors v1, v2, . . . , vp ∈ Rn are linearly independent if x1v1 + · · · + xpvp = 0 holds only if
x1 = x2 = · · · = xp = 0; or when

[
v1 v2 . . . vp

]
has a pivot position in every column.

Vectors that are not linearly independent are linearly dependent.

Example: The three vectors

 1
0
0

,

 0
2
0

 ,

 0
0
3

 are linearly independent.

The four vectors

 1
0
0

,

 0
2
0

 ,

 0
0
3

,

 −1
−2
−3

 are linearly dependent.

2. Domain and codomain of a function f : X → Y .

The domain X is the set of inputs for the function.

The codomain Y is a set that contains the output of the function. This set can also contain
elements that are not outputs of the function.

Example: If A is an m× n matrix then the function T (v) = Av has domain Rn and codomain Rm.

3. Range of a function f : X → Y .

The set range(f) = {f(x) : x ∈ X} ⊂ Y of all possible outputs of the function f .

Example: If A =

 1 0 0
0 1 0
0 0 0

 and T : R3 → R3 has T (v) = Av then range(T ) =


 x

y
0

 : x, y ∈ R

.

4. Linear function f : Rn → Rm.

A function with f(cv) = cf(v) and f(u + v) = f(u) + f(v) for c ∈ R and u, v ∈ Rn.

Example: Every such function has the form f(v) = Av for a unique m× n matrix A.

The matrix A is called the standard matrix of f if f(v) = Av for all v ∈ Rn.

5. Diagonal matrix

A matrix which has 0 in position (i, j) if i 6= j.

Example:


4 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 9

.
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