
MATH 2121 — Linear algebra (Fall 2022) Lecture 22

This document is intended as an exact transcript of the lecture, with extra summary and vocabulary
sections for your convenience. By design, the material covered in lecture is exactly the same as what is in
these notes. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs,
and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

• A line of best fit through data points (a1, b1), (a2, b2), . . . , (an, bn) is an equation y = β0+β1x where

[
β0
β1

]
∈ R2 is a least-squares solution to Ax = b where A =


1 a1
1 a2
...

...
1 an

 and b =


b1
b2
...

bn

 .
• A matrix A is symmetric if A> = A. This can only hold if A is square. For example: 0 −1 0

−1 5 8
0 8 −7

 .
If A is symmetric then so is A2, A3, A4, etc.

If A is symmetric and invertible then so is A−1, A−2, A−3, etc.

If A is symmetric and u and v are eigenvectors for A with different eigenvalues, then u • v = 0.

• A list of vectors u1, u2, . . . , up is orthonormal if ui • ui = 1 and ui • uj = 0 for all i 6= j.

A square matrix P is invertible with P−1 = P> if and only if its columns are orthonormal.

An n× n matrix A is orthogonally diagonalizable if there is a diagonal matrix D and an invertible
matrix P with P−1 = P> such that A = PDP−1.

• When A = PDP−1 whereD is diagonal and P−1 = P>, the diagonal entries ofD are the eigenvalues
of A, and the columns of P are an orthonormal basis of Rn consisting of eigenvectors for A.

Conversely, an n×n matrix A is orthogonally diagonalizable if and only if there exists an orthonor-
mal basis of Rn consisting of eigenvectors for A.

• Surprising fact: all (complex) eigenvalues of a symmetric matrix A = A> belong to R.

Surprising fact: an n× n matrix A is orthogonally diagonalizable if and only if A = A>.

Much of this lecture is spent proving these facts.

• To orthogonally diagonalize a given n×n symmetric matrix A, you need to find an orthogonal basis
of Rn consisting of eigenvectors v1, v2, . . . , vn for A.

Once you find this, let ui = 1
‖vi‖vi and U =

[
u1 u2 . . . un

]
.

Then A = UDU> where D is the diagonal matrix whose ith diagonal entry is the eigenvalue of vi.

• To find the orthogonal basis of eigenvectors v1, v2, . . . , vn for A:

1. Factor the characteristic polynomial of A to compute its eigenvalues.

2. For each eigenvalue λ, do the usual row reduce procedure to find a basis for Nul(A− λI).

3. Apply the Gram-Schmidt process to convert your basis of Nul(A−λI) to an orthogonal basis.

4. Finally combine these orthogonal bases — the combined list of vectors will still be orthogonal.
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1 Last time: least-squares problems

Definition. Suppose A is an m× n matrix and b ∈ Rm.

The linear system A>Ax = A>b is always consistent, so has at least one solution.

A solution to A>Ax = A>b is called a least-squares solution to the equation Ax = b.

Let ‖v‖ =
√
v21 + v22 + · · ·+ v2n ≥ 0 for v ∈ Rn. Recall that ‖v‖ = 0 if and only if v = 0.

Fact. A vector s ∈ Rn is a least-squares solution to Ax = b if and only if ‖b−As‖ ≤ ‖b−Ax‖ for all x.

The linear system Ax = b is consistent if and only if ‖b−Ax‖ = 0 for some x ∈ Rn.

This means that if Ax = b is consistent then all least-squares solutions s satisfy ‖b−As‖ = 0 so As = b.

If Ax = b is inconsistent, there is still at least one least-squares solution s (but in this case ‖b−As‖ > 0).

Theorem. Let A be an m× n matrix. The following properties are equivalent:

(a) Ax = b has a unique least-squares solution for each b ∈ Rm.

(b) The columns of A are linearly independent.

(c) A>A is invertible.

Example (Lines of best fit). Suppose we have n data points (a1, b1), (a2, b2), . . . , (an, bn).

We want to find parameters β0, β1 ∈ R such that y = β0 + β1x describes the line of best fit for this data.

If our points are all on the same line, then for some

[
β0
β1

]
∈ R2 we would have

bi = β0 + β1ai for i = 1, 2, . . . , n,

meaning that x =

[
β0
β1

]
is an exact solution to the linear system Ax = b where

A =


1 a1
1 a2
...

...
1 an

 and b =


b1
b2
...

bn

 .
If the given points are not on the same line, then no exact solution to Ax = b exists, and we should
instead try to find a least-squares solution to this linear system.

To be concrete, suppose we have four points (2, 1), (5, 2), (7, 3), and (8, 3) so that

A =


1 2
1 5
1 7
1 8

 and b =


1
2
3
3

 .
The least-squares solutions to Ax = b are the exact solutions to A>Ax = A>b. We have

A>A =

[
1 1 1 1
2 5 7 8

]
1 2
1 5
1 7
1 8

 =

[
4 22

22 142

]
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and

A>b =

[
1 1 1 1
2 5 7 8

]
1
2
3
3

 =

[
9

57

]
.

The matrix A>A is invertible. (Why?) It follows that a least-squares solution is provided by[
β0
β1

]
= (A>A)−1A>b =

[
4 22

22 142

]−1 [
9

57

]
=

1

84

[
142 −22
−22 4

] [
9

57

]
=

[
2/7

5/14

]
.

Thus our line of best fit for the data is y = 2
7 + 5

14x:

2 Symmetric matrices

A matrix A is symmetric if A> = A. This happens if A is square and Aij = Aji for all i, j.

Example.

[
1 0
0 −3

]
and

 0 −1 0
−1 5 8

0 8 −7

 and

 a b c
b d e
c e f

 are symmetric matrices.

[
1 −3
3 0

]
and

 1 −4 0
−6 1 −4

6 −6 1

 and

[
1 2 3
2 3 5

]
are not symmetric.

Proposition. If A is a symmetric matrix and k is a positive integer then Ak is also symmetric.

Proof. If A = A> then (Ak)> = (AA · · ·A)> = A> · · ·A>A> = (A>)k = Ak.

Proposition. If A is an invertible symmetric matrix then A−1 is also symmetric.

Proof. This is because (A−1)> = (A>)−1.

Recall how we can diagonalize a matrix.

Example. Let A =

 6 −2 −1
−2 6 −1
−1 −1 5

.

Then det(A− xI) = (8− x)(6− x)(3− x) so the eigenvalues of A are 8, 6, and 3. By constructing bases
for the null spaces of A− 8I, A− 5I, and A− 3I, we find that the following are eigenvectors of A:

v1 =

 −1
1
0

 with eigenvalue 8.
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v2 =

 −1
−1

2

 with eigenvalue 6.

v3 =

 1
1
1

 with eigenvalue 3.

These eigenvectors are actually an orthogonal basis for R3.

Converting these vectors to unit vectors gives an orthonormal basis of eigenvectors:

u1 =

 −1/
√

2

1/
√

2
0

 , u2 =

 −1/
√

6

−1/
√

6

2/
√

6

 , u3 =

 1/
√

3

1/
√

3

1/
√

3

 .
We then have A = PDP−1 where

P =
[
u1 u2 u3

]
and D =

 8 0 0
0 6 0
0 0 3

 .
(Why does this hold? It is enough to check that PDP−1v = Av for v ∈ {u1, u2, u3}.)

Since the columns of P are orthonormal, we actually have P> = P−1 so A = PDP>.

The special properties in this example will turn out to hold for all symmetric matrices.

Theorem. Suppose A is a symmetric matrix. Then any two eigenvectors from different eigenspaces of
A are orthogonal. In other words, if A = A> is n× n and u, v ∈ Rn are such that Au = au and Av = bv
for numbers a, b ∈ R with a 6= b, then u • v = 0.

Proof. Let u and v be eigenvectors of A with eigenvalues a and b, where a 6= b.

Then au • v = Au • v = (Au)>v = u>A>v = u>Av = u •Av = u • bv.

But au•v = a(u•v) and u•bv = b(u•v), so this means a(u•v) = b(u•v) and therefore (a−b)(u•v) = 0.

Since a− b 6= 0, it follows that u • v = 0.

Recall that a matrix P is orthogonal if P is invertible and P−1 = P>.

Definition. A matrix A is orthogonally diagonalizable if there is an orthogonal matrix P and a diagonal
matrix D such that A = PDP−1 = PDP>.

When A is orthogonally diagonalizable and A = PDP−1 = PDP>, the diagonal entries of D are the
eigenvalues of A, and the columns of P are the corresponding eigenvectors; moreover, these eigenvectors
form an orthonormal basis of Rn.

In fact, it follows by the arguments in our earlier lectures about diagonalizable matrices that an n × n
matrix A is orthogonally diagonalizable if and only if there is an orthonormal basis for Rn consisting of
eigenvectors for A.

Surprisingly, there is a much more direct characterization of orthogonally diagonalizable matrices:

Theorem. A square matrix is orthogonally diagonalizable if and only if it is symmetric.

We prove this after a sequence of lemmas.

Lemma. If A is orthogonally diagonalizable then A is symmetric.
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Proof. If X,Y, Z are n× n matrices then (XY Z)> = Z>(XY )> = Z>Y >X>.

Suppose A = PDP> where D is diagonal. Then D = D> and (P>)> = P , so

A> = (PDP>)> = (P>)>D>P> = PDP> = A.

Lemma. All (complex) eigenvalues of an n× n symmetric matrix A with real entries belong to R.

Proof. Suppose A is a symmetric n× n matrix with real entries, so that A = A> = A.

Let v ∈ Cn. Then v>Av is some complex number.

For example, if A =

[
1 2
2 1

]
and v =

[
1 + i
1− i

]
then

v>Av =
[

1− i 1 + i
] [ 1 2

2 1

] [
1 + i
1− i

]
=
[

3 + i 3− i
] [ 1 + i

1− i

]
= (3 + i)(1 + i) + (3− i)(1− i) = 4.

In fact, the number v>Av belongs to R since v>Av = v>Av =
(
v>Av

)>
= v>Av.

(The last equality holds since both sides are 1× 1 matrices, i.e., scalars.)

Now suppose v ∈ Cn is an eigenvector for A with eigenvalue λ ∈ C. Then v>Av = v>(λv) = λ(v>v) ∈ R.
The complex number v>v always belongs to R (why?) so it must also hold that λ ∈ R.

Lemma. An n×n matrix A with all real eigenvalues can be written as A = URU> where U is an n×n
orthogonal matrix (i.e., has orthonormal columns) and R is an n× n upper-triangular matrix.

One calls A = URU> with U and R of this form a Schur factorization of A.

Proof. Suppose A is an n× n matrix with all real eigenvalues.

Let u1 ∈ Rn be a unit eigenvector for A with eigenvalue λ ∈ R.

Let u2, . . . , un ∈ Rn be any vectors such that u1, u2, . . . , un is an orthonormal basis for Rn.

(One way to construct these vectors: let u1 = x1, x2, . . . , xn be any basis, apply the Gram-Schmidt
process to get u1 = v1, v2, . . . , vn, and then convert each vi to a unit vector.)

Define U =
[
u1 u2 . . . un

]
so that U> = U−1.

By considering the product U>AUei for i = 1, 2, . . . , n, one finds that U>AU has the form

U>AU =

[
λ ∗
0 B

]
for some (n− 1)× (n− 1) matrix B. Here, ∗ stands for n− 1 arbitrary entries.

The matrix U>AU = U−1AU has the same characteristic polynomial as A.

This polynomial is just (λ− x) det(B − xI), which is λ− x times the characteristic polynomial of B.

Since the characteristic polynomial of A has all real roots, the same must be true of the characteristic
polynomial of B. Thus B must also have all real eigenvalues.

By repeating the argument above, we deduce that there is an eigenvalue µ ∈ R for B, an (n−1)× (n−1)
orthogonal matrix V , and an (n− 2)× (n− 2) matrix C with all real eigenvalues such that

V >BV =

[
µ ∗
0 C

]
.
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The matrix

[
1 0
0 V

]
is also orthogonal, and the product of orthogonal matrices is orthogonal. (Why?)

It follows for the orthogonal matrix W = U

[
1 0
0 V

]
that W>AW =

 λ ∗ ∗
0 µ ∗
0 0 C

 .
By continuing in this way, we will eventually construct an orthogonal matrix X and an upper-triangular
matrix R such that X>AX = R, in which case A = XX>AXX> = XRX>.

Now we can prove the theorem.

Proof of theorem. The first lemma shows that if A is orthogonally diagonalizable then A is symmetric.

Suppose conversely that A is symmetric. Then A has all real eigenvalues, so there exists a Schur factor-
ization A = URU>. We then have A> = (URU>)> = UR>U> but also A> = A = URU>.

Since U> = U−1, it follows that R = R>. Since R is upper-triangular, this can only hold if R is diagonal.

But if R is diagonal then A = URU> is orthogonally diagonalizable.

To orthogonally diagonalize an n × n symmetric matrix A, we just need to find an orthogonal basis of
eigenvectors v1, v2, . . . , vn for Rn. Then A = UDU> with U =

[
u1 u2 . . . un

]
where ui = 1

‖vi‖vi
and D is the diagonal matrix of the corresponding eigenvalues.

If all eigenspaces of A are 1-dimensional, then any basis of eigenvectors will be orthogonal. If A has an
eigenspace of dimension greater than one, then after finding a basis for this eigenspace, it is necessary to
apply the Gram-Schmidt process to convert this basis to one that is orthogonal.

Corollary. If A = UDU> where U =
[
u1 u2 . . . un

]
has orthonormal columns and

D =


λ1

λ2
. . .

λn


is diagonal, then A = λ1u1u

>
1 + λ2u2u

>
2 + · · ·+ λnunu

>
n .

Each product uiu
>
i is an n× n matrix of rank 1. One calls this expression a spectral decomposition of A.

Example. Let A =

[
7 2
2 4

]
. A spectral decomposition of A is given by

A =

[
2/
√

5 −1/
√

5

1/
√

5 2/
√

5

] [
8 0
0 3

] [
2/
√

5 1/
√

5

−1/
√

5 2/
√

5

]

= 8

[
2/
√

5

1/
√

5

] [
2/
√

5 1/
√

5
]

+ 3

[
−1/
√

5

2/
√

5

] [
−1/
√

5 2/
√

5
]

=

[
32/5 16/5
16/5 8/5

]
+

[
3/5 −6/5
−6/5 12/5

]
.
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3 Vocabulary

Keywords from today’s lecture:

1. Symmetric matrix.

A matrix A that is equal to its transpose, so that A = A>. Such a matrix is square.

Symmetric matrices are precisely the square matrices A that are orthogonally diagonalizable,
in other words, the matrices that can be expressed as

A = PDP>

where D is a diagonal matrix and P is an invertible matrix with P−1 = P>.

Example:

[
1 2
2 3

]
or any diagonal matrix.

2. Schur factorization of an n× n matrix A.

A decomposition A = URU> where R is an n× n upper triangular matrix and U is an orthogonal
matrix (i.e., U is invertible with U−1 = U>).
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