Due on Thursday, February 17.

- 1. Let \mathfrak{A} be an \mathbb{F} -algebra, not necessarily associative. Show that the vector space of derivations Der \mathfrak{A} is a Lie subalgebra of $\mathfrak{gl}(\mathfrak{A})$. (See §III.1.3 in the textbook.)
- 2. Let $L = \mathbb{R}^3$ and define $[u, v] = u \times v$, the usual cross product of vectors, for $u, v \in L$. Verify that L is a Lie algebra.
- 3. Show that there exists a unique 2-dimensional Lie algebra $L = \mathbb{F}$ -span $\{X, Y\}$ with [X, Y] = X. Find a subalgebra of $\mathfrak{gl}_n(\mathbb{F})$ for some *n* that is isomorphic to *L*. Finally, show that *L* is solvable but not nilpotent.
- 4. Suppose $X \in \mathfrak{gl}_n(\mathbb{F})$ has *n* distinct eigenvalues $a_1, a_2, \ldots, a_n \in \mathbb{F}$. Prove that the eigenvalues of ad X are the n^2 scalars $a_i a_j$ for $1 \leq i, j \leq n$ (which are not necessarily distinct).
- 5. Let L be a Lie algebra over an algebraically closed field and let $X \in L$. Prove that the subspace of L spanned by the eigenvectors of ad X is a Lie subalgebra.
- 6. Show that $[\mathfrak{sl}_n(\mathbb{F}), \mathfrak{sl}_n(\mathbb{F})] = \mathfrak{sl}_n(\mathbb{F})$ if \mathbb{F} has characteristic zero. Check that $\mathfrak{sl}_2(\mathbb{F})$ is nilpotent if \mathbb{F} has characteristic 2.
- 7. Prove that a Lie algebra L is solvable if and only if there exists a chain of Lie subalgebras $L = L_0 \supset L_1 \supset L_2 \supset \cdots \supset L_k = 0$ such that each L_{i+1} is an ideal of L_i with L_i/L_{i+1} abelian.
- 8. Show that $\mathfrak{sl}_4(\mathbb{F}) \cong \mathfrak{o}_6(\mathbb{F})$.
- 9. Let L be a nilpotent Lie algebra. Prove that L has an ideal of codimension 1.
- 10. Suppose \mathbb{F} has characteristic zero and $L \subseteq \mathfrak{gl}(V)$ is a Lie algebra for some vector space V. Show that if $X \in L$ is such that ad X is nilpotent then the formula

$$\exp(\operatorname{ad} X) := \sum_{n=0}^{\infty} \frac{1}{n!} (\operatorname{ad} X)^n$$

defines an automorphism of L. Show that if X is nilpotent (as an element of $\mathfrak{gl}(V)$) then

$$\exp(X) := \sum_{n=0}^{\infty} \frac{1}{n!} X^n$$

is an invertible element of $\mathfrak{gl}(V)$ such that

$$(\exp X)Y(\exp X)^{-1} = \exp(\operatorname{ad} X)(Y)$$

for all $Y \in L$. (See §III.2.3 in the textbook.)