Instructions: Complete the following exercises. Solutions will be graded on clarity as well as correctness. Feel free to discuss the problems with other students, but be sure to acknowledge your collaborators in your solutions, and to write up your final solutions by yourself.
Due on Thursday, February 17.

1. Let \mathfrak{A} be an \mathbb{F}-algebra, not necessarily associative. Show that the vector space of derivations Der \mathfrak{A} is a Lie subalgebra of $\mathfrak{g l}(\mathfrak{A})$. (See §III.1.3 in the textbook.)
2. Let $L=\mathbb{R}^{3}$ and define $[u, v]=u \times v$, the usual cross product of vectors, for $u, v \in L$. Verify that L is a Lie algebra.
3. Show that there exists a unique 2-dimensional Lie algebra $L=\mathbb{F}$-span $\{X, Y\}$ with $[X, Y]=X$. Find a subalgebra of $\mathfrak{g l}_{n}(\mathbb{F})$ for some n that is isomorphic to L. Finally, show that L is solvable but not nilpotent.
4. Suppose $X \in \mathfrak{g l}_{n}(\mathbb{F})$ has n distinct eigenvalues $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{F}$. Prove that the eigenvalues of ad X are the n^{2} scalars $a_{i}-a_{j}$ for $1 \leq i, j \leq n$ (which are not necessarily distinct).
5. Let L be a Lie algebra over an algebraically closed field and let $X \in L$. Prove that the subspace of L spanned by the eigenvectors of $\operatorname{ad} X$ is a Lie subalgebra.
6. Show that $\left[\mathfrak{s l}_{n}(\mathbb{F}), \mathfrak{s l}_{n}(\mathbb{F})\right]=\mathfrak{s l}_{n}(\mathbb{F})$ if \mathbb{F} has characteristic zero. Check that $\mathfrak{s l}_{2}(\mathbb{F})$ is nilpotent if \mathbb{F} has characteristic 2 .
7. Prove that a Lie algebra L is solvable if and only if there exists a chain of Lie subalgebras $L=L_{0} \supset$ $L_{1} \supset L_{2} \supset \cdots \supset L_{k}=0$ such that each L_{i+1} is an ideal of L_{i} with L_{i} / L_{i+1} abelian.
8. Show that $\mathfrak{s l}_{4}(\mathbb{F}) \cong \mathfrak{o}_{6}(\mathbb{F})$.
9. Let L be a nilpotent Lie algebra. Prove that L has an ideal of codimension 1 .
10. Suppose \mathbb{F} has characteristic zero and $L \subseteq \mathfrak{g l}(V)$ is a Lie algebra for some vector space V. Show that if $X \in L$ is such that ad X is nilpotent then the formula

$$
\exp (\operatorname{ad} X):=\sum_{n=0}^{\infty} \frac{1}{n!}(\operatorname{ad} X)^{n}
$$

defines an automorphism of L. Show that if X is nilpotent (as an element of $\mathfrak{g l}(V)$) then

$$
\exp (X):=\sum_{n=0}^{\infty} \frac{1}{n!} X^{n}
$$

is an invertible element of $\mathfrak{g l}(V)$ such that

$$
(\exp X) Y(\exp X)^{-1}=\exp (\operatorname{ad} X)(Y)
$$

for all $Y \in L$. (See \S III.2.3 in the textbook.)

