Due on Thursday, March 31.

Throughout, Φ denotes a root system in a real vector space E with Weyl group W. Fix a simple system Δ for Φ and define $\Phi^{\pm} \subset \Phi$ accordingly. Let $\ell : W \to \mathbb{N}$ denote the length function of W.

- 1. Define a map sgn : $W \to \{\pm 1\}$ by sgn $(w) = (-1)^{\ell(w)}$. Prove that this is a group homomorphism.
- 2. For $\gamma \in E$ let $P_{\gamma} = \{v \in E : (v, \gamma) > 0\}$. Prove for any finite set of linearly independent vectors $\gamma_1, \gamma_2, \ldots, \gamma_k \in E$ that the intersection $\bigcap_{i=1}^k P_{\gamma_i}$ is nonempty.
- 3. Prove that there is a unique element $w_0 \in W$ with $w_0(\Phi^+) = \Phi^-$. Prove that any reduced expression for w_0 must involve every simple reflection r_α for $\alpha \in \Delta$.
- 4. Recall that $\Phi^{\vee} = \{\alpha^{\vee} : \alpha \in \Phi\}$ where $\alpha^{\vee} = 2\alpha/(\alpha, \alpha)$. Prove that if Φ is irreducible then so is Φ^{\vee} .
- 5. Prove that if $0 \neq \alpha \in E$ and the reflection r_{α} belongs to W, then $r_{\alpha} = r_{\beta}$ for some $\beta \in \Phi$.
- 6. Prove that W is isomorphic to the direct product of the respective Weyl groups of the irreducible components of Φ .