MATH 5143 - Lecture \# 11

MATH SIU3 - Lecture 11

Clarifications about universal enveloping algebras
L Lie algebra
$T(L)$ tenser algebra (asroc.)als. but nencommutative
$S(L)$ symmetric algebra (assoc.) alg phat is commutative
$u(L)$ univ. enveloping algebra (assoc.) alg. also NOT commutative
What's true: the associated graded algebra of $U(L)$ is $\cong S(L)$ in $U(L)$ we have $\underset{\operatorname{deg} 2}{x y}=\underset{\operatorname{deg} 2}{Y x}+\underset{\operatorname{deg} 1}{[x, y]} \neq Y x$
key point: multiplication of homogeneous tensors in $U(L)$ IGNORING LOWER ORDER TERMS is commutative

Last time $I F$ is an alg. closed field of characteristic zero
Fix a root sister Φ with simple roots $\Delta=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$
Define L to be the Lie algebra / IT generated by

$$
x_{1}, y_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}, h_{1}, h_{2}, \ldots, h_{n}
$$

Subject to relations (SI) $\left[h_{i}, h_{j}\right]=0$
(SI) $\left[x_{i}, y_{j}\right]=\delta_{i j} h_{i}$
(53)

$$
\begin{aligned}
& {\left[h_{i}, x_{j}\right]=\left\langle\alpha_{j}, \alpha_{i}\right\rangle x_{j}} \\
& {\left[h_{i}, y_{j}\right]=-\left\langle\alpha_{j}, \alpha_{i}\right\rangle y_{j}}
\end{aligned}
$$

Thin (Serve) L is a finte-dimes semisimple Lie algebra with Carton subalgebie. $A \stackrel{\text { def }}{=} \mathbb{F}$-span $\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ and root system $\cong \Phi$. Also any semisimple Le algebra with root system $\cong \Phi$ is (naturally) $\cong L$.

Prop If L is a nonzero Lie algebra of $g(v)$ (resp; slew)) where $\operatorname{din} V<\infty$ and V is an irreducible L-module then L is reductive (resp. semis simple)

Cor Each classical Lie algebra $s \ln (H), s P_{2_{n}}(H)$, or $\eta_{n}(H)$ is a semisimple (and simple) subalgebra of $s \ell(v)$
(for $V=F^{n}$ or $F^{2 n}$). Z because the root systems have camected Deakin diagrams

Representation theory setup: L is a semisimple fin. dim. Lie algebra / F $H \subseteq L$ is a Carton subalsebra, $\Phi \subset H^{*}$ is the root system, $\Delta=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\} \subset \Phi$ is a chosen base, $\Phi^{+}=\{$positive roots $\}$, and $W=\left\langle r_{\alpha} \mid \alpha \in \Phi\right\rangle=\left\langle r_{\alpha} \mid \alpha \in \Delta\right\rangle S G L\left(H^{*}\right)$

First key observation: Any finite-dim L-module V decomposes as a direct sum of weight spaces $V=\underset{-\underset{-1}{\Theta} H^{*}}{ } V_{\lambda}$ where $V_{t} \stackrel{\text { def }}{=}\{v \in V \mid h \cdot v=t(h) v$ theA $\}$ Call delta weight of V if $V_{1} \neq 0$ and call V_{λ} a weight space. we make same definitions if $\operatorname{dim} V=\infty$ but in that case the sum of weight spaces $\underset{t \in H^{*}}{\oplus} V_{\lambda}$ [which is always direct] may be $\underset{t}{ } V$.

Idea: to avoid pathologies with arbitiary infmite-dim L-modules, we consider standard cyclic modules.

A maximal vector of weight $t \in A^{*}$ in an arbitrary L-module V is a vector $0 \neq V^{+} \in V$ with $x_{v^{+}}=0 \quad \forall x \in L_{\alpha} \quad \forall \alpha \in \Delta$

Lie's theorem (applied to the Bored algebra $B=H \oplus \oplus L_{\alpha}$ acting $\alpha \in \Phi^{+}$ on V) ensures that V has a maximal vector whenever $\operatorname{dim} V<\infty$.

Def A standard cyclic module for L is an L-module V with a maximal vector v^{+}such that $V=u(L) \cdot v^{+}$.
In this situation, the maximal vector v^{+}will belong to V_{t} for some $t \in H^{*}$, and we say V has highest weight λ and we call v^{+}is a highest weight vector

The (structure the for standard cyclic modules)
For each $\beta \in \Phi^{+}$chase $x_{\beta} \in L_{\beta}, y_{\beta} \in L_{-\beta}$ such that $\left[x_{\beta,}, y_{\beta}\right]=h_{\beta} \in H$ write $\lambda>\mu$ for $\lambda, \mu \in H^{*}$ if $t-\mu \in \mathbb{Z}_{\geq 0}-\operatorname{span}\{\alpha \in \Delta\}$

Suppose V is standard Cyclic L-module with maximal vector $V^{+} \in V_{-1}$
(a) If $\Phi^{+}=\left[\beta_{1}, \beta_{2}, \beta_{3}, \ldots\right]$ then v is spanned by vectors of the form
$y_{\beta_{1}} y_{\beta_{i 2}} y_{\beta_{3}} \cdots y_{\beta_{k}}$ whore $1 \leq i_{1} \leq i_{2} \leq i_{3} \leq \ldots \leq i_{k}$
(b) All weights μ for V have $\mu<\lambda$ and $\operatorname{dim} V_{\mu}<\infty$ and $\operatorname{dim} V_{f}=1$.
(c) Any swbmodule of V is a direct sum of its weight spaces
(d) V is indecomporable with unique maximal proper submolle and unique irraduibe quotient
(e) Evert homomophic mage of V is standard cyolic of same weight +
(f) If V is irreducible then all maximal vectors are nonzero scalar multiples of $v^{+} \in V$.

Today: first, two more thins about standard cyclic modules
Thin If V and W are irreducible standard cyclic L-modules with same highest weight $t \in H^{*}$ then $V \cong W$
Tho B If $t \in H^{*}$ then there exists an irreducible standard cyclic L-module $V(\lambda)$ of highest weight λ.
Plot Thu A. Let $x=V \oplus W \stackrel{\text { del }}{=}\{v+w \mid v \in V, w \in W\}$. This is an L-module and if $v^{+} \in V$ and $w^{+} \in W$ are highest weight vectors then $x^{+} \stackrel{\text { def }}{=} v^{+}+w^{+} \in X$ is a maximal vector also of weight t.
Let Y be the submadule of X generated by X^{+}. This is standard cyclic by def. But $V \cong Y /$ kern π_{1} and $W \cong Y /$ kern π_{2} where $\pi_{1}: Y+V$ and $\pi_{2}: Y \rightarrow W$ are the dovias suriective homomaph isms This means V and W are both isomorphic to the unique ere) lucite quot int of Y. D

To prove Tim B we must explain how to construct standard ck modules Induced modules Begin with a 1 -dim vector space $D_{1}=\mathbb{F} \operatorname{span}\left\{v^{+}\right\}$ spanned by some vector V^{+}. Let $t \in H^{*}$ and $B=B(\Delta) \stackrel{\text { def }}{=} H \oplus \underset{\alpha \in \Phi^{+}}{\oplus} L \subset L$. The Borel subalgebra B acts on D_{1} linearly by

$$
h \cdot v^{+} \stackrel{d e^{t}}{=} f(h) v^{+} \text {and } x v^{+} \stackrel{\text { def }}{=} 0 \text { for } h f t, \alpha \in \Phi^{+}, x \in L_{\alpha}
$$

This makes D_{1} into a module for B and for U(B) Def Let $Z(\lambda) \stackrel{\text { def }}{=} U(L) B^{(B)} D_{\lambda}$
This a general construction of a $U(L)$-module: $u(L)+D_{\lambda}$ Concretely, $Z(A)$ is vector pace spared by light $u(B)$-mad $u(B)$-mod the tensors $x \otimes y\left(x \in u(L), y \in O_{\lambda}\right)$ subject to relations

$$
\begin{aligned}
& \left(x+x^{\prime}\right)<y=x \text { (} y+x^{\prime} \text { © } y \quad c(x(x)=l(x)(2) y=x \text { (©) }(x) \\
& x(8)\left(x+y^{\prime}\right)=x \text { © }+x \text { (By) } \quad x b \otimes y=x \otimes \text { by for } x \in U(L), b \in U(B), y \in D_{\lambda}
\end{aligned}
$$

The way L acts on $Z(A)$ is $A \cdot(x(0 y) \stackrel{\text { deft }}{=}(A x) \Delta y$ (w/ highest weight vector $\left.10 v^{+}\right)$
Claim $Z(-1)$ is a standard cyclic L-module of weight -1 .
Pf Every $y \in D_{\lambda}$ is a scalar multiple of v^{+}so every tensor $x \not 2 f \in Z(-1)$ is equal to $\tilde{x} \cdot\left(1 \Delta v^{+}\right)$where $\tilde{x} \in u(L)$ is a scalar multiple of x. For $x \in L_{\alpha}$ for $\alpha \in \Delta$ we have $x \in B$ so $x \cdot\left(10 v^{t}\right)=x \otimes v^{+}=1 \otimes x v^{+}=100=0$. Also for $h \in A \subset B$ we have $h \cdot\left(10 v^{\prime}\right)=h \theta v^{+}=1 \otimes h v^{+}=1 \otimes \lambda(h) v^{+}=\lambda(h)\left(10 v^{+}\right) 0$

Let $N^{-}=\underset{\alpha \in-\Phi^{+}}{\oplus} \underset{\sim}{\alpha}$. The relation $x b \otimes v^{+}=x \otimes b v^{+} \forall b \in B$, since $L=N=A B$, implies that if $\Phi^{+}=\left\{\beta_{1}, \beta_{2}, \beta_{z}, \ldots\right\}$ and $\left\{\begin{array}{l}x_{i}=x_{\beta_{i}} \text { spans } L_{\beta_{i}} \\ y_{i}=y_{\beta i} \text { spans } L_{-\beta_{i}}\end{array}\right\}$ then

$$
\left\{y_{i}, y_{i 2} \cdots y_{i_{k}} \otimes v^{+} \mid k \geq 0 \text { and } i_{1} \leq i_{2} \leq \ldots \leq i_{k}\right\}
$$

is a basis for $Z(\lambda)$, via the PBW theorem.
Prop $Z(\lambda) \cong U(L) / I(\lambda)$ as $U(L)$-modules, where $I(\lambda)$ is left ideal generated in $U(L)$ by the elements

$$
\left\{x_{1}, x_{2}, x_{3},\right\} \cup\left\{h_{\alpha}-\lambda\left(h_{\alpha}\right) \cdot 1 \mid \alpha \in \Phi\right\}
$$

Pf These generators annihilate $1 \otimes \mathrm{~V}^{+}$so there is a smjective morphison $u(L) / I(t) \rightarrow Z(t)$ which is injectre using PBW theorem. \square

Thin (Tam B) Define $V(t)$ for $\lambda \in A^{*}$ to be the unique irreducible quotient of the Standard cyclic module $z(\lambda)$.
Then $V(A)$ is standard cyclic of weight t and irreducible.
Note: $V(t)$ still might be infinite -dimensional
Pf since $Z(\lambda)$ is standard (cycle, and since $V(H)$ as a quotient is a homomopphic image of $z(1)$, every thing follows from structure theorem for standard cyclic modules. (D)
Ir some sense, hardest part of thin is showing $Z(A) \neq 0$ (but we will not diccull this issue in detail, fallows from PBW thm)

Two new goals: (1) Explain when $V(1)$ is finite. dim.
(2) Determine weight spaces $v(-))_{\mu} \leq v(-)$

Fact If V is any irreducible L-module with $\operatorname{dim} V<\infty$ then $V \cong V(t)$ for same $\lambda\left(t t^{*}\right.$.

Pf If dimv<a then Lie's thin applied to B-action on V implies existence of a maximal vector of some weight λ. This vector must generate V by irreducibility, so $V \cong V(-)$ by ohm A. o

For each simple root $\alpha_{i} \in \Delta$ let $S_{i}=S_{\alpha_{i}}=L_{-\alpha_{i}}(4) \mathbb{F} h_{\alpha_{i}} \oplus L_{\alpha_{i}} \cong S \ell_{2}(f)$ Then $V(A)$ is a module for S_{i} and a maximal vector for L is also maximal for S_{i}
The If $V \cong V(t)$ and $\operatorname{dim} V<\infty$ then $\lambda\left(h_{\alpha_{i}}\right) \in \mathbb{Z}_{\geq 0} \forall \alpha_{i} \in \Delta$ and if $\mu \in H^{*}$ is any weight for V then $\mu\left(h_{\alpha_{i}}\right) \in \mathbb{Z} \forall \alpha_{i} \in \Delta$
pfsketen Follows from $s l_{2}$-rept theory as V decomposer ar sum of finding irs. S_{i}-modules.

Call $t \in \mathbb{H}^{*}\left\{\begin{array}{l}\text { dominant if } \lambda\left(h_{\alpha}\right)>0 \quad \forall \alpha \in \Delta \text { (equiv. } \forall \alpha \in \Phi^{+} \text {) } \\ \left.\text { integral if } \lambda\left(h_{\alpha}\right) \in \mathbb{Z} \quad \forall \alpha \in \Delta \text { (equiv. } \forall \alpha \in \Phi\right)\end{array}\right.$
Then $\lambda \in H^{*}$ is dominant integral if $f\left(h_{\alpha}\right) \in \mathbb{Z}_{\geq 0} \quad \forall \alpha \in \Delta$
Let Λ be abelian group of integral weights and Λ^{+}the subset of dominant integral weights. Note that $\Lambda \supset \Phi$.
For an (-module V let $T(V) \subseteq H^{*}$ be its set of weights and define $\pi(-)=\pi(V(-))$). If $\operatorname{dim} V<\infty$ then $\pi(\lambda) \subset \Lambda$.
Next mainthn suppose $t \in \Lambda^{+}$. Then $V(t)$ has finite dimension and the Wert grape $W \in G\left(H^{+}\right)$permutes $\pi(A)$ with $\operatorname{dim} V(A)_{\mu}=\operatorname{dim} V(A) \sigma_{\mu} \forall \sigma \in W$.
Cor the map $H_{H} \rightarrow V(\lambda)$ is a bijection from Λ^{+}to isomorphism olasses of irreducible finn. dim. L-modules. If combine main the with fact and the on prev slide (along with Thin A)

Pf sketch of main thin
Some identities in $U(L)$: writing $x_{i}=x_{\alpha i}, y_{i}=y_{\alpha_{i}}, h_{i}=h_{\alpha i}$ for $\alpha_{i} \in \Delta$
(a) $\left[x_{j}, y_{i}^{k+1}\right]=0$ when $i \neq j, k \geq 0$
(b) $\left[h_{j}, y_{i}^{k+1}\right]=-(k+1) \alpha_{i}\left(h_{j}\right) y_{i}^{k+1} \quad(k \geqslant 0)$
(c) $\left[x_{i}, y_{i}^{k+1}\right]=-(k+1) y_{i}^{k}\left(k-h_{i}\right) \quad(k \geq c)$
straight for word algebra by induction an $k \geq 0$.
Now we derive a series of claims.
Claim (1) $y_{i}^{m_{i}+1} v^{+}=0$ where $m_{i}=\lambda\left(h_{i}\right) \in \mathbb{Z} \geq 0$, and $v^{+} \in V=V(A)$ is a Pf otherwise can use (a)-(c) to show that $y_{i}^{m_{i}+1} v^{+}$ is a second maximal vector of weight $\neq 1$ which is impossible D

Clain12) V contains a nonzero findim. $S_{i}=s_{\alpha_{i}}$-module Pf Consider subspace spermed by $v^{+}, y_{i} v^{+}, y_{i}^{2} v^{+}, \ldots$ This is finite dim by claim (1). \mathbf{D}

Claim (3) V is a sum of finte-dim δ_{i}-modules Pf Let V^{\prime} be the sum of all S_{i}-submodules of finite. dim in V Then $V^{\prime} \neq 0$ by claim (2). Check that V^{\prime} is an L-motile, hence $V^{\prime}=V$ since V irreducible -D

Claim (u) If $\phi: L \rightarrow g l(V)$ is reps corvepp to L-module structure on V then $\phi\left(x_{i}\right)$ and $\phi\left(y_{i}\right)$ are both locally nilpotent (meaning nilpotent when restricted to a finite-dim subspace)
Pf each $v \in V$ is in a finite sumo of $f_{m \text { m. }}^{(m .}$. si-molules, on which $\phi\left(x_{i}\right), \phi\left(y_{i}\right)$ act as nilpotent operators, by $s l_{2}$-reps theory.

Claim (s) Define $\sigma_{i} \stackrel{\text { def }}{=} \exp \left(x_{i}\right) \exp \left(-y_{i}\right) \exp \left(x_{i}\right)$. This is an automorphism of V (as a vector space)
Pf Just need to check that σ_{i} is well-defined, but this follows from prev claim. 0

Claim (6) If μ is a weight of V then $\sigma_{i}\left(V_{\mu}\right)=V_{\nu}$ for $V \stackrel{\text { def }}{=} r_{\alpha_{i}}(\mu)$ with $r_{\alpha} \in W$ the usual reflection. by structure them for standard cycle modes
Pf Follows from $s l_{2}$-rem theory since V_{μ} is $\tilde{f i n}_{\text {in -dim }} s_{i}$-summed.
Claim (7) If $\mu \in \pi(V)=\pi(A)$ and $w \in w$ then $w(\mu) \in \pi(-\lambda)$ and $\operatorname{dim} V_{u(p)}=\operatorname{dim} V_{\mu}$
Pf Immediate from Claim (6) as $W=\left\langle r_{\alpha_{i}} \mid \alpha_{i} \in \Delta\right\rangle$ o

Claim (8) $\pi(\lambda)$ is finite
Pf $\pi(-)$ is a subset of the set of W-conjugates of all dominant integral $\mu \in A^{*}$ with $\mu<\lambda$ by prev claim and structure thin of stamard colic modules. Results in chaplor B of textbook imply this set is finite. \square

Claim 19) $\operatorname{dim} v<\infty$ since $\pi(v)=\pi(1)$ is finite and each $\mu\left(\pi(t)\right.$ has $\operatorname{dim} V_{\mu}<\infty \quad D$

Multiplicity formula Fix $\lambda \in \Lambda^{+}$. Then $V(A)$ is fin dim irreducible. For $\mu \in H^{*}$ let $m_{\lambda}(\mu) \stackrel{\text { del }}{=} \operatorname{dim} \nu(\lambda) \mu \in \mathbb{Z} \geq 0$
This is zero if $\mu \$ \pi(\lambda)$. Call $\left.m_{\lambda} \mid \mu\right)$ the multiplicity of μ in $v(A)$. If $\mu \in H^{*}$ and $\mu \notin \Lambda$ then $\mu \Phi \pi(\lambda)$ so $m_{1}(\mu)=0$.
The (Freucentina)'s formula) If $\mu \in \Lambda$ and $\delta=\frac{1}{2} \sum_{\alpha \in \Phi^{+}}^{\alpha}$ then

$$
((\lambda+\delta, \lambda+\delta)-(\mu+\delta, \mu+\delta)) m_{\lambda}(\mu)=2 \sum_{\alpha \in \Phi^{+}} \sum_{i=1}^{\infty} m_{\lambda}(\mu+i \alpha)(\mu+\alpha, \alpha)
$$

and this formula provides an effective algarthon to compute $m_{\lambda}(\mu)$.
Key point (nontrivial, see δn of text book): it $-7 \neq \mu$ then $\|\lambda+\delta\|^{2} \neq\|\mu+\delta\|^{2}$ minor point (trial): $m_{\lambda}(\lambda)=1$
so can divide both sides by this number

Formal characters wart to assign to each fin. dim L-module a vector (similar to charader of a group reps) that identifies its isomorphism class.

Notation let $\mathbb{Z}[1]$ be the free \mathbb{Z}-module with boris given bs symbols $\left[e^{\lambda} \mid f(\Lambda)\right]$ and make this additive group into a ring by setting $e^{\lambda} e^{\mu}=e^{-\lambda+\mu}$. Here $\Lambda \subset H^{*}$ is the infinite set of integral weights, including $0 \in \Lambda$.
Def If $\lambda \in \Lambda^{+}$then the formal character of $V \cong V(\lambda)$ is $c_{V}=c_{1} \stackrel{\operatorname{del}}{=} \sum_{\mu \in T(A)} m_{\lambda}(\mu) e^{\mu} \in \mathbb{Z}[\Lambda]$.
If V is arb. finite dim. L-module then V has unique de comp.
$\left.V \cong V\left(\lambda_{1}\right) \oplus V\left(t_{2}\right) \oplus \ldots \odot V C_{k}\right)$ with each $\lambda_{i} \Lambda^{+}$and we set oh $v=\sum_{i=1}^{k} c_{\lambda_{1}}$

Ex If $L=s l_{2}(\mathbb{H})$ then $C h_{1}=e^{\lambda}+e^{-1-\alpha}+e^{1-2 \alpha}+\ldots+e^{t-m \alpha}$ whore $m=\langle\lambda, \alpha\rangle\left[\right.$ Here $\left.\alpha=\left[\begin{array}{l}1 \\ 1\end{array}\right], \lambda=\left[\begin{array}{l}1 \\ \lambda_{2}\end{array}\right), m=\lambda_{1}-\lambda_{2}\right]$

Weal grape W acts a $\mathbb{Z}[\Lambda]$ by

$$
w \cdot\left(\sum_{\mu \in \Lambda} c_{\mu} e^{r}\right)=\sum_{\mu \in \Lambda} c_{\mu} e^{w(\mu)} \text { where } c_{\mu} \in \mathbb{Z}
$$

Cor chr is fixed by every wed. If $m_{\lambda}(\mu)=m_{\lambda}(w(\mu)) V_{\text {well }}$.
Prop If $f \in \mathbb{T}[\Lambda]$ is feed by all well then f has unique expansion as a finite linear combination of formal characters oh y for $\lambda \in \Lambda^{+}$.

Pf idea: write $f=\sum_{\lambda \in \Lambda} c_{\lambda} e^{\lambda}$ with $c_{\lambda} \in \mathbb{Z}$
all but finitely mans C_{λ} 's must be zero. Find a maximal $\lambda \in \Lambda^{+}$with $c_{\lambda} \neq 0$, form $g=f-c_{\lambda} c_{\lambda}$, and argue that jar mas conclude by induction that g has desired expansion. 0
geod move to deduce uniqueness (exercise)
Prop suppose V and W are both finite dim. L-males Then Chow $=$ chr chm. (Recall how VOW is an L-madule:
Pf straightforward erective. O

