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Total 120

You have 180 minutes to complete this exam.

No books, notes, or electronic devices can be used on the test.

Clearly label your answers by putting them in a box .

Partial credit can be given on some problems if you show your work. Good luck!
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Problem 1. (3 + 3 + 3 + 3 + 3 = 15 points) Write complete, precise definitions of the
following italicised terms.

(1) a linear transformation T from a vector space V to a vector space W .

(2) the span of a finite set of vectors v1, v2, . . . , vn in a vector space.
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(3) a linearly independent set of vectors v1, v2, . . . , vn in a vector space.

(4) a subspace W of a vector space V .



4 FINAL EXAMINATION - MATH 2121, FALL 2017.

(5) a basis for a vector space V .
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Problem 2. (15 points) In the following statements,A,B,C, etc., are matrices (with
all real entries), and u, v, w, x,, etc., are vectors in Rn, unless otherwise noted.

Indicate which of the following is TRUE or FALSE.

One point will be given for each correct answer (no penalty for incorrect answers).

(1) Any system of n linear equations in n variables has at least n solutions.

TRUE FALSE

(2) If a linear system Ax = b has more than one solution, then so does Ax = 0.

TRUE FALSE

(3) If A and B are n× n matrices with AB = 0, then A = 0 or B = 0.

TRUE FALSE

(4) If AB = BA and A is invertible, then A−1B = BA−1.

TRUE FALSE

(5) If A is a square matrix, then det(−A) = −detA.

TRUE FALSE

(6) If A is a nonzero matrix then detATA > 0.

TRUE FALSE

(7) If A is m× n and the transformation x 7→ Ax is onto, then rank(A) = m.

TRUE FALSE
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(8) If V is a vector space and S ⊂ V is a subset whose span is V , then some
subset of S is a basis of V .

TRUE FALSE

(9) If A is square and contains a row of zeros, then 0 is an eigenvalue of A.

TRUE FALSE

(10) Each eigenvector of a square matrix A is also an eigenvector of A2.

TRUE FALSE

(11) If A is diagonalisable, then the columns of A are linearly independent.

TRUE FALSE

(12) Every 2× 2 matrix (with all real entries) has an eigenvector in R2.

TRUE FALSE

(13) Every 3× 3 matrix (with all real entries) has an eigenvector in R3.

TRUE FALSE

(14) If ‖u− v‖2 = ‖u‖2 + ‖v‖2 then vectors u, v ∈ Rm are orthogonal.

TRUE FALSE

(15) If the columns of A are orthonormal then AAT is an identity matrix.

TRUE FALSE
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Problem 3. (5 + 5 = 10 points)
(a) Compute the determinant of

A =


a 0 b 0
c 0 d 0
0 a 0 b
0 c 0 d


where a, b, c, d are real numbers.
For full credit, express your answer in as simple a form as possible.
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(b) Find a matrix M such that M
[

2
3

]
=

[
1
2

]
and M

[
5
8

]
=

[
4
9

]
.
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Problem 4. (5 + 5 + 5 = 15 points) Let V be the vector space of 3× 3 matrices.

Define L : V → V as the linear transformation L(A) = A+AT .

(a) Find a basis for the subspace N = {A ∈ V : L(A) = 0}. What is dimN ?
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(b) Find a basis for the subspaceR = {L(A) : A ∈ V}. What is dimR?
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(c) Find two numbers λ, µ ∈ R and two nonzero matrices A,B ∈ V such that

L(A) = λA and L(B) = µB.
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Problem 5. (3 + 4 + 4 + 4 = 15 points) Let

I =

 1 0 0
0 1 0
0 0 1

 .
In this problem A refers to a 3× 3 matrix with all real entries satisfying

(A− I)(A− 2I)(A− 3I) = 0.

(a) Does there exist a 3×3 matrix A with (A− I)(A−2I)(A−3I) = 0 which is
not diagonal? If there does, produce an example. Otherwise, give a short
explanation for why no such matrix exists.
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(b) Does there exist a 3× 3 matrix A with (A− I)(A− 2I)(A− 3I) = 0 which
has exactly 2 distinct eigenvalues? If there does, produce an example. Oth-
erwise, give a short explanation for why no such matrix exists.
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(c) Does there exist a 3× 3 matrix A with (A− I)(A− 2I)(A− 3I) = 0 which
does not have any of the numbers 1, 2, or 3 as an eigenvalue? If there does,
produce an example. Otherwise, give a short explanation for why no such
matrix exists.
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(d) Does there exist a 3× 3 matrix A with (A− I)(A− 2I)(A− 3I) = 0 which
is not diagonalisable? If there does, produce an example. Otherwise, give
a short explanation for why no such matrix exists.
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Problem 6. (4 + 7 + 4 = 15 points)

(a) Compute the distinct eigenvalues of the matrix A =

[
.4 −.3
.4 1.2

]
.
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(b) Again let A =

[
.4 −.3
.4 1.2

]
.

Find an invertible matrixP and a diagonal matrixD such thatA = PDP−1.
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(c) Continue to let A =

[
.4 −.3
.4 1.2

]
.

Find real numbers a, b, c, d such that limn→∞An =

[
a b
c d

]
.
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Problem 7. (5 + 5 = 10 points)
(a) Find an orthonormal basis for the subspace of vectors of the form

a+ 2b+ 3c
2a+ 3b+ 4c
3a+ 4b+ 5c
4a+ 5b+ 6c


where a, b, c are real numbers.
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(b) Find the vector in W = R-span{u, v}which is closest to y where

y =


3
−1

1
13

 and u =


1
−2
−1

2

 and v =


−4

1
0
3

 .
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Problem 8. (10 points) Describe all least-squares solutions to the linear equation

Ax = b

where

A =


1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

 and b =


7
2
3
6
5
4

 .
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Problem 9. (3 + 5 + 7 = 15 points) Consider the matrix

A =

 1 1
0 1
−1 1

 .
(a) Find the eigenvalues of ATA.
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(b) Find an orthonormal basis v1, v2 for R2 consisting of eigenvectors of ATA.
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(c) Find a singular value decomposition for A. In other words, find the singu-
lar values σ1 ≥ σ2 of A and then express A as a product

A = UΣV T

where U and V are invertible matrices with

U−1 = UT and V −1 = V T and Σ =

 σ1 0
0 σ2
0 0

 .
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