
MATH 2121 — Linear algebra (Fall 2023) Lecture 5

This document is a transcript of the lecture, with extra summary and vocabulary sections for your
convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs,
and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

Linear independence:

• Vectors v1, v2, . . . , vp ∈ Rn are linearly independent if the only way to express

0 = c1v1 + c2v2 + · · ·+ cpvp

for c1, c2, . . . , cp ∈ R is by taking c1 = c2 = · · · = cp = 0. This happens if and only if

{0} 6= R-span{v1} 6= R-span{v1, v2} 6= R-span{v1, v2, v3} 6= · · · 6= R-span{v1, v2, . . . , vp}.

• If the vectors are not linearly independent, then they are linearly dependent . This happens when

R-span{v1, v2, . . . , vi−1} = R-span{v1, v2, . . . , vi}

for at least one i ∈ {1, 2, . . . , p}. Here we interpret “R-span{v1, v2, . . . , vi−1}” to be {0} if i = 1.

• Two or more vectors are linearly dependent if one of the vectors is in the span of all of the others.

• If p > n then any vectors v1, v2, . . . , vp ∈ Rn are linearly dependent.

• A list of vectors v1, v2, . . . , vp ∈ Rn is linearly dependent if the n× p matrix

A =
[
v1 v2 . . . vp

]
has at least one column that is not a pivot column.

Functions and linearity:

• Writing f : X → Y means that f is a function that transforms inputs x ∈ X to outputs f(x) ∈ Y .

The set X is called the domain while Y is called the codomain of f .

• Let m, n be positive integers. If f : Rn → Rm is a function then the following mean the same thing:

– For any u, v ∈ Rn and c ∈ R it holds that f(u + v) = f(u) + f(v) and f(c · v) = c · f(v).

– There exists an m× n matrix A such that f(v) = Av for all v ∈ Rn.

Such functions f are said to be linear . The matrix A is called the standard matrix of f .

• Every linear function f : Rn → Rm has exactly one standard matrix.

• If f : Rn → Rm is linear then its standard matrix is A =
[
f(e1) f(e2) . . . f(en)

]
where

e1 =


1
0
0
...
0

 ∈ Rn, e2 =


0
1
0
...
0

 ∈ Rn, e3 =


0
0
1
...
0

 ∈ Rn, . . . en =


0
0
...
0
1

 ∈ Rn.
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1 Last time: multiplying vectors and matrices

Given a matrix A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

 and a vector v =


v1
v2
...

vn

 ∈ Rn we define

Av = v1


a11
a21

...
am1

+ v2


a12
a22

...
am2

+ · · ·+ vn


a1n
a2n

...
amn

 ∈ Rm.

We refer to Av as the product of A and v, or the vector given by multiplying v by A.

Example. We have

[
1 2 3
5 6 7

] −1
0
1

 = −
[

1
5

]
+ 0

[
2
6

]
+

[
3
7

]
=

[
−1 + 0 + 3
−5 + 0 + 7

]
=

[
2
2

]
.

If A is an m× n matrix and x =


x1

x2

...
xn

 and b ∈ Rm, then we call Ax = b a matrix equation.

A matrix equation Ax = b has the same solutions as the linear system with augmented matrix
[
A b

]
.

Theorem. Let A be an m× n matrix. The following are equivalent:

1. Ax = b has a solution for any b ∈ Rm.

2. The span of the columns of A is all of Rm.

3. A has a pivot position in every row.

Example. The matrix equation  1 3 4
−4 2 −6
−3 −2 −7

 x1

x2

x3

 =

 b1
b2
b3


may fail to have a solution since

RREF

 1 3 4
−4 2 −6
−3 −2 −7

 =

 1 0 ∗
0 1 ∗
0 0 0


has pivot positions only in rows 1 and 2.

2 Linear independence

We briefly introduced the notion of linear independence last time.

Suppose we have some vectors v1, v2, . . . , vp ∈ Rn. Recall that the span of a set of vectors is the set of all
possible linear combinations that can be formed using the vectors. If you have a smaller set of vectors
inside a bigger set, then the span of the smaller set is always contained in the span of the bigger set.
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Moreover, if y = c1v1 + c2v2 + · · · + cpvp for ci ∈ R is any linear combination of our vectors then
R-span{v1, v2, . . . , vp} = R-span{v1, v2, . . . , vp, y}, since if a1, . . . , ap, b ∈ R then

a1v1 + · · ·+ apvp + by = (a1 + bc1)v1 + (a2 + bc2)v2 + · · ·+ (ap + bcp)vp ∈ R-span{v1, v2, . . . , vp}.

If S and T are sets then we write S ⊆ T to mean that every element of S is also an element of T .

Definition. Consider the p sets given by

{0} ⊆ R-span{v1} ⊆ R-span{v1, v2} ⊆ R-span{v1, v2, v3} ⊆ · · · ⊆ R-span{v1, v2, . . . , vp}.

The vectors v1, v2, . . . , vp are linearly independent if these sets are all distinct. That is, if R-span{v1} is
strictly bigger than the set {0} consisting of just the zero vector, and R-span{v1, v2} is strictly bigger
than R-span{v1}, and R-span{v1, v2, v3} is strictly bigger than R-span{v1, v2}, and so on.

Example. If v1 =

 1
0
0

, v2 =

 0
1
0

, v3 =

 0
0
1

 then v1, v2, v3 are linearly independent, since


 0

0
0

 ( R-span{v1} =


 a

0
0

 : a ∈ R

 ( R-span{v1, v2} =


 a

b
0

 : a, b ∈ R

 ( R-span{v1, v2, v3} =


 a

b
c

 : a, b, c ∈ R

 .

Here we write S ( T to mean that both S ⊆ T and S 6= T .

Example. If v1 =

 1
−1

0

, v2 =

 0
1
−1

, v3 =

 −1
0
1

 then v1, v2, v3 are not linearly independent as

R-span{v1, v2} = R-span{v1, v2,−v1 − v2} = R-span{v1, v2, v3}.

When vectors are not linearly independent, we say they are linearly dependent .

A linear dependence among v1, v2, . . . , vp is a way of writing the zero vector as a linear combination
0 = c1v1 + c2v2 + · · ·+ cpvp for some scalar coefficients c1, c2, . . . , cp ∈ R that are not all zero.

If 0 = c1v1 + c2v2 + · · ·+ cpvp is a linear dependence then the matrix equation

[
v1 v2 . . . vp

]


x1

x2

...
xp

 = 0

has two solutions given by (0, 0, . . . , 0) and (c1, c2, . . . , cp).

Proposition (Another characterization of linear independence). The vectors v1, v2, . . . , vp ∈ Rn are
linearly independent if and only if no linear dependence exists among them.

Proof. If i is minimal such that there exists a linear dependence c1v1 + c2v2 + · · ·+ civi = 0 then we must
have ci 6= 0 (since if ci = 0 then c1v1 + c2v2 + · · ·+ ci−1vi−1 = 0 would be a shorter dependence). Then

vi = − c1
ci
v1 − c2

ci
v2 − · · · − ci−1

ci
vi−1

so R-span{v1, v2, . . . , vi−1} = R-span{v1, v2, . . . , vi}.

Conversely, if R-span{v1, v2, . . . , vi−1} = R-span{v1, v2, . . . , vi} then vi ∈ R-span{v1, v2, . . . , vi−1}, which
means vi = a1v1 + a2v2 + . . . ai−1vi−1 for some coefficients a1, a2, . . . , ai−1 ∈ R. But then we get a linear
dependence c1v1 + c2v2 + · · ·+ civi = 0 by taking c1 = a1, c2 = a2, . . . , ci−1 = ai−1 and ci = −1.
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How to determine if v1, v2, . . . , vp ∈ Rn are linearly independent.

• Form the n× p matrix A =
[
v1 v2 . . . vp

]
.

• Reduce A to echelon form to find its pivot columns.

• If every column of A is a pivot column, then the vectors are linearly independent.

If some column of A is not a pivot column, then the vectors are linearly dependent.

Example. The vectors

 1
0
−1

,

 2
3
5

, and

 5
9

16

 are linearly dependent since

A =

 1 2 5
0 3 9
−1 5 16

 ∼
 1 2 5

0 3 9
0 7 21

 ∼
 1 2 5

0 1 3
0 1 3

 ∼
 1 0 −1

0 1 3
0 0 0

 = RREF(A)

where ∼ denotes row equivalence. The last matrix has no pivot position in column 3. In fact, we have

−

 1
0
−1

+ 3

 2
3
5

−
 5

9
16

 =

 0
0
0

 = 0.

The vectors

 1
0
−1

,

 2
3
5

, and

 5
9

15

 are linearly independent, since

A =

 1 2 5
0 3 9
−1 5 15

 ∼
 1 2 5

0 3 9
0 7 20

 ∼
 1 2 5

0 1 3
0 0 −1

 ∼
 1 0 0

0 1 0
0 0 1

 = RREF(A).

Every column of A contains a pivot position, so the linear system with coefficient matrix A has no free
variables, so Ax = 0 have no nontrivial solutions, meaning the columns of A are linearly independent.

Facts about linear independence.

1. A single vector v is linearly independent if and only if v 6= 0.

2. A list of vectors in Rn is linearly dependent if it includes the zero vector.

3. Vectors v1, v2, . . . , vp ∈ Rn are linearly dependent if and only if some vector vi is a linear combination
of the other vectors v1, . . . , vi−1, vi+1, . . . , vp.

We saw this in the previous example:

 5
9

16

 = 3

 2
3
5

−
 1

0
−1

.

4. If p > n then any list of p vectors in Rn is linearly dependent.

Example. The vectors v1 =

[
1
2

]
, v2 =

[
1
3

]
, and v3 =

[
5

60

]
are linearly dependent since 3 > 2.

3 Linear transformations

A function f takes an input x from some set X and produces an output f(x) in another set Y .

We write f : X → Y to mean that f is a function that takes inputs from X and gives outputs in Y .

The set X is called the domain of the function f . The set Y is called the codomain of f .

Every element x ∈ X is a valid input to f . However, not every y ∈ Y needs to occur as an output of f .
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Definition. Let f : Rn → Rm be a function whose domain and codomain are sets of vectors. The
function f is a linear transformation (also called a linear function) if both of these properties hold:

(1) f(u + v) = f(u) + f(v) for all vectors u, v ∈ Rn.

(2) f(cv) = cf(v) for all vectors v ∈ Rn and scalars c ∈ R.

Example. If A is an m × n matrix and T : Rn → Rm is the function with the formula T (v) = Av for
v ∈ Rn then T is a linear function.

Linear transformations have some additional properties worth noting:

Proposition. If f : Rn → Rm is a linear transformation then

(3) f(0) = 0.

(4) f(u− v) = f(u)− f(v) for u, v ∈ Rn.

(5) f(au + bv) = af(u) + bf(v) for all a, b ∈ R and u, v ∈ Rn.

Proof. We have 2f(0) = f(0 + 0) = f(0) so f(0) = 0.

We have f(u− v) = f(u) + f(−v) = f(u) + (−1)f(v) = f(u)− f(v).

Finally, we have f(au + bv) = f(au) + f(bv) = af(u) + bf(v).

Define e1, e2, . . . , en ∈ Rn as the vectors

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en−1 =


0
...
0
1
0

 , and en =


0
...
0
0
1

 .

Fact. If A is an m× n matrix then Aei is the ith column of A.

Proof. Just do the calculation. For example

[
1 2 3 4
5 6 7 8

]
e3 =

[
1 2 3 4
5 6 7 8

]
0
0
1
0

 =

[
3
7

]
.

The fundamental theorem relating matrices and linear transformations:

Theorem. Suppose T : Rn → Rm is a linear transformation. Then there is a unique m × n matrix A
such that T (v) = Av for all v ∈ Rn.

Moral: matrices uniquely represent linear transformations Rn → Rm.

Proof. Define ai = T (ei) ∈ Rm and A =
[
a1 a2 a3 . . . an

]
. If w is any vector w =


w1

w2

...
wn

 ∈ Rn

then

T (w) = T (w1e1 + · · ·+ wnen) = w1T (e1) + · · ·+ wnT (en) = w1a1 + · · ·+ wnan = Aw.

4
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Thus A is one matrix such that T (v) = Av for all vectors v ∈ Rn.

To show that A is the only such matrix, suppose B is a m× n matrix with T (v) = Bv for all v ∈ Rn.

Then T (ei) = Aei = Bei for all i = 1, 2, . . . , n.

But Aei and Bei are the ith columns of A and B.

Therefore A and B have the same columns, so they are the same matrix: A = B.

We call the matrix A in this theorem the standard matrix of the linear transformation T .

Example. Suppose T : Rn → Rn is the function T (v) = 3v.

This is a linear transformation. What is the standard matrix A of T?

As we saw in the proof of the theorem, the standard matrix of T : Rn → Rn is

A =
[
T (e1) T (e2) . . . T (en)

]
=
[

3e1 3e2 . . . 3en
]

=


3 0 . . . 0
0 3 · · · 0
...

...
. . .

...
0 0 · · · 3

 .

In words, A is the matrix with 3 in each position (1, 1), (2, 2), . . . , (n, n) and 0 in all other positions.

One calls such a matrix diagonal .

Example. Suppose T : Rn → R is the function

T




v1
v2
...

vn


 =

[
v1 v2 . . . vn

]


v1
v2
...

vn

 = v21 + v22 + · · ·+ v2n.

This function is not linear: we have T (2v) = 4T (v) 6= 2T (v) for any nonzero vector v ∈ Rn.

Example. Suppose T : Rn → Rn is the function

T




v1
v2
...

vn


 =


vn
...

v2
v1

 .

This function is a linear transformation. (Why?) Its standard matrix is

A =
[
T (e1) T (e2) . . . T (en−1) T (en)

]
=
[
en en−1 . . . e2 e1

]
=


1

1

. .
.

1
1

 .

In the matrix on the right, we adopt the convention of only writing the nonzero entries: all positions in
the matrix which are blank contain zero entries.
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4 Vocabulary

Keywords from today’s lecture:

1. Linearly independent vectors.

Vectors v1, v2, . . . , vp ∈ Rn are linearly independent if x1v1 + · · · + xpvp = 0 holds only if
x1 = x2 = · · · = xp = 0; or when

[
v1 v2 . . . vp

]
has a pivot position in every column.

Vectors that are not linearly independent are linearly dependent.

Example: The three vectors

 1
0
0

,

 0
2
0

 ,

 0
0
3

 are linearly independent.

The four vectors

 1
0
0

,

 0
2
0

 ,

 0
0
3

,

 −1
−2
−3

 are linearly dependent.

2. Domain and codomain of a function f : X → Y .

The domain X is the set of inputs for the function.

The codomain Y is a set that contains the output of the function. This set can also contain
elements that are not outputs of the function.

Example: If A is an m× n matrix then the function T (v) = Av has domain Rn and codomain Rm.

3. Linear function f : Rn → Rm.

A function with f(cv) = cf(v) and f(u + v) = f(u) + f(v) for c ∈ R and u, v ∈ Rn.

Example: Every such function has the form f(v) = Av for a unique m× n matrix A.

The matrix A is called the standard matrix of f if f(v) = Av for all v ∈ Rn.

4. Diagonal matrix

A matrix which has 0 in position (i, j) if i 6= j.

Example:


4 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 9

.
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