
MATH 2121 — Linear algebra (Fall 2023) Lecture 7

This document is a transcript of the lecture, with extra summary and vocabulary sections for your
convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs,
and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

• If T and U are functions Rn → Rm, then there is a natural way to form the sum T + U and the
scalar multiple cT for c ∈ R. The definitions are

(T + U)(v) = T (v) + U(v) and (cT )(v) = c · T (v) for v ∈ Rn.

Both of these are also functions Rn → Rm.

If T and U are linear, then T + U and cT are both linear.

• If A and B are m× n matrices, then there is a natural way to form the sum A + B and the scalar
multiple cA for c ∈ R. These operations work exactly the same as for vectors: we just add together
entries in the same position or multiply all entries by the same number.

The resulting matrices have the same size as A and B.

• If A and B are the standard matrices of T and U , then A + B is the standard matrix of T + U ,
and cA for c ∈ R is the standard matrix of cT .

• If T : Rn → Rm and U : Rk → Rn then we can can compose T and U to form a new function

T ◦ U : Rk → Rm.

This function is defined by the formula T ◦ U(v) = T (U(v)) for v ∈ Rk.

If T and U are linear then T ◦ U is linear.

• There is a natural way to multiply an m× n matrix A by an n× k matrix B.

The result, written AB, is an m× k matrix.

The product AB is only defined if the number of columns of A is the number of rows of B.

Unlike with scalars, we can have AB 6= BA, so the order of multiplication matters.

If A is the standard matrix of T : Rn → Rm and B is the standard matrix of U : Rk → Rn, then
the product AB is the standard matrix of T ◦ U : Rk → Rm.

• To compute AB: if B =
[
b1 b2 . . . bk

]
where bi ∈ Rn then AB =

[
Ab1 Ab2 . . . Abk

]
.

An example of this kind of calculation:

[
1 2 3
0 4 8

] 10 100
1 1000

10 100

 =

 [
1 2 3
0 4 8

] 10
1

10

 [
1 2 3
0 4 8

] 100
1000
100

  =

[
42 2400
84 4800

]
.

• The transpose of a matrix A is the matrix A> formed by flipping A across the diagonal, e.g.:

A =

[
a b c
d e f

]
; A> =

 a d
b e
c f

 .

If A is m× n and B is n× k so that the product AB is defined, then (AB)> = B>A>.
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1 Last time: one-to-one and onto linear transformations

Let T : Rn → Rm be a function.

The following mean the same thing:

• T is linear in the sense that T (u + v) = T (u) + T (v) and T (cv) = cT (v) for all u, v ∈ Rn, c ∈ R.

• There is an m× n matrix A such that T has the formula T (v) = Av for all v ∈ Rn.

If we are given a linear transformation T , then T (v) = Av for the matrix

A =
[
T (e1) T (e2) . . . T (en)

]
where ei ∈ Rn has a 1 in row i and 0 in all other rows. (If n = 2 then e1 =

[
1
0

]
and e2 =

[
0
1

]
.)

We call A the standard matrix of T .

The following all mean the same thing for a function f : X → Y .

• f is one-to-one.

• If a, b ∈ X and f(a) = f(b) then a = b.

• If a, b ∈ X and a 6= b then f(a) 6= f(b).

• f does not send different inputs to the same output.

Similarly, the following all mean the same thing for a function f : X → Y .

• f is onto.

• The range of f is equal to the codomain, i.e., the set range(f) = {f(a) : a ∈ X} is equal to Y .

• For each y ∈ Y there is at least one x ∈ X with f(x) = y.

• Every element of the codomain of f is an output for some input.

We can detect whether a linear transformation is one-to-one or onto by locating the pivot positions in its
standard matrix (by row reducing).

Theorem. Suppose T : Rn → Rm is the linear transformation T (v) = Av where A is an m× n matrix.

(1) T is one-to-one if and only if the columns of A are linearly independent, which happens precisely
when A has a pivot position in every column.

(2) T is onto if and only if the span of the columns of A is Rm, which happens precisely when A has a
pivot position in every row.

2 Operators on linear transformations and matrices

Key point from last time and starting point of today: linear transformations Rn → Rm are uniquely
represented by m×n matrices, and every m×n matrix corresponds to a linear transformation Rn → Rm.

There are several operations we can use to combine and alter linear transformations to get other linear
transformations. The goal is to translate these function operations into matrix operations.
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Sums and scalar multiples. Suppose T : Rn → Rm and U : Rn → Rm are two linear functions with
the same domain and codomain. Their sum T + U is the function Rn → Rm defined by

(T + U)(v) = T (v) + U(v) for v ∈ Rn.

If c ∈ R is a scalar, then cT is the function Rn → Rm defined by

(cT )(v) = cT (v) for v ∈ Rn.

Fact. Both T + U and cT are linear transformations.

Proof. To see that T + U is linear, we check that

(T + U)(u + v) = T (u + v) + U(u + v) = T (u) + T (v) + U(u) + U(v) = (T + U)(u) + (T + U)(v)

for u, v ∈ Rn, and

(T + U)(av) = T (av) + U(av) = aT (v) + aU(v) = a(T + U)(v)

for a ∈ R and v ∈ Rn. Since these properties hold, T + U is linear.

The proof that cT is linear is similar. (Try this yourself!)

Since sums and scalar multiples of linear functions are linear, it follows that differences T − U and
arbitrary finite linear combinations aT + bU + cV + . . . of linear functions are linear.

Suppose T and U have standard matrices

A =


a11 a12 . . . a1n
a21 a22 a2n

...
. . .

...
am1 am2 . . . amn

 and B =


b11 b12 . . . b1n
b21 b22 b2n
...

. . .
...

bm1 bm2 . . . bmn


so that T (v) = Av and U(v) = Bv for all input vectors v ∈ Rn.

Proposition. The standard matrix of T + U is the matrix A + B defined by

A + B =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 a2n + b2n

...
. . .

...
am1 + bm1 am2 + bm2 . . . amn + bmn

 .

The standard matrix of cT is the matrix cA defined by

cA =


ca11 ca12 . . . ca1n
ca21 ca22 ca2n

...
. . .

...
cam1 cam2 . . . camn

 .

This is how we define sums and scalar multiples of matrices. These operations work in essentially the
same way as for vectors: we can add matrices of the same size, by adding the entries in corresponding
positions together, and we can multiply a matrix by a scalar c by multiplying all entries by c.

Example. We have [
4 0 5
−1 3 2

]
+

[
1 1 1
3 5 7

]
=

[
5 1 6
2 8 9

]
.

and

−
[

4 0 5
−1 3 2

]
+ 2

[
1 1 1
3 5 7

]
=

[
−4 0 −5

1 −3 −2

]
+

[
2 2 2
6 10 14

]
=

[
−2 2 −3

7 7 12

]
.
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Suppose T,U, V are linear transformations Rn → Rm with standard matrices A,B,C. Let a, b ∈ R.

The following properties then hold:

Functions Matrices

1. T + U = U + T A + B = B + A.

2. (T + U) + V = T + (U + V ) (A + B) + C = A + (B + C).

3. T + 0 = T where 0 : Rn → Rm is the map 0(v) = 0 ∈ Rm. A + 0 = A.

4. a(T + U) = aT + aU a(A + B) = aA + aB.

5. (a + b)T = aT + bT (a + b)A = aA + bA.

6. a(bT ) = (ab)T . a(bA) = (ab)A.

Composition. Suppose U : Rn → Rm and T : Rm → Rk are functions.

Note that we assume the codomain of U is equal to the domain of T .

The composition T ◦ U is the function Rn → Rk given by

(T ◦ U)(v) = T (U(v)) for v ∈ Rn.

Fact. Assume T and U are linear. Then T ◦ U is linear.

Proof. To see that T ◦ U is linear, we check that

(T ◦ U)(u + v) = T (U(u + v)) = T (U(u) + U(v)) = T (U(u)) + T (U(v)) = (T ◦ U)(u) + (T ◦ U)(v)

for u, v ∈ Rn, and

(T ◦ U)(cv) = T (U(cv)) = T (cU(v)) = cT (U(v)) = c(T ◦ U)(v)

for c ∈ R and v ∈ Rn.

Important note: U ◦ T is not defined unless k = n.

Even if k = n so that both T ◦U and U ◦ T are defined, there is no reason to expect that T ◦U = U ◦ T .

Example. If n = m = k = 1 and T (x) = 2x and U(x) = x2, then

(T ◦ U)(x) = T (x2) = 2x2 but (U ◦ T )(x) = U(2x) = 4x2.

Assume U : Rn → Rm and T : Rm → Rk are linear.

Then T ◦ U is a linear transformation Rn → Rk, so there is a unique k × n matrix C such that

(T ◦ U)(v) = Cv for v ∈ Rn.

If A is the standard matrix of T and B is the standard matrix of U , then we define the matrix product

AB = C.

Note how this definition works: if A is k ×m and B is m× n then we define AB to be the unique k × n
matrix C such that Cv = A(Bv) for all v ∈ Rn.

How do we actually compute the rectangular array AB from A and B?

3



MATH 2121 — Linear algebra (Fall 2023) Lecture 7

Theorem. Suppose B has columns b1, b2, . . . , bn ∈ Rm so that B =
[
b1 b2 . . . bn

]
.

Then AB =
[
Ab1 Ab2 . . . Abn

]
. (This makes sense as A is k ×m.)

Proof. AB is the standard matrix of the linear function T ◦ U , so

AB =
[

(T ◦ U)(e1) (T ◦ U)(e2) · · · (T ◦ U)(en)
]

=
[
T (U(e1)) T (U(e2)) · · · T (U(en))

]
=
[
A(Be1) A(Be2) · · · A(Ben)

]
=
[
Ab1 Ab2 · · · Abn

]
.

Example. If A =

[
2 3
1 −5

]
and B =

[
4 3 6
1 −2 3

]
, then b1 =

[
4
1

]
, b2 =

[
3
−2

]
, b3 =

[
6
3

]
, so

AB =
[
Ab1 Ab2 Ab3

]
=

[
11 0 21
−1 13 −9

]
.

The quick rule for computing AB: if the ith row of A and jth column of B are

[
a1 a2 . . . am

]
and


b1
b2
...

bm


then the entry in the ith row and jth column of AB is

[
a1 a2 . . . am

]


b1
b2
...

bm

 = a1b1 + a2b2 + · · ·+ ambm.

Example. Suppose A =

[
1 2 3 4
5 6 7 8

]
and B =


1 2 3
4 5 6
7 8 9
9 9 9

.

The entry in the 2nd row and 2nd column of AB is

5 · 2 + 6 · 5 + 7 · 8 + 8 · 9 = 10 + 30 + 56 + 72 = 168.

A position (i, j) in a matrix is diagonal if i = j.

Write In for the n× n matrix

In =


1

1
. . .

1


which has 1 in each diagonal position, and zeros in all other positions.

The matrix In is the standard matrix of the identity map idRn : Rn → Rn.

This is the linear function with idRn(v) = v for all v ∈ Rn.
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Proposition. If A is an m× n matrix then ImA = AIn = A.

Proof. Suppose A is the standard matrix of T : Rn → Rm. Then ImA is the standard matrix of
idRm ◦T = T and AIn is the standard matrix of T ◦ idRn = T , so ImA = A = AIn.

Proposition. Let A,B,C be matrices. Assume A is m× n, B is n× l, and C is l × k.

Then A(BC) = (AB)C.

Proof. Suppose A, B, and C are the standard matrices of linear transformations TA, TB , TC .

It holds that TA ◦ (TB ◦ TC) = (TA ◦ TB) ◦ TC , since for any input x we have

(TA ◦ (TB ◦ TC))(x) = TA((TB ◦ TC)(x)) = TA(TB(TC(x)))

which is the same thing as

((TA ◦ TB) ◦ TC)(x) = (TA ◦ TB)(TC(x)) = TA(TB(TC(x))).

In fact, this holds for any functions TA, TB , and TC that we can compose together; nothing here depends
on the fact that these are linear functions.

However, since TA, TB , TC are linear, both TA ◦ (TB ◦ TC) and (TA ◦ TB) ◦ TC are linear, and they have
the same standard matrix since they are equal as functions.

As A(BC) is the standard matrix of TA ◦(TB ◦TC), while (AB)C is the standard matrix of (TA ◦TB)◦TC ,
we must have A(BC) = (AB)C.

Here are some easier properties. Suppose A,B,C are matrices and r ∈ R.

• If A is m× n and B,C are n× l then A(B + C) = AB + AC.

• If A,B are m× n and C is n× l then (A + B)C = AC + BC.

• If A is m× n and B is n× l then r(AB) = (rA)B = A(rB).

3 Pathologies of matrix multiplication

Suppose A and B are matrices.

Four important observations:

1. The product AB is defined only if the number of columns of A is the number of rows of B.

2. Even if AB and BA are both defined, it often happens that AB 6= BA.

3. AB = AC does not imply B = C, and AC = BC does not imply A = B.

4. It can happen that AB = 0 =

 0 · · · 0
...

. . .
...

0 · · · 0

 even if both A 6= 0 and B 6= 0.

Example. We have[
1 0
1 0

] [
0 0
1 1

]
=

[ [
1 0
1 0

] [
0
1

] [
1 0
1 0

] [
0
1

] ]
=

[
0 0
0 0

]
while [

0 0
1 1

] [
1 0
1 0

]
=

[ [
0 0
1 1

] [
1
1

] [
0 0
1 1

] [
0
0

] ]
=

[
0 0
2 0

]
.
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If A and B are both square matrices of the same size (meaning they have the same number of rows and
columns), and AB = BA, then we say that A and B commute.

4 Matrix transpose

The transpose of an m× n matrix A is the n×m matrix A> whose columns are the rows of A.

If aij is the entry in row i and column j of A, then this is the entry in row j and column i of A>.

For example, if A =

[
a b c
d e f

]
then A> =

 a d
b e
c f

.

The transpose of A is given by flipping A across the main diagonal, in order to interchange rows/columns.

Another example: if C =

 1 1 1 1
−3 5 −2 7

0 0 1 0

 then C> =


1 −3 0
1 5 0
1 −2 1
1 7 0

.

We finish this lecture by noting some basic properties of the transpose operation:

• (A>)> = A since flipping twice does nothing.

• If A and B have the same size then (A + B)> = A> + B>.

• If c ∈ R then (cA)> = c(A>).

• If A is an k ×m matrix and B is and m× n matrix then (AB)> = B>A>.

To prove the last property, use our earlier results to compute the entries in ith row and jth column of
the matrices on either side (in terms of the entries of A and B), and check that these are equal.
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5 Vocabulary

Keywords from today’s lecture:

1. Sums, scalar multiples, and compositions of linear functions.

If T : Rn → Rm and U : Rn → Rm and c ∈ R then

T + U : Rn → Rm

is the function with (T + U)(v) = T (v) + U(v), and

cT : Rn → Rm

is the function with (cT )(v) = c(T (v)).

If T : Rn → Rm and U : Rm → Rk then U ◦ T : Rn → Rk is the function (U ◦ T )(v) = U(T (v)).

2. Sums, scalar multiples, and products of matrices.

If A and B are m × n matrices then A + B is the m × n matrix whose entry in position (i, j) is
Aij + Bij . If c ∈ R then cA is the matrix whose entry in position (i, j) is cAij .

If A is m× n and B is n× k then AB is the m× k whose entry in position (i, j) is the ith row of
A (which is a 1× n matrix) times the jth column of B (which is a vector in Rn).

Example:

[
a b
c d

]
+

[
w x
y z

]
=

[
a + w b + x
c + y d + z

]
.

Example: 5

[
a b
c d

]
=

[
5a 5b
5c 5d

]
.

Example:

[
a b
c d

] [
w x
y z

]
=

[
aw + by ax + bz
cw + dy cx + dz

]
.

3. Transpose of a matrix.

If A is an m × n matrix then its transpose A> is the n ×m with the same entries as A but with
rows and columns interchanged.

Example:

[
a b c
x y z

]>
=

 a x
b y
c z

.

4. Identity matrix

The n× n matrix I = In with 1s on the diagonal and 0s off the diagonal.

AI = A and IB = B for all matrices A with n columns and all matrices B with n rows.

Example:
[

1
]
,

[
1 0
0 1

]
,

 1 0 0
0 1 0
0 0 1

, and so on.
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