
MATH 2121 — Linear algebra (Fall 2023) Lecture 9

This document is a transcript of the lecture, with extra summary and vocabulary sections for your
convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs,
and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

• If A and B are n× n matrices with AB = In then BA = In and A−1 = B.

• A subspace H of Rn is a subset of Rn containing the zero vector that is closed under linear combi-
nations. This means that 0 ∈ H and if u, v ∈ H and c ∈ R then u + v ∈ H and cv ∈ H.

• The zero subspace of Rn is the set {0} with just the zero vector 0 ∈ Rn. Let A be an m×n matrix.

The column space of A is the span of the columns of A. Denoted ColA. This is a subspace of Rm.

Col


1 0 0
0 1 2
1 0 0
0 0 0

 = R-span




1
0
1
0

 ,


0
1
0
0

 ,


0
2
0
0


 =




a
b
a
0

 : a, b ∈ R

 ⊆ R4

The null space of A is the set of vectors NulA = {v ∈ Rn : Av = 0}. This is a subspace of Rn.

Nul


1 0 0
0 1 2
1 0 0
0 0 0

 =


 x

y
z

 ∈ R3 : x = y + 2z = 0

 =


 0
−2z

z

 : z ∈ R

 ⊆ R3.

• A basis for a subspace H ⊆ Rn is a linearly independent spanning set.

The standard basis of Rn is e1, e2, . . . , en where ei ∈ Rn is the vector with 1 in row i and 0 in all
other rows. Any subspace of Rn has a basis with at most n vectors.

• The pivot columns of an m× n matrix A form a basis for ColA.

• Both A and RREF(A) have the same null space. Usually ColA 6= ColRREF(A).

To find a basis for NulA, determine the indices i1, i2, . . . , ip of the non-pivot columns of A.

Then there are unique vectors v1, v2, . . . , vp ∈ Rn such that any

x =


x1

x2

...
xn

 ∈ Rn with RREF(A)x = 0

can be written as x = xi1v1 + xi2v2 + · · ·+ xipvp. The vectors v1, v2, . . . , vp are a basis for NulA.

For example, if RREF(A) =

[
1 2 0 4 −1
0 0 1 0 2

]
then any x ∈ R5 with RREF(A)x = 0 has

x =


x1

x2

x3

x4

x5

 =


−2x2 − 4x4 + x5

x2

−2x5

x4

x5

 = x2


−2

1
0
0
0

+ x4


−4

0
0
1
0

+ x5


1
0
−2

0
1

 .

The three vectors on the right are a basis for NulA = NulRREF(A).
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MATH 2121 — Linear algebra (Fall 2023) Lecture 9

1 Last time: inverses

The following all mean the same thing for a function f : X → Y :

1. f is invertible.

2. f is one-to-one and onto.

3. For each b ∈ Y there is exactly one a ∈ X with f(a) = b.

4. There is a unique function f−1 : Y → X, called the inverse of f , such that

f−1(f(a)) = a and f(f−1(b)) = b for all a ∈ X and b ∈ Y .

Proposition. If T : Rn → Rm is linear and invertible then m = n and T−1 is linear and invertible.

The following all mean the same thing for an n× n matrix A:

1. A is invertible.

2. A is the standard matrix of an invertible linear function T : Rn → Rn.

3. There is a unique n× n matrix A−1, called the inverse of A, such that

A−1A = AA−1 = In where we define In =


1

1
. . .

1

 .

4. For each b ∈ Rn the equation Ax = b has a unique solution.

5. RREF(A) = In

6. The columns of A are linearly independent and their span is Rn.

Proposition. Let A =

[
a b
c d

]
be a 2× 2 matrix.

(1) If ad− bc = 0 then A is not invertible.

(2) If ad− bc 6= 0 then A−1 = 1
ad−bc

[
d −b
−c a

]
.

Proposition. Let A and B be n× n matrices.

1. If A is invertible then (A−1)−1 = A.

2. If A and B are both invertible then AB is invertible and (AB)−1 = B−1A−1.

3. If A is invertible then AT is invertible and (AT )−1 = (A−1)T .

Process to compute A−1

Let A be an n× n matrix. Consider the n× 2n matrix
[
A In

]
.

If A is invertible then RREF
([

A In
])

=
[
In A−1

]
.

So to compute A−1, row reduce
[
A In

]
to reduced echelon form, and then take the last n columns.
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2 Stronger characterization of invertible matrices

Remember that a matrix can only be invertible if it has the same number of rows and columns.

Theorem. When A is a square n× n matrix, the following are equivalent:

(a) A is invertible.

(b) The columns of A are linearly independent.

(c) The span of the columns of A is Rn

Proof. We already know that (a) implies both (b) and (c).

Assume just (b) holds. Then A has a pivot position in every column, so RREF(A) = In since A has the
same number of rows and columns. But this implies that A is invertible.

Similarly, if (c) holds then A has a pivot position in every row, so RREF(A) = In and A is invertible.

Corollary. Suppose A and B are both n× n matrices. If AB = In then BA = In.

This means that if we want to show that B = A−1 then it is enough to just check that AB = In.

Proof. Assume AB = In. Then the columns of A span Rn since if v ∈ Rn then Au = v for u = Bv ∈ Rn,
so A is invertible. Therefore B = A−1AB = A−1In = A−1 so BA = A−1A = In.

Important note: this corollary only applies to square matrices.

3 Subspaces of Rn

Let n be a positive integer. Remember that 0 =


0
0
...
0

 ∈ Rn.

Definition. Let H be a subset of Rn. The subset H is a subspace if these three conditions hold:

1. 0 ∈ H.

2. u + v ∈ H for all u, v ∈ H.

3. cv ∈ H for all c ∈ R and v ∈ H.

Common examples

Rn is a subspace of itself.

The set {0} consisting of just the zero vector is a subspace of Rn.

The empty set ∅ is not a subspace since it does not contain the zero vector.

A subset H ⊆ R2 is a subspace if and only if H = {0} or H = R2 or H = R-span{v} for some v ∈ R2

The span of a set of vectors in Rn is a subspace of Rn.

Conversely, any subspace of Rn is the span of a finite set of vectors, although this is not obvious.
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Example. The set

X =

v =

 v1
v2
v3

 ∈ R3 : v1 + v2 + v3 = 1


is not a subspace since 0 /∈ X.

Example. The set

H =

v =

 v1
v2
v3

 ∈ R3 : v1 + v2 + v3 = 0


is a subspace since if u, v ∈ H and c ∈ R then

(u1 + v1) + (u2 + v2) + (u3 + v3) = (u1 + u2 + u3) + (v1 + v2 + v3) = 0 + 0 = 0

and
cv1 + cv2 + cv3 = c(v1 + v2 + v3) = 0

so u + v ∈ H and cv ∈ H.

Any matrix A gives rise to two subspaces, called the column space and null space.

Definition. The column space of an m× n matrix A is the subspace

ColA = {Ax : x ∈ Rn} ⊆ Rm.

The set ColA is the span of the columns of A.

Example. If V = R-span


 1

0
1

 ,

 0
1
0

 then what are some matrices A with ColA = V ?

Here are four examples:

A =

 1 0
0 1
1 0

 or A =

 0 1
1 0
0 1

 or A =

 1 2
2 1
1 2

 or A =

 1 0 0 1 1 2
0 1 1 0 2 1
1 0 0 1 1 2

 .

Many different matrices can have the same column space, and it may not be at all obvious whether a
subspace V is equal to the column space of a given matrix A.

Remark. If T : Rn → Rm is the linear function T (x) = Ax then ColA = range(T ).

A vector b ∈ Rm belongs to ColA if and and only if Ax = b has a solution.

Thus ColA = Rm if and only if Ax = b has a solution for each b ∈ Rm (⇔ A has a pivot in every row).

Definition. The null space of an m× n matrix A is the subspace

NulA = {v ∈ Rn : Av = 0} ⊆ Rn

The set NulA is exactly the set of solutions to the matrix equation Ax = 0.

Proof that NulA is a subspace. If u, v ∈ NulA and c ∈ R then A(u + v) = Au + Av = 0 + 0 = 0 and
A(cv) = c(Av) = 0, so u + v ∈ NulA and cv ∈ NulA. Thus NulA is a subspace of Rn.
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Remark. If T : Rn → Rm is the linear function T (x) = Ax then NulA = {x ∈ Rn : T (x) = 0}.

The column space is a subspace of Rm where m is the number of rows of A.

The null space is a subspace of Rn where n is the number of columns of A.

A subspace can be completely determined by a finite amount of data. This data will be called a basis.

Definition. Let H be a subspace of Rn. A basis for H is a set of vectors {v1, v2, . . . , vk} ⊆ H that are
linearly independent and have span equal to H.

The empty set ∅ = {} is considered to be a basis for the zero subspace {0}.

Example. The set {e1, e2, . . . , en} ⊆ Rn where e1 =


1
0
0
...
0

, e2 =


0
1
0
...
0

, and so on, is a basis for Rn.

We call this the standard basis of Rn.

Theorem. Every subspace H of Rn has a basis of size at most n.

Proof. If H = {0} then ∅ is a basis.

Assume H 6= {0}. Let B be a set of linearly independent vectors in H that is as large as possible. The
size of B must be at most n since any n + 1 vectors in Rn are linearly dependent.

Let w1, w2, . . . , wk be the elements of B. Since B is as large as possible, if v ∈ H is any vector then
w1, w2, . . . , wk, v are linearly dependent so we can write

c1w1 + c2w2 + · · ·+ ckwk + cv = 0

for some numbers c1, c2, . . . , ck, c ∈ R which are not all zero.

If c = 0 then this would imply that the vectors in B are linearly dependent. But the vectors in B are
linearly independent, so we must have c 6= 0. Therefore

v = c1
c w1 + c2

c w2 + · · ·+ ck
c wk.

This means that v is in the span of the vectors in B. Since v ∈ H is an arbitrary vector, we conclude
that the span of the vectors in B is all of H, so B is a basis for H.

Example. Let A =

 −3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

.

How can we find a basis for NulA? Well, finding a basis for NulA is more or less the same task as finding
all solutions to the homogeneous equation Ax = 0. So let’s first try to solve that equation.

If we row reduce the 3× 6 matrix
[
A 0

]
, we get

[
A 0

]
∼

 1 −2 0 −1 3 0
0 0 1 2 −2 0
0 0 0 0 0 0

 = RREF(
[
A 0

]
).

This tells us that Ax = 0 if and only if

{
x1 − 2x2 − x4 + 3x5 = 0

x3 + 2x4 − 2x5 = 0
or equivalently

{
x1 = 2x2 + x4 − 3x5

x3 = −2x4 + 2x5.
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By substituting these formulas for the basic variables x1 and x3, we deduce that x ∈ NulA if and only if

x =


x1

x2

x3

x4

x5

 =


2x2 + x4 − 3x5

x2

−2x4 + 2x5

x4

x5

 = x2


2
1
0
0
0

+ x4


1
0
−2

1
0

+ x5


−3

0
2
0
1

 .

The vectors 


2
1
0
0
0

 ,


1
0
−2

1
0

 ,


−3

0
2
0
1




are a basis for NulA: we just computed that these vectors span the null space, and they are linearly
independent since each has a nonzero entry in a row (namely, either row 2, 4, or 5) where the others have
zeros. (Why does this imply linear independence?)

This example is important: the procedure just described works to construct a basis of NulA for any
matrix A. The size of this basis will always be equal to the number of free variables in the
linear system Ax = 0. How to find a basis for NulA is something you should learn and remember.

Example. Let B =


1 0 −3 5 0
0 1 2 −1 0
0 0 0 0 1
0 0 0 0 0

.

This matrix is in reduced echelon form. How to find a basis for ColB?

The columns of B automatically span ColB, but they might not be linearly independent.

The largest linearly independent subset of the columns of B will be a basis for ColB, however.

In our example, the pivot columns 1, 2 and 5 are linearly independent since each has a row with a 1
where the others have 0s. These columns span columns 3 and 4, so a basis for ColB is


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0


 .

This example was special since the matrix B was already in reduced echelon form. To find a basis of the
column space of an arbitrary matrix, we rely on the following observation:

Proposition. Let A be any matrix. The pivot columns of A form a basis for ColA.

Proof. Let v1, v2, . . . , vn be the columns of A =
[
v1 v2 . . . vn

]
.

Consider the matrices Ak =
[
v1 v2 . . . vk

]
for k = 1, 2, . . . , n.

Observe that RREF(Ak) is equal to the first k columns of RREF(A).

If k is not a pivot column of A, then the last column of Ak is not a pivot column.

This means that Ak−1x = vk is consistent so vk is in the span of v1, v2, . . . , vk−1.

Thus each non-pivot column of A is a linear combination of earlier columns. This means that each
non-pivot column of A is a linear combination of earlier columns that are pivot columns: if i1 is the
first non-pivot column, then vi1 is a linear combination of earlier columns, which are all pivots; if i2 is
the second non-pivot column, then vi2 is a linear combination of earlier columns, and these are all either
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pivots or vi1 , but in any linear combination involving vi1 we can replace vi1 by a linear combination
of pivot columns to get a linear combination involving only pivot columns; if i3 is the third non-pivot
column, then vi3 is a linear combination of earlier columns, and these are all either pivots or vi1 or vi2 ,
and we can replace vi1 and vi2 by combinations of pivot columns as needed; and so on.

We conclude that ColA is spanned by the pivot columns of A. Why are they linearly independent?

If k is a pivot column of A, then the last column of Ak is a pivot column.

This means that Ak−1x = vk is inconsistent so vk is not in the span of v1, v2, . . . , vk−1.

Therefore vk is also not in the span of the (smaller) set of earlier columns that are pivot columns.

Thus if j1 < j2 < · · · < jq are the pivot columns of A then we have a strictly increasing chain of subspaces

R-span{vj1} ( R-span{vj1 , vj2} ( R-span{vj1 , vj2 , vj3} ( · · · ( R-span{vj1 , vj2 , . . . , vjq}.

The fact that this chain is strictly increasing means vj1 , vj2 , . . . , vjq are also linearly independent.

Example. The matrix

A =


1 3 3 2 −9
−2 −2 2 −8 2

2 3 0 7 1
3 4 −1 11 −8


is row equivalent to the matrix B in the previous example. Columns 1, 2, and 5 of A have pivots, so


1
−2

2
3

 ,


3
−2

3
4

 ,


−9

2
1
−8




is a basis for ColA.

Next time: we will show that if H is a subspace of Rn then all of its bases have the same size. The
common size of each basis is the dimension of H.
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4 Vocabulary

Keywords from today’s lecture:

1. Subspace of Rn

A subset H ⊆ Rn such that 0 ∈ H; if u, v ∈ H then u + v ∈ H; and if v ∈ H, c ∈ R then cv ∈ H.

Example: Pick any vectors v1, v2, . . . , vp ∈ Rn. Then R-span{v1, v2, . . . , vp} is a subspace.

2. Column space of an m× n matrix A.

The subspace ColA = {Av : v ∈ Rn} ⊆ Rm. The span of the columns of A.

Example: If A =

 1 0
0 1
0 0

 then ColA =


 x

y
0

 ∈ R3 : x, y ∈ R

.

3. Null space of an m× n matrix A.

The subspace NulA = {v ∈ Rn : Av = 0} ⊆ Rn.

Example: If A =

[
1 −2 0
−1 2 0

]
then NulA =


 2x

x
y

 ∈ R3 : x, y ∈ R

 = R-span


 2

1
0

 ,

 0
0
1

.

4. Basis of a subspace H ⊆ Rn

A set of linearly independent vectors in H whose span is H.

Example: The vectors

 1
−1

0

 ,

 0
1
−1

 are a basis for the subspace


 v1

v2
v3

 ∈ R3 : v1 + v2 + v3 = 0

.

The standard basis of Rn consists of the vectors e1 =


1
0
0
...
0

, e2 =


0
1
0
...
0

, . . . , en =


0
0
...
0
1

.
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