MATH 2121 — Linear algebra (Fall 2023) Lecture 9

This document is a transcript of the lecture, with extra summary and vocabulary sections for your
convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs,
and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.
e If A and B are n x n matrices with AB = I,, then BA =1,, and A~! = B.

o A subspace H of R™ is a subset of R™ containing the zero vector that is closed under linear combi-
nations. This means that 0 € H and if u,v € H and ¢ € R then v +v € H and cv € H.

e The zero subspace of R™ is the set {0} with just the zero vector 0 € R™. Let A be an m x n matrix.

The column space of A is the span of the columns of A. Denoted Col A. This is a subspace of R™.

Col = R-span ca,bERy CR?
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The null space of A is the set of vectors Nul A = {v € R” : Av = 0}. This is a subspace of R".
0 0

1
0 1 2 * 0
Nul| | | = y |eRP:x=y+22=0p = —2z | :z€R ) CR3.
000 : :
e A basis for a subspace H C R™ is a linearly independent spanning set.
The standard basis of R™ is ey, eq,...,e, where e; € R™ is the vector with 1 in row ¢ and 0 in all

other rows. Any subspace of R™ has a basis with at most n vectors.
e The pivot columns of an m x n matrix A form a basis for Col A.

e Both A and RREF(A) have the same null space. Usually Col A # Col RREF(A).

To find a basis for Nul A, determine the indices i1, 72, . . ., i, of the non-pivot columns of A.
Then there are unique vectors vy, vs,...,v, € R™ such that any
Ty
1)
T = | eR™ with RREF(A)x =0
In
can be written as = x;,v1 + x3,v2 + - -+ + x;,v,. The vectors vi,va,...,v, are a basis for Nul A.

For example, if RREF(A) = (1) g (1) é _; then any = € R® with RREF(A)z = 0 has

X 72.’,82 — 41‘4 + Is —2 —4 1
T2 T2 1 0 0
xr = I3 = —21'5 = X2 0 + x4 0 + x5 -2
T4 Ty 0 1 0
T5 Iy 0 0 1

The three vectors on the right are a basis for Nul A = Nul RREF(A).
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1 Last time: inverses

The following all mean the same thing for a function f: X — Y:
1. f is invertible.
2. f is one-to-one and onto.
3. For each b € Y there is exactly one a € X with f(a) = b.
4

. There is a unique function f~!:Y — X, called the inverse of f, such that

Y f@)=a and  f(f7HD)=b forallae X andbeY.

Proposition. If 7 : R® — R™ is linear and invertible then m = n and T—! is linear and invertible.

The following all mean the same thing for an n x n matrix A:
1. A is invertible.
2. A is the standard matrix of an invertible linear function T : R™ — R™.

3. There is a unique n x n matrix A=, called the inverse of A, such that
1

A7TA=AA"1 =1, where we define I,, =

4. For each b € R™ the equation Az = b has a unique solution.
5. RREF(A) =1,

6. The columns of A are linearly independent and their span is R".

Proposition. Let A = [ CCL b } be a 2 X 2 matrix.

d
(1) If ad — bec = 0 then A is not invertible.

—C a

~ d —b
(2) If ad — be # 0 then A ladl_bc{ }

Proposition. Let A and B be n x n matrices.
1. If A is invertible then (A=1)~! = A.
2. If A and B are both invertible then AB is invertible and (AB)~! = B~1A~L.
3. If A is invertible then AT is invertible and (AT)~! = (A=H)T.

Process to compute A~!

Let A be an n X n matrix. Consider the n x 2n matrix [ A I, }

If A is invertible then RREF ([ A I,, |)=[ I, A7'].

So to compute A~1, row reduce [ A I, } to reduced echelon form, and then take the last n columns.
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2 Stronger characterization of invertible matrices

Remember that a matrix can only be invertible if it has the same number of rows and columns.

Theorem. When A is a square n X n matrix, the following are equivalent:
(a) A is invertible.
(b) The columns of A are linearly independent.

(¢) The span of the columns of A is R™

Proof. We already know that (a) implies both (b) and (c).

Assume just (b) holds. Then A has a pivot position in every column, so RREF(A) = I,, since A has the
same number of rows and columns. But this implies that A is invertible.

Similarly, if (c) holds then A has a pivot position in every row, so RREF(A) = I,, and A is invertible. O

Corollary. Suppose A and B are both n x n matrices. If AB = I,, then BA = I,,.
This means that if we want to show that B = A~! then it is enough to just check that AB = I,,.

Proof. Assume AB = I,,. Then the columns of A span R" since if v € R™ then Au = v for u = Bv € R™,
so A is invertible. Therefore B = A 1AB =A"'], = A 'so BA=A"1A=1,. O

Important note: this corollary only applies to square matrices.

3 Subspaces of R"

Let n be a positive integer. Remember that 0 = S| € R™.
0
Definition. Let H be a subset of R™. The subset H is a subspace if these three conditions hold:
1.0e H.
2. u+wv € H for all u,v € H.
3. cveHforallce Rand v € H.

Common examples

R™ is a subspace of itself.

The set {0} consisting of just the zero vector is a subspace of R™.

The empty set & is not a subspace since it does not contain the zero vector.

A subset H C R? is a subspace if and only if H = {0} or H = R? or H = R-span{v} for some v € R?
The span of a set of vectors in R™ is a subspace of R”.

Conversely, any subspace of R™ is the span of a finite set of vectors, although this is not obvious.
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Example. The set
U1

X=(uv=| v |eR v +v+uv3=1
U3
is not a subspace since 0 ¢ X.
Example. The set
U1
H=<v=| v 6R3:v1+v2+03:0
U3

is a subspace since if u,v € H and ¢ € R then
(ul +Ul)+(UQ+U2)—|—(U3+U3) = (’U,l +UQ+U3)+(’U1 +122+U3) =0+0=0

and
cvy + cvg +cvg = c(v1 +va+v3) =0

sou+v € H and cv € H.

Any matrix A gives rise to two subspaces, called the column space and null space.

Definition. The column space of an m x n matrix A is the subspace
ColA={Az:2 €R"} CR™.

The set Col A is the span of the columns of A.

1 0
Example. If V = R-span 01,1 then what are some matrices A with ColA = V7
1 0

Here are four examples:
1 0 0 1 1 2 100 1 1 2
A=|0 1 or A=1]1 0 or A=1|2 1 or A=|0 1 1 0 2 1
10 0 1 1 2 10 0 1 1 2

Many different matrices can have the same column space, and it may not be at all obvious whether a
subspace V is equal to the column space of a given matrix A.

Remark. If T : R™ — R™ is the linear function T'(z) = Az then Col A = range(T).
A vector b € R™ belongs to Col A if and and only if Ax = b has a solution.

Thus Col A = R™ if and only if Az = b has a solution for each b € R™ (< A has a pivot in every row).

Definition. The null space of an m x n matrix A is the subspace
NulA={veR": Av =0} CR"
The set Nul A is exactly the set of solutions to the matrix equation Ax = 0.

Proof that Nul A is a subspace. If u,v € NulA and ¢ € R then A(u +v) = Au+ Av = 0+ 0 = 0 and
A(cv) = ¢(Av) =0, s0 u+v € Nul A and cv € Nul A. Thus Nul A4 is a subspace of R™. O
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Remark. If T : R™ — R™ is the linear function T'(z) = Az then NulA = {z € R" : T'(z) = 0}.

The column space is a subspace of R™ where m is the number of rows of A.

The null space is a subspace of R™ where n is the number of columns of A.

A subspace can be completely determined by a finite amount of data. This data will be called a basis.

Definition. Let H be a subspace of R™. A basis for H is a set of vectors {vy,va,..., v} € H that are
linearly independent and have span equal to H.

The empty set @ = {} is considered to be a basis for the zero subspace {0}.

1 0
0 1

Example. The set {e1,e3,...,e,} CR™ where e; = 0 , g = 0 , and so on, is a basis for R".
0 0

We call this the standard basis of R™.
Theorem. Every subspace H of R™ has a basis of size at most n.

Proof. If H = {0} then @ is a basis.

Assume H # {0}. Let B be a set of linearly independent vectors in H that is as large as possible. The
size of B must be at most n since any n + 1 vectors in R™ are linearly dependent.

Let wq,ws,...,w, be the elements of B. Since B is as large as possible, if v € H is any vector then
wy, Wa, . . ., Wk, v are linearly dependent so we can write

cawy + cows + -+ cpwg, +cv =0
for some numbers ¢y, co, ..., ck, ¢ € R which are not all zero.

If ¢ = 0 then this would imply that the vectors in B are linearly dependent. But the vectors in B are
linearly independent, so we must have ¢ # 0. Therefore

v:%wl—i—%wg—i—----i—%wk.

This means that v is in the span of the vectors in B. Since v € H is an arbitrary vector, we conclude
that the span of the vectors in B is all of H, so B is a basis for H. O

-3 6 -1 1 -7
Example. Let A = 1 -2 2 3 -1
2 -4 5 8 —4

How can we find a basis for Nul A7 Well, finding a basis for Nul 4 is more or less the same task as finding
all solutions to the homogeneous equation Ax = 0. So let’s first try to solve that equation.

If we row reduce the 3 x 6 matrix [ A 0 ],We get
1 -2 0 -1 3 0
[A 0]~]|0 01 2 —2 0|=RREF([A4 0]).
0 00 O 00

T, — 229 — x4 + 325 =0 T = 2x9 + x4 — 325

This tells us that Az = 0 if and only if
T3+ 2x4 — 225 =0

or equivalentl
d y{xg = —2x4 + 2x5.
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By substituting these formulas for the basic variables 1 and x3, we deduce that & € Nul 4 if and only if

€1 2x9 + x4 — 375 2 1 -3
T2 X9 1 0 0
r=| x3 | = —2x442x5 | =22 | 0 | +24 | —2 | + 25 2
XTq Ty 0 1 0
Ts T5 0 0 1
The vectors
2 1 -3
1 0 0
of,| —-21, 2
0 1 0
0 0 1

are a basis for Nul A: we just computed that these vectors span the null space, and they are linearly
independent since each has a nonzero entry in a row (namely, either row 2, 4, or 5) where the others have
zeros. (Why does this imply linear independence?)

This example is important: the procedure just described works to construct a basis of Nul A for any
matrix A. The size of this basis will always be equal to the number of free variables in the
linear system Az = 0. How to find a basis for Nul A is something you should learn and remember.

10 -3 5 0
0 1 2 -1 0
Example. Let B = 0 0 0 0 1
00 0 00

This matrix is in reduced echelon form. How to find a basis for Col B?
The columns of B automatically span Col B, but they might not be linearly independent.
The largest linearly independent subset of the columns of B will be a basis for Col B, however.

In our example, the pivot columns 1, 2 and 5 are linearly independent since each has a row with a 1
where the others have 0s. These columns span columns 3 and 4, so a basis for Col B is

OO O
OO = O
O = O O

This example was special since the matrix B was already in reduced echelon form. To find a basis of the
column space of an arbitrary matrix, we rely on the following observation:

Proposition. Let A be any matrix. The pivot columns of A form a basis for Col A.

Proof. Let vy,vs,...,v, be the columns of A = [ v1 V... Up }

Consider the matrices Ay = [ V1 V2 ... U ] for k=1,2,...,n.

Observe that RREF(Ay) is equal to the first k£ columns of RREF(A).

If £ is not a pivot column of A, then the last column of Ay is not a pivot column.

This means that A,_;z = v, is consistent so v, is in the span of vy, vs,...,V5_1.

Thus each non-pivot column of A is a linear combination of earlier columns. This means that each
non-pivot column of A is a linear combination of earlier columns that are pivot columns: if i; is the
first non-pivot column, then v;, is a linear combination of earlier columns, which are all pivots; if iy is
the second non-pivot column, then v;, is a linear combination of earlier columns, and these are all either
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pivots or v;,, but in any linear combination involving v;, we can replace v;, by a linear combination
of pivot columns to get a linear combination involving only pivot columns; if i35 is the third non-pivot
column, then v;, is a linear combination of earlier columns, and these are all either pivots or v;, or v;,,
and we can replace v;, and v;, by combinations of pivot columns as needed; and so on.

We conclude that Col A is spanned by the pivot columns of A. Why are they linearly independent?
If k£ is a pivot column of A, then the last column of Ay is a pivot column.

This means that A;_;z = v is inconsistent so v is not in the span of vy, vy, ..., vp_1.
Therefore vy, is also not in the span of the (smaller) set of earlier columns that are pivot columns.

Thus if j1 < jo < -+ < jg are the pivot columns of A then we have a strictly increasing chain of subspaces
R-span{v;, } € R-span{v;,,v;,} € R-span{v;,,vj,,v;,} € --- C R-span{v;,,vj,,...,v;,}.

The fact that this chain is strictly increasing means vj,, vj,,...,v;, are also linearly independent. []

Example. The matrix
1 3 3 2 =9
-2 =2 2 -8 2
2 3 0 7 1
3 4 -1 11 -8

A:

is row equivalent to the matrix B in the previous example. Columns 1, 2, and 5 of A have pivots, so

1 3 -9
-2 -2 2
2 |’ 3|’ 1
3 4 -8

is a basis for Col A.

Next time: we will show that if H is a subspace of R™ then all of its bases have the same size. The
common size of each basis is the dimension of H.



MATH 2121 — Linear algebra (Fall 2023) Lecture 9

4 Vocabulary

Keywords from today’s lecture:

1. Subspace of R"
A subset H C R™ such that 0 € H; if u,v € H then u+v € H; and if v € H, ¢ € R then cv € H.

Example: Pick any vectors vi, v, ...,v, € R”. Then R-span{vi, vs,...,v,} is a subspace.

2. Column space of an m X n matrix A.
The subspace Col A = {Av : v € R"} C R™. The span of the columns of A.

1 0 T
Example: f A= | 0 1 | then ColA = y | eR¥:2,yeR
0 0 0

3. Null space of an m x n matrix A.

The subspace NulA = {v € R" : Av =0} C R".

1 —2 0 2z 2 0
Example: If A = { 1 20 } then Nul A = x | ER3:z,y € R} = R-span 1/,]0
Yy 0 1

4. Basis of a subspace H C R"

A set of linearly independent vectors in H whose span is H.

1 0 U1
Example: The vectors | —1 |, 1 | are a basis for the subspace vy | ER3 vy +vg+v3=0
0 -1 U3
1 0 0
0 1 0
The standard basis of R™ consists of the vectors e; = 0 , €y = 0 ey € = :
: : 0
0 0 1
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