
MATH 2121 — Linear algebra (Fall 2023) Lecture 15

This document is a transcript of the lecture, with extra summary and vocabulary sections for your
convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs,
and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

• Let A be an n× n matrix. Let I = In be the n× n identity matrix.

Let λ be a number and suppose 0 6= v ∈ Rn.

If Av = λv then we say that v is an eigenvector for A and that λ is an eigenvalue for A.

More specifically, v is an eigenvector with eigenvalue λ for A.

• The eigenvalues of A are the solutions to the characteristic equation det(A− xI) = 0.

If λ is an eigenvalue then Nul(A− λI) is the λ-eigenspace of A.

To find a basis for the λ-eigenspace, use our familiar algorithm for finding bases of null spaces.

• Suppose v1, v2, . . . , vr are eigenvectors for A.

Let λi be the eigenvalue such that Avi = λivi.

If λ1, λ2, . . . , λr are all distinct, then v1, v2, . . . , vr are linearly independent.

• If A and B are n× n matrices and there exists an invertible n× n matrix P with

A = PBP−1

then we say that A is similar to B and that B is similar to A.

Any matrix is similar to itself, and if A is similar to B and B is similar to C then A is similar to C.

• Similar matrices have the same characteristic equations and same eigenvalues.

• A is diagonalizable if A is similar to a diagonal matrix D.

One useful property of diagonalizable matrices: if A = PDP−1 where D is diagonal, then there are
simple formulas for each entry in the matrix An = PDnP−1 for all positive integers n.
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MATH 2121 — Linear algebra (Fall 2023) Lecture 15

1 Eigenvector and eigenvalues

Everywhere is this lecture, n is a positive integer and A is an n× n matrix.

Let I denote the n× n identity matrix. Let λ be a number.

Definition. A vector v ∈ Rn is an eigenvector for A with eigenvalue λ if v 6= 0 and Av = λv.

The set of all v ∈ Rn with Av = λv is the λ-eigenspace of A for λ. This is just the nullspace of A− λI.

Proposition. Let λ be a number. The following are equivalent:

1. There exists an eigenvector v ∈ Rn for A with eigenvalue λ.

(Remember that eigenvectors must be nonzero.)

2. The matrix A− λI is not invertible.

3. det(A− λI) = 0.

4. The λ-eigenspace for A contains a nonzero vector.

As usual, a matrix is triangular if it is upper-triangular or lower-triangular.

The characteristic polynomial of a square matrix A is det(A− xI).

Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries. If these numbers
are d1, d2, . . . , dn then the characteristic polynomial of A is (d1 − x)(d2 − x) · · · (dn − x).

The following is true for all square matrices, not just triangular ones.

Theorem. Suppose λ1, λ2, . . . , λr are distinct eigenvalues for A, meaning λi 6= λj for i 6= j.

Let v1, v2, . . . , vr ∈ Rn be the corresponding eigenvectors, so that Avi = λivi for i = 1, 2, . . . , r.

Then the vectors v1, v2, . . . vr are linearly independent.

Proof. Suppose v1, v2, . . . , vr are linearly dependent. We argue that this leads to a logical contradiction.

There must exist an index p > 0 such that v1, v2, . . . , vp are linearly independent and vp+1 is a linear
combination of v1, v2, . . . , vp. (Otherwise, the vectors v1, v2, . . . , vr would be linearly independent.)

Let c1, c2, . . . , cp ∈ R be scalars such that vp+1 = c1v1 + c2v2 + · · ·+ cpvp. Then

λp+1vp+1 = Avp+1 = A(c1v1 + · · ·+ cpvp) = c1Av1 + · · ·+ cpAvp = c1λ1v1 + c2λ2v2 + · · ·+ cpλpvp.

On the other hand, multiplying both sides of vp+1 = c1v1 + c2v2 + · · ·+ cpvp by λp+1 gives

λp+1vp+1 = c1λp+1v1 + c2λp+1v2 + · · ·+ cpλp+1vp.

By subtracting the two equations, we get

0 = λp+1vp+1 − λp+1vp+1 = c1(λ1 − λp+1)v1 + c2(λ2 − λp+1)v2 + · · ·+ cp(λp − λp+1)vp.

Since the vectors v1, v2, . . . , vp are linearly independent by assumption, we must have

c1(λ1 − λp+1) = c2(λ2 − λp+1) = · · · = cp(λp − λp+1) = 0.

But the differences λi − λp+1 for i = 1, 2, . . . , p are all nonzero, so we must have c1 = c2 = · · · = cp = 0.
This implies that vp+1 = 0, contradicting our assumption that vp+1 is a (necessarily nonzero) eigenvector.

We conclude from this contradiction that actually the vectors v1, v2, . . . , vr are linearly independent.
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Let x be a variable. The eigenvalues of A are precisely the solutions to the equation det(A − xI) = 0
which we call the characteristic equation for A.

Example. The matrix

A =


5 −2 6 −1
0 3 −8 0
0 0 5 4
0 0 0 1


has characteristic polynomial det(A− xI) = (5− x)(3− x)(5− x)(1− x) = (5− x)2(3− x)(1− x).

Since (5−x)2 divides det(A−xI) but (5−x)3 does not divide det(A−xI), we say that 5 is an eigenvalue
of A with algebraic multiplicity 2. The other eigenvalues 1 and 3 have algebraic multiplicity 1.

In general the algebraic multiplicity of an eigenvalue λ for a square matrix A is the unique integer m ≥ 1
such that (λ− x)m divides det(A− xI) but (λ− x)m+1 does not divide det(A− xI).

We consider the following example in more depth.

Example. Consider the matrix

A =

 1 5 4
0 2 0
0 0 3

 .
Since A is triangular, its characteristic polynomial is (1− x)(2− x)(3− x) and its eigenvalues are 1, 2, 3.

Each eigenvalue in this example has algebraic multiplicity 1. We compute the corresponding eigenspaces:

1-eigenspace. The eigenvectors of A with eigenvalue 1 are the nonzero elements of Nul(A− I).

A− I =

 0 5 4
1 0

2

 ∼
 0 1 0

5 4
2

 ∼
 0 1 0

0 4
2

 ∼
 0 1 0

0 1
0

 = RREF(A− I).

This shows that x ∈ Nul(A − I) if and only if x =

 x1
x2
x3

 =

 x1
0
0

 = x1

 1
0
0

, so

 1
0
0

 is a basis

for Nul(A− I). Therefore all eigenvectors of A with eigenvalue 1 are nonzero scalar multiples of

 1
0
0

.

2-eigenspace. The eigenvectors of A with eigenvalue 2 are the nonzero elements of Nul(A− 2I).

A− 2I =

 −1 5 4
0 0

1

 ∼
 1 −5 0

0 1
0

 = RREF(A− 2I).

This shows that x ∈ Nul(A− 2I) if and only if x =

 x1
x2
x3

 =

 5x2
x2
0

 = x2

 5
1
0

, so

 5
1
0

 is a basis

for Nul(A− 2I). All eigenvectors of A with eigenvalue 2 are nonzero scalar multiples of

 5
1
0

.
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3-eigenspace. The eigenvectors of A with eigenvalue 3 are the nonzero elements of Nul(A− 3I).

A− 3I =

 −2 5 4
−1 0

0 0 0

 ∼
 −2 0 4

1 0
0

 ∼
 1 0 −2

1 0
0

 = RREF(A− 3I).

This shows that x ∈ Nul(A− 3I) if and only if x =

 x1
x2
x3

 =

 2x3
0
x3

 = x3

 2
0
1

 so

 2
0
1

 is a basis

for Nul(A− 3I). All eigenvectors of A with eigenvalue 3 are nonzero scalar multiples of

 2
0
1

.

Since the eigenvalues 1, 2, 3, are distinct, the eigenvectors

 1
0
0

,

 5
1
0

,

 2
0
1

 are linearly independent.

Consider the invertible matrix whose columns are given by these linearly independent vectors:

P =

 1 5 2
0 1 0
0 0 1

 .

As usual, let e1 =

 1
0
0

, e2 =

 0
1
0

, and e3 =

 0
0
1

 . The product Pei is the ith column of P , so

Pe1 =

 1
0
0

 and Pe2 =

 5
1
0

 and Pe3 =

 2
0
1

 .
Since Px = y means that P−1y = P−1Px = Ix = x, it follows that

P−1

 1
0
0

 = e1 and P−1

 5
1
0

 = e2 and P−1

 2
0
1

 = e3.

Combining these identities shows that

P−1APe1 = P−1A

 1
0
0

 = P−1

 1
0
0

 = e1.

P−1APe2 = P−1A

 5
1
0

 = 2P−1

 5
1
0

 = 2e2.

P−1APe3 = P−1A

 2
0
1

 = 3P−1

 2
0
1

 = 3e3.

These calculations determine the columns of the matrix P−1AP .

If fact, we see that P−1AP = D where D =
[
e1 2e2 3e3

]
=

 1 0 0
0 2 0
0 0 3

 .
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This means that A = P (P−1AP )P−1 = PDP−1, so 1 5 4
0 2 0
0 0 3

 =

 1 5 2
0 1 0
0 0 1

 1 0 0
0 2 0
0 0 3

 1 5 2
0 1 0
0 0 1

−1 .
One application of this decomposition: we can derive a simple formula for an arbitrary power An of A.

Define A0 = I, A1 = A, A2 = AA, A3 = AAA, and so on.

Lemma. For any integer n ≥ 0 we have An = (PDP−1)n = PDnP−1.

Proof. Do some small examples and convince yourself that the pattern continues:

A2 = AA = PDP−1PDP−1 = PDIDP−1 = PD2P−1

A3 = A2A = PD2P−1PDP−1 = PD2IDP−1 = PD3P−1

A4 = A3A = PD3P−1PDP−1 = PD3IDP−1 = PD4P−1

...

and so on.

Lemma. For any integer n ≥ 0 we have

Dn =

 1n 0 0
0 2n 0
0 0 3n

 =

 1 0 0
0 2n 0
0 0 3n

 .
Proof. To multiply diagonal matrices we just multiply the entries in the corresponding diagonal positions:

x1
x2

. . .

xk



y1

y2
. . .

yk

 =


x1y1

x2y2
. . .

xkyk

 .
Therefore to evaluate Dn = DD · · ·D, we just raise each diagonal entry to the nth power.

Finally, by the usual algorithm we can compute P−1 =

 1 −5 −2
1 0

1

.

(Check that this is the correct inverse of P !)

Putting everything together gives the identity

An = PDnP−1 =

 1 5 2
0 1 0
0 0 1

 1 0 0
0 2n 0
0 0 3n

 1 −5 −2
1 0

1


=

 1 5 · 2n 2 · 3n
0 2n 0
0 0 3n

 1 −5 −2
1 0

1

 =

 1 5(2n − 1) 2(3n − 1)
0 2n 0
0 0 3n

 .
Remark. We’ve done all these calculations for their own sake as a means of illustrating some key
concepts. But these calculations would also come up in the solution of the following discrete dynamical
system. Suppose a0, a1, a2, . . . , b0, b1, b2, . . . , and c0, c1, c2, . . . are sequences of numbers.
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For each integer n ≥ 1, suppose

an = an−1 + 5bn−1 + 4cn−1 and bn = 2bn−1 and cn = 3cn−1. (*)

How could we find a formula for an, bn, and cn in terms of n and the sequences’ initial values a0, b0, c0?

Note that (*) is equivalent to an
bn
cn

 =

 1 5 4
0 2 0
0 0 3

 an−1
bn−1
cn−1

 = A

 an−1
bn−1
cn−1

 = A2

 an−2
bn−2
cn−2

 = · · · = An

 a0
b0
c0

 .
Thus, our formula for An gives

an = a0 + 5(2n − 1)b0 + 2(3n − 1)c0 and bn = 2nb0 and cn = 3nc0.

If a0 = b0 = c0 = 1 then a10 = 123212 and b10 = 1024 and c10 = 59049. Moreover,

lim
n→∞

an
3n

= lim
n→∞

a0 + 5(2n − 1)b0 + 2(3n − 1)c0
3n

= 2c0.

2 Similar matrices

When do square matrices have the same eigenvalues? Here is one condition that guarantees this to occur:

Definition. Two n× n matrices X and Y are similar if there exists an invertible n× n matrix P with

X = PY P−1.

In this case it also holds that Y = P−1PY P−1P = P−1XP .

If X and Y are similar, then we say that “X is similar to Y ” and “Y is similar to X.”

In the previous example we showed that A =

 1 5 4
0 2 0
0 0 3

 and D =

 1 0 0
0 2 0
0 0 3

 are similar matrices.

There is a special name for this kind of similarity:

Definition. A square matrix X is diagonalizable if X is similar to a diagonal matrix

Proposition. An n× n matrix A is always similar to itself.

Proof. Since I = I−1 we have A = PAP−1 for P = I.

Proposition. Suppose A,B,C are n× n matrices. Assume A and B are similar. Assume B and C are
also similar. Then A and C are similar.

Proof. If A = PBP−1 and B = QCQ−1 then R = PQ is invertible and A = RCR−1.

Theorem. If A and B are similar n×n matrices then A and B have the same characteristic polynomial
and so have the same eigenvalues. (Similar matrices usually have different eigenvectors, however.)

Proof. Recall that det(XY ) = det(X) det(Y ). Assume A = PBP−1. Then

A− xI = P (B − xI)P−1 and det(A− xI) = det(P (B − xI)P−1) = det(P ) det(B − xI) det(P−1).

But det(P ) det(P−1) = det(PP−1) = det(I) = 1, so det(A− xI) = det(B − xI).
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3 Vocabulary

Keywords from today’s lecture:

1. Characteristic equation of a square matrix A.

The equation det(A− xI) = 0, where I is the identity matrix with the same size as A.

The solutions x for this equation give all eigenvalues of A.

Example: If A =

 0 2 0
2 0 0
0 0 2

 then

det(A− xI) = det

 −x 2 0
2 −x 0
0 0 2− x

 = (2− x)(x2 − 4) = (2− x)2(−2− x) = 0

has solutions x = 2 and x = −2. These solutions are the eigenvalues for A.

2. Algebraic multiplicity of an eigenvalue λ of square matrix A.

The number of times the factor (λ− x) divides the characteristic polynomial det(A− xI).

If A =

 0 2 0
2 0 0
0 0 2

 then 2 has algebraic multiplicity 2 and −2 has algebraic multiplicity 1.

3. Similar matrices.

Two n× n matrices A and B are similar if there exists an invertible n× n matrix M with

A = MBM−1.

If A and B are similar and B and C are similar, then A and C are similar.

Example:

 1 0 0
0 2 0
0 0 3

 is similar to

 3 0 0
0 2 0
0 0 1

 =

 0 0 1
0 1 0
1 0 0

 1 0 0
0 2 0
0 0 3

 0 0 1
0 1 0
1 0 0

−1.

4. Diagonalizable matrix.

A matrix that is similar to a diagonal matrix.
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