MATH 2121 — Linear algebra (Fall 2023) Lecture 17

This document is a transcript of the lecture, with extra summary and vocabulary sections for your
convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs,
and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

e Given real numbers a,b € R, define a + bi = [ Z _2 } .
(1) } and 7 as the matrix [ 0 -1 }

In this notation, we think of 1 as the matrix { (1) 1 0

The set of complex numbers is C = {a+bi:a,b € R} = {[ (Z _2 ] ta,be R}.

We view R as a subset of C by setting a = a + 0i = [8 2}

e We can add, subtract, multiply, and invert complex numbers, since they are 2 x 2 matrices.

2
_ 0 -1 -1 0 L0
. . W2 _ _1» 5 1 3 3 = - —
The identity “:* = —1” holds in the sense that [ 10 } [ 0 —1 } { 01 }

e Once we get used to these operations, another useful way to view the elements of C is as formal
expressions a + bi where a,b € R and i is a symbol that satisfies 2 = —1.

Addition, subtraction, and multiplication work just like polynomials, but substituting —1 for 2.
e Suppose p(x) = a,z™ +an_12" 1+ ... a1z + ag is a polynomial with coefficients ag, a1, ..., a, € C.
Assume a,, # 0 so that p(z) has degree n.

Then there are are n (not necessarily distinct) complex numbers 71,79, ...,7, € C such that
p(z) =an(x —r)(x —12) - (T — 7p).

The numbers ry1, 79, ..., r, are the roots of p(x).
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1 Last time: methods to check diagonalizability

Let n be a positive integer and let A be an n X n matrix.

Remember that A is diagonalizable if A = PDP~! where P is an invertible n x n matrix and D is an
n X n diagonal matrix. In other words, A is diagonalizable if A is similar to a diagonal matrix.

Suppose v1,v9,...,v, € R™ are linearly independent vectors and A1, A, ..., A, are numbers. Define

A1
A2
P:[’Ul vy ... vn] and D=
An
If A= PDP~! then Av; = PDP~'v; = PDe; = \;Pe; = \jv; for each i =1,2,...,n.

In other words, when A = PDP~!, the columns of P are a basis for R” made up of eigenvectors of A.

Matrices that are not diagonalizable.

Proposition. Let A be an n x n upper-triangular matrix with all entries on the diagonal equal to A.

If A is not the diagonal matrix A\I, then A is not diagonalizable.

Proof. Suppose A = PDP~! where D is diagonal. Every diagonal entry of D is an eigenvalue for A.
The only eigenvalue of A is A so D =\ and A = P(AI)P~! = A\PIP~' = \PP~! = \I. O
The following result summarizes everything we need to know about diagonalizability: how to determine
if a matrix A is diagonalizable, and then how to compute the decomposition A = PDP~! if it exists.
Theorem. Let A be an n X n matrix. Suppose A1, A2, ..., A, are the distinct eigenvalues of A.
Let d; = dim Nul(A — \;I) fori =1,2,...,p.
By the definition of an eigenvalue, we have 1 < d; < n for each i. Moreover, the following holds:

1. We always have dy +da +--- +d, < n.

2. The matrix A is diagonalizable if and only if dy +dz +--- + dp = n.

3. Suppose A is diagonalizable. Let D; = A;14, and define D as the n x n diagonal matrix

D,
D,
D,

Choose n vectors v1, ve, ..., v, € R™ such that the first dy vectors are a basis for Nul(A — A\, 1), the
next do vectors are a basis for Nul(A — \y7), the next ds vectors are a basis for Nul(A — A\37), and
so om, so that the last d,, vectors are basis for Nul(A — A\,I). Then A= PDP~! for

P:[Ul Vg ... vn].
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2 Complex numbers

0

For the rest of this lecture, let i = { 1

-1 1 0
0 ] Recall that I, = [ 01 }

Suppose a,b € R . Both i and I are 2 X 2 matrices, so we can form the sum als + bi.
To simplify our notation, we will write 1 instead of I and a + bi instead of als + bi.

We consider a = a + 0i and bi = 0 + bi and 0 = 0 + 0¢. With this convention, we have
bi— 10 b 0 -1 |a O " 0 -b| | a —b
aTH=alg g 1 0|70 b b 0| | b al

a

Deﬁne(C—{aeri:a,beR}_{{ b

_2 ] ta,b e R}. This is called the set of complexr numbers.
According to our definition, each element of C is a 2 x 2 matrix, to be called a complex number.

Fact. We can add complex numbers together. If a,b, c,d € R then

(a+bi)+(c+dz’){(z f]*[fl _i]{ZIg _Z:rﬂ(a+c)+(b+d)z‘e<c.

c1ear1y\(a+bi)+(c+di):(c+di)+(a+bi):(a+c)+(b+d)¢\.

Fact. We can subtract complex numbers. If a,b,c,d € R then

(a+bi)—(c+di):{z ‘2]—[5 ‘i]:“‘:fl ‘Zfﬂ:(a—c)ﬂb—d)iec

Fact. We can multiply complex numbers. If a,b,c,d € R then

(a+bi)(c+dz‘)—{a —bHc —d}_[ac—bd —(ad + be)

b a d ¢ ad + be ac_bd}_(acbd)+(ad+bc)i€(c,

Note that | (a + bi)(c + di) = (c + di)(a + bi) = (ac — bd) + (ad + be)i ],

Fact. We can multiply complex numbers by real numbers. If a,b,z € R then define

(a+bz’)x:x(a+bi):x[‘g - } _ [ ar b } — (az) + (ba)i € C.

Note that this is the same as the product (a + bi)(x + 07).
Fact. We can divide complex numbers by nonzero real numbers. If a,b, 2z € R and = # 0 then define
(a+bi)/x=(a+bi)(1/x) = (a/x) + (b/x)i.

We sometimes write % instead of p/q. Both expressions means the same thing.

A complex number a + bi is nonzero if a # 0 or b # 0. Since

det(a + bi) = det { ‘g _2 } = a4+

which is only zero if a = b = 0, every nonzero complex number is invertible as a matrix.
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Fact. This fact lets us divide complex numbers. If a,b,¢,d € R and ¢ + di # 0 then define

(a + bi)/(c + di) = H b} {g —d T.

a c

We can write this more explicitly as
a —b c —d]"
(a—l—bz)/(c—i—dz):[ b a} {d c]

1 a —b c d
T e24+d2| b a —d ¢

1 {ac—i—bd ad—bc}_ac—!—bd be — ad .

T2 4d2 | be—ad ac+bd —62+d2+c2+d2260

The last formula is not so easy to remember.

It may be easier to divide complex numbers using the following method:

3-4i (3-4i)(2-i) 6-3i—-8i+4i2 6-11i—-4 2-11i 2 11
E le. We h - _ - _ _
AP e e S T 2 (2 — i) 41— 2 5 5 5 5

a+bi  (a+bi)(c—di)

More generally, if ¢ 4+ di # 0 then we always have rdi 2L d since
a+bi ) N1 1 . ~ (a4 bi)(c—di)
c—|—d2 :(a+b2)(6+d2) :m(a+bl)(c_dl)zc2—|——cl2

The complex conjugate of ¢ + di is its matrix transpose, in other words, the complex number
ct+di=(c+di)) =c—dicC.
When ¢ + di is nonzero, the complex conjugate is related to the inverse by the identity
-1
N-1_ | ¢ —d 1 cd|_ 1 —
(c+ di) {d c} 02+d2[—d e | =375 ¢+ di.

Since z,y € C satisfy xy = yx and (vy)" =y 2" (since complex numbers are matrices), it follows that

Ty=y-T=7-7|

We can also add complex numbers a + bi with real numbers ¢ when a, b, c € R.
To do this, we set ¢ = ¢+ 0i and define (a + bi) + ¢ = ¢+ (a + bi) = (a + bi) + (¢ + 0i) = (a + ¢) + bi.

Under this convention, we have

¢2+1=(0+z’)(0+i)+(1+0i)=[(1) _(I)H(l) _1]+[(1) (1)]
SRS B

Thus it makes sense to write . In a similar way:
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Theorem. Define the exponential function C — C by the convergent power series

N 1 1 1 1
e“‘zl—i—im—&-—mQ—i— x3 + R

1-2 1.2.3 1.2-.3-4"7

Then e = ¢ = 2.71828 ... and |¢™™ +1 = 0],

Proof. We need two facts from calculus:

1 4

1
-1= =1-—n° - 64 ...
cosm 12" Y1 234" 123456
0 =sinm =+ Loy . ° . T+
Tt T I 23" "1 2.3.4.5" " 1.2.3.4-5-6-7"

We have

.10 -1 o | -1 0 3 0 1 o0 4 |1
Z—|:1 0},2—[0_1],1—[_1 0}, andz-z-{o

Thus i"t* = i for all n.

Also, we have (im)™ = n"™i". It follows that

12 14 1 6 1 1.3 1 5 1 7
i I = 357 + 15347 — 1231567 T 1T~ 1237 T 123457 ~ 12345677 -
(& =
1 1.3 1 5 1 7 12 14 1 6
17— 1237 T 123157 — Ta3a5677 T 1= 137 + 1532™ — 1231567 T -
. . . ,iTr _1 O . ,iTr . .
By our two facts, this is just '™ = 0 -1 |7 —140i. Thus e™+1=(—-1+0¢)+(14+0i)=0. O

After a while, we tend to forget that complex numbers are 2 x 2 matrices and instead view the elements
of C as formal expressions a + bi where a,b € R and i is a symbol that satisfies i2 = —1.

We can add, subtract, and multiply such expressions just like polynomials, but substituting —1 for i2.
This convention gives the same operations as we saw above.

Moreover, this makes it clearer how to view R as a subset of C, by setting a = a + 0.
The real part of a complex number a + bi € C is R(a + bi) = a € R.
The imaginary part of a +bi € Cis S(a+bi) =beR.

Remark. It can be helpful to draw the complex number a + bi € C as the vector [ Z } € R2.

The number i(a + bi) = —b+ ai € C then corresponds to the vector { _2 ] € R?, which is given by

rotating { “ } ninety degrees counterclockwise. (Try drawing this yourself.)

b
The main reason it is useful to work with complex numbers is the following theorem about polynomials.
Suppose p(x) = a,x™ + ap_12" 1 + -+ + a1z + ap is a polynomial with coefficients ag, a1, ..., a, € C.
Assume a,, # 0 so that p(x) has degree n.

Even though we think of complex numbers are 2 x 2 matrices, this expression for p(x) still makes sense
for x € C: if we plug in any complex number for = then a,z" + an_12" '+ -+ -+ a1z +ay € C.
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Theorem (Fundamental theorem of algebra). Define p(z) as above. There are n (not necessarily distinct)

complex numbers r1,73, ..., € C such that p(z) = ap(z —r1)(x —r2) -+ (& — 19).
One calls the numbers 71,79, ..., 7, the roots of p(x).
A root r has multiplicity m if exactly m of the numbers rq,79,...,7, are equal to r.

The use of complex numbers in this theorem is essential. The statement fails if we use R instead of C.
Example: if p(z) = 2 + 1 then there do not exist real numbers r1,7, € R with p(x) = (z —r1)(x — o).

However, we do have 2% + 1 = (x —i)(z + 1).
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3 Vocabulary

Keywords from today’s lecture:

1. Complex number.

We define a complex number to be either

e A matrix a + bi = @ —b where a,b € R and i = 0 —1 .
b a 1 0
e A formal expression “a + bi” where a,b € R and 4 is a symbol that has 2 = —1.

The first definition makes it clear how to add, subtract, multiply, and divide complex numbers (use
matrix operations). The second definition is secretly just a way of abbreviating the first definition.

The set of complex numbers is denoted C.

Example:

1 + 27 corresponds to [ ; 7? }

(1+2i)+(2+3i)3+5icorrespondsto[1 _?:|+|:§ _3}[§ _5}
(1+2i)(2+3i):—4+7icorrespondsto{1 _2][:2)’ _3}:[_4 _6}

-1
1 -2 1 2
AN—1 _ 1 2, 1
(1+2i)~" = z — £i corresponds to { 5 1 ] =1 { B ]

2. Complex conjugation.

If a,b € R then complex conjugate of a +bi € Cis a+bi =a —bi € C.

Ify,2eCtheny+z=7+zandyz=y-zand y— L =7 ..

3. Fundamental theorem of algebra.

Any polynomial
f(@) =apa™ + 12"V 4+ 4 a1z + ag

with coefficients ag, a1,...,a, € C and a, # 0 can be factored as
(@) =an(@—Ai)(@—A2) -+ (z — An)

for some not necessarily distinct complex numbers Ay, As,..., A, € C.
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