MATH 2121 — Linear algebra (Fall 2023) Lecture 22

This document is a transcript of the lecture, with extra summary and vocabulary sections for your
convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs,
and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

e A line of best fit through data points (a1, b1), (az,b2), ..., (an, by) is an equation y = Sy + B2 where

1 ay bl

Bo 2 - . 1 as b
3 € R is a least-squares solution to Ax = b where A = . .| and b= .
1 : : :
1 Ay, bn

e A matrix A is symmetric if AT = A. This can only hold if A is square. For example:

0 -1 0
-1 ) 8
0 8 -7

If A is symmetric then so is A2, A3, A%, etc.

If A is symmetric and invertible then so is A=™!, A72, 473, etc.

If A is symmetric and v and v are eigenvectors for A with different eigenvalues, then u e v = 0.
o A list of vectors ui,ug,...,u, is orthonormal if u; e u; = 1 and u; e u; = 0 for all ¢ # j.

A square matrix P is invertible with P~' = PT if and only if its columns are orthonormal.

An n x n matrix A is orthogonally diagonalizable if there is a diagonal matrix D and an invertible
matrix P with P~' = PT such that A= PDP~L.

e When A = PDP~! where D is diagonal and P~! = P, the diagonal entries of D are the eigenvalues
of A, and the columns of P are an orthonormal basis of R™ consisting of eigenvectors for A.

Conversely, an n x n matrix A is orthogonally diagonalizable if and only if there exists an orthonor-
mal basis of R" consisting of eigenvectors for A.

e Surprising fact: all (complex) eigenvalues of a symmetric matrix A = AT belong to R.
Surprising fact: an n x n matrix A is orthogonally diagonalizable if and only if A = AT.
Much of this lecture is spent proving these facts.

e To orthogonally diagonalize a given n X n symmetric matrix A, you need to find an orthogonal basis
of R™ consisting of eigenvectors vy, vs, ..., v, for A.

Once you find this, let u; = ﬁvl and U = [ Uy Ug ... Uy ]

Then A = UDU T where D is the diagonal matrix whose ith diagonal entry is the eigenvalue of v;.
e To find the orthogonal basis of eigenvectors vy, vs, ..., v, for A:
Factor the characteristic polynomial of A to compute its eigenvalues.
For each eigenvalue A, do the usual row reduce procedure to find a basis for Nul(A — \I).

Apply the Gram-Schmidt process to convert your basis of Nul(A — A\I) to an orthogonal basis.

= W =

Finally combine these orthogonal bases — the combined list of vectors will still be orthogonal.
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1 Last time: least-squares problems

Definition. Suppose A is an m X n matrix and b € R™.
The linear system AT Az = ATb is always consistent, so has at least one solution.

A solution to AT Az = ATb is called a least-squares solution to the equation Az = b.

Let [|v]| = /v +vZ + -+ +v2 >0 for v € R". Recall that ||v|| = 0 if and only if v = 0.

Fact. A vector s € R™ is a least-squares solution to Az = b if and only if ||b — As|| < ||b — Az|| for all .
The linear system Az = b is consistent if and only if ||b — Ax|| = 0 for some z € R™.
This means that if Az = b is consistent then all least-squares solutions s satisfy ||b — As|| =0 so As = b.

If Az = b is inconsistent, there is still at least one least-squares solution s (but in this case ||b— As|| > 0).

Theorem. Let A be an m x n matrix. The following properties are equivalent:
(a) Az = b has a unique least-squares solution for each b € R™.
(b) The columns of A are linearly independent.

(c) AT A is invertible.

Example (Lines of best fit). Suppose we have n data points (a1,b1), (az,b2), ..., (an, by).

We want to find parameters 3y, 81 € R such that y = By + S1x describes the line of best fit for this data.
Bo
B

bi=po+pPia; fori=1,2,... n,

If our points are all on the same line, then for some € R? we would have

meaning that z = [ go } is an exact solution to the linear system Axz = b where
1
1 ay bl
1 as bo
A= . . and b=
1 Ay, bn

If the given points are not on the same line, then no exact solution to Ax = b exists, and we should
instead try to find a least-squares solution to this linear system.

To be concrete, suppose we have four points (2, 1), (5,2), (7,3), and (8,3) so that

and b=

— = =
o J Ut N
W W N~

The least-squares solutions to Az = b are the exact solutions to AT Az = ATb. We have

[ [ 4 22
AA[Q [22 142}

[SLE=
-3

oo =

| I
— =
o = Ut N
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and

(a0
-
o =

1
2

W N
I
| —
o
J ©
—_

ATb:[

w

The matrix AT A is invertible. (Why?) It follows that a least-squares solution is provided by

2] -warn-( ][ )] 2014 )
5
147

Thus our line of best fit for the data is y = 7 +

2 Symmetric matrices

A matrix A is symmetric if AT = A. This happens if A is square and A;; = Aj; for all 4, j.

1 0 0 —1 0 a b c
Example. and | —1 ) 8 | and | b d e | are symmetric matrices.
0 -3
0 8 -7 c e f
1 -4 0
r=3 and | —6 1 —4 | and 123 are not symmetric.
3 0 6 —6 1 2 3 5

Proposition. If A is a symmetric matrix and k is a positive integer then A* is also symmetric.

Proof. If A = AT then (A*)T = (AA---A)T = AT ... ATAT = (AT)F = Ak, O

Proposition. If A is an invertible symmetric matrix then A~! is also symmetric.
Proof. This is because (A71)T = (A7)~ O

Recall how we can diagonalize a matrix.

6 —2 -1
Example. Let A= | —2 6 —1
-1 -1 )

Then det(A — xI) = (8 —z)(6 — x)(3 — z) so the eigenvalues of A are 8, 6, and 3. By constructing bases
for the null spaces of A — 81, A —5I, and A — 31, we find that the following are eigenvectors of A:

-1

v = 1 | with eigenvalue 8.
0
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-1
vg = | —1 | with eigenvalue 6.
| 2
[ 1
vg = | 1 | with eigenvalue 3.
1

These eigenvectors are actually an orthogonal basis for R3.

Converting these vectors to unit vectors gives an orthonormal basis of eigenvectors:

—1/V/2 ~1/V6 1/V3
Uy = 1/\/§ 5 U = —1/\/6 5 us = 1/\/§
0 2//6 1/V3

We then have A = PDP~! where

P:[ul Uo Ug] and D=

o O oo
o OO
w o o

(Why does this hold? It is enough to check that PDP~'v = Av for v € {uy, us,us}.)

Since the columns of P are orthonormal, we actually have PT = P~! so A= PDPT.

The special properties in this example will turn out to hold for all symmetric matrices.

Theorem. Suppose A is a symmetric matrix. Then any two eigenvectors from different eigenspaces of
A are orthogonal. In other words, if A= AT is n x n and u,v € R™ are such that Au = au and Av = bv
for numbers a,b € R with a # b, then v e v = 0.

Proof. Let u and v be eigenvectors of A with eigenvalues a and b, where a # b.

Then auev = Auev = (Au) v =u"ATv=u" Av =ue Av = v e bv.

But auev = a(uev) and uebv = b(uev), so this means a(uev) = b(uev) and therefore (a —b)(uev) = 0.

Since a — b # 0, it follows that v e v = 0. O

Recall that a matrix P is orthogonal if P is invertible and P~! = PT.

Definition. A matrix A is orthogonally diagonalizable if there is an orthogonal matrix P and a diagonal
matrix D such that A= PDP~! = PDPT.

When A is orthogonally diagonalizable and A = PDP~! = PDPT, the diagonal entries of D are the
eigenvalues of A, and the columns of P are the corresponding eigenvectors; moreover, these eigenvectors
form an orthonormal basis of R".

In fact, it follows by the arguments in our earlier lectures about diagonalizable matrices that an n x n
matrix A is orthogonally diagonalizable if and only if there is an orthonormal basis for R™ consisting of
eigenvectors for A.

Surprisingly, there is a much more direct characterization of orthogonally diagonalizable matrices:

Theorem. A square matrix is orthogonally diagonalizable if and only if it is symmetric.

We prove this after a sequence of lemmas.

Lemma. If A is orthogonally diagonalizable then A is symmetric.
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Proof. 1f X,Y, Z are n x n matrices then (XY Z)" = Z"(XY)T =ZTYyTX".
Suppose A = PDP" where D is diagonal. Then D = DT and (PT)" = P, so

AT =(DpP")T =(P"'D'PT =PDPT = A.

Lemma. All (complex) eigenvalues of an n x n symmetric matrix A with real entries belong to R.

Proof. Suppose A is a symmetric n X n matrix with real entries, so that A = AT = A.

Let v € C". Then ' Av is some complex number.

L 12 [+
Forexample,1fA—[2 l}andv—[l_i]then
_ . . 1 2 144 . ) 1414 . . . .
’UTAU:[l—Z 1+z][2 1][1_1.][3—1—2 3—2}{1_2.}(3+z)(1+z)+(3z)(11)4_

In fact, the number T Av belongs to R since 7' Av = v AT = (6TAU)T =7 Av.
(The last equality holds since both sides are 1 x 1 matrices, i.e., scalars.)

Now suppose v € C" is an eigenvector for A with eigenvalue A € C. Then @' Av =7 ' (\v) = A(T'v) € R.
The complex number 7' v always belongs to R (why?) so it must also hold that A € R. O

Lemma. An n x n matrix A with all real eigenvalues can be written as A = URU " where U is an n x n
orthogonal matrix (i.e., has orthonormal columns) and R is an n X n upper-triangular matrix.

One calls A = URU " with U and R of this form a Schur factorization of A.

Proof. Suppose A is an n X n matrix with all real eigenvalues.
Let u; € R™ be a unit eigenvector for A with eigenvalue A € R.
Let us,...,u, € R™ be any vectors such that uy,us, ..., u, is an orthonormal basis for R™.

(One way to construct these vectors: let u; = x1,x2,...,2, be any basis, apply the Gram-Schmidt
process to get u; = v1,vg,...,v,, and then convert each v; to a unit vector.)

Define U = [ U Uy ... Up ] sothat UT = U1,
By considering the product UT AUe; for i = 1,2,...,n, one finds that U AU has the form

A%

T _

o=} 5]
for some (n — 1) x (n — 1) matrix B. Here, * stands for n — 1 arbitrary entries.

The matrix UT AU = U~'AU has the same characteristic polynomial as A.

This polynomial is just (A — x) det(B — aI), which is A — z times the characteristic polynomial of B.

Since the characteristic polynomial of A has all real roots, the same must be true of the characteristic
polynomial of B. Thus B must also have all real eigenvalues.

By repeating the argument above, we deduce that there is an eigenvalue u € R for B, an (n—1) x (n—1)
orthogonal matrix V, and an (n — 2) x (n — 2) matrix C with all real eigenvalues such that

Tpy | B %
VBV_{O C’}
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The matrix [ (1) ‘9 ] is also orthogonal, and the product of orthogonal matrices is orthogonal. (Why?)
1 0 Aok ox

It follows for the orthogonal matrix W = U that WTAW = | 0 p =
0V 00 C

By continuing in this way, we will eventually construct an orthogonal matrix X and an upper-triangular
matrix R such that X" AX = R, in which case A= XXTAXXT = XRX . O

Now we can prove the theorem.

Proof of theorem. The first lemma shows that if A is orthogonally diagonalizable then A is symmetric.

Suppose conversely that A is symmetric. Then A has all real eigenvalues, so there exists a Schur factor-
ization A = URU". We then have AT = (URU")T =UR'UT but also AT = A=URU".

Since UT = U1, it follows that R = R'. Since R is upper-triangular, this can only hold if R is diagonal.
But if R is diagonal then A = URU T is orthogonally diagonalizable. O

To orthogonally diagonalize an n x n symmetric matrix A, we just need to find an orthogonal basis of
eigenvectors vy, va, ..., v, for R®. Then A = UDUT with U = [ U Uy ... Uy ] where u; = mvi
and D is the diagonal matrix of the corresponding eigenvalues.

If all eigenspaces of A are 1-dimensional, then any basis of eigenvectors will be orthogonal. If A has an
eigenspace of dimension greater than one, then after finding a basis for this eigenspace, it is necessary to
apply the Gram-Schmidt process to convert this basis to one that is orthogonal.

Corollary. If A=U DUT where U = [ UL Uz ... Up ] has orthonormal columns and

A

An

is diagonal, then A = /\1ulu1T + )\quuQT + et )\nunuz.

Each product w;u; is an n x n matrix of rank 1. One calls this expression a spectral decomposition of A.

7 2

Example. Let A = [ 9 4

} . A spectral decomposition of A is given by

o

= il

0 2/V5 1/V5
s s ][ 3] |

3 ~1/V5 2/V5
8[3%][2/\/5 1/¢5]+3[‘§§£}[w5 2/V5 |

[ ][ %)
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3 Vocabulary

Keywords from today’s lecture:

1. Symmetric matrix.
A matrix A that is equal to its transpose, so that A = AT. Such a matrix is square.

Symmetric matrices are precisely the square matrices A that are orthogonally diagonalizable,
in other words, the matrices that can be expressed as

A=PDPT

where D is a diagonal matrix and P is an invertible matrix with P~1 = PT.

Example: { ; g } or any diagonal matrix.

2. Schur factorization of an n x n matrix A.

A decomposition A = URU " where R is an n x n upper triangular matrix and U is an orthogonal
matrix (i.e., U is invertible with U~! =UT).



