MATH 2121 — Linear algebra (Fall 2023) Lecture 23

This document is a transcript of the lecture, with extra summary and vocabulary sections for your
convenience. Due to time constraints, the notes may sometimes only contain limited illustrations, proofs,
and examples; for a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.
e Let A be an m x n matrix. Then AT A is a symmetric n x n matrix.

The eigenvalues of AT A are nonnegative real numbers. This means that there are real numbers
A1 > A >+ > ), >0such that det(ATA —2l) = (A —2)(Ag — ) -+ (A, — 2).

Define o; = v/A;. Then the numbers o1 > 02 > -+ > 7, > 0 are the singular values of A.
The rank of A is the same as its number of nonzero singular values.
e Recall that an orthogonal matriz is an invertible square matrix U with U= = UT.
Suppose A is any m X n matrix with rank A = r.
Suppose o1 > 09 > -+ > 0, > 0 are the nonzero singular values of A.
Then we can write A = ULV T where
U is some m x m orthogonal matrix.
V is some n x n orthogonal matrix.
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The decomposition A = UXV T is called a singular value decomposition or SVD.
e To compute an SVD for A, first find the eigenvalues of AT A.
Then construct an orthonormal basis vy, va, . .., v, of R™ consisting of eigenvectors for AT A.
Let \; be the eigenvalue such that AT Av; = \jv; and define o; = V/\;.
Order the basis vectors such that Ay > Ao > - > X\, and o1 > 09 > -+ > 0.
Then set V = [ v Vg ... Up ] and define ¥ in terms of the o;’s as above.
Let r = rank A. This is the largest index with o, > 0.
Fori=1,2,...,r define u; = U%Av,'.
Choose any vectors w41, Upt2, - - -, Uy € R™ such that uy, us, ..., u,, are orthonormal.
Finally set U = [ UL U2 . U, ]
The matrices U and V will then be orthogonal and A = UXV T is a singular value decomposition.

e A pseudo-inverse of an m X n matrix A is an n x m matrix A1 that satisfies
AATA=A and ATAAT = AT,

Every matrix has a pseudo-inverse, which can be computed from a singular value decomposition.

If A=UXV is a singular value decomposition and ¥ is the matrix formed by transposing ¥ and
then replacing all nonzero entries by their reciprocals, then AT = VETUT is a pseudo-inverse.
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1 Last time: symmetric matrices

A matrix A is symmetric if AT = A.

This happens if and only if A is square and A;; = Aj; for all 4, j.

2 3
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Example. { 3 9

} is symmetric but { b2 } is not.
A matrix U is orthogonal if U is invertible and U=! = U T.

This happens precisely when U is square with orthonormal columns.

An n xn matrix A is orthogonally diagonalizable if there is an orthogonal matrix U and a diagonal matrix
D such that A = UDU~' = UDU". In this case, the columns of U are an orthonormal basis for R™
consisting of eigenvectors for A, and the eigenvalues of these eigenvectors are the diagonal entries of D.

The following summarizes the main results from last time:

Theorem.
(1) A square matrix is orthogonally diagonalizable if and only if it is symmetric.
(2) Eigenvectors with different eigenvalues for a symmetric matrix are orthogonal.

(3) All (complex) eigenvalues of a symmetric matrix A are real. The characteristic polynomial of A
has all real roots and can be expressed as det(A —zI) = (A —x)(A2 — ) - - - (A, — ) for some (not

necessarily distinct) real numbers A1, Ao, ..., A\, € R,
a b
Example. Suppose A = [ b a ] for some a,b € R.

How does the preceding theorem apply to this generic 2-by-2 matrix? Since

- b

a
det(A—xI)—det[ b oa—

}:(a_$)2—b2:(a—b—x)(a-&-b—f)»

the eigenvalues of A are a — b and a + b.

It’s not too hard to guess the eigenvectors corresponding to these eigenvectors, though the usual method
of row reducing A — A to find a basis for Nul(A — AI) will also produce the answer:

1. . . .
The vector [ 1 } is an eigenvector for A with eigenvalue a — b.

The vector [ 1

1 ] is an eigenvector for A with eigenvalue a + b.

These eigenvectors are orthogonal, as predicted by the theorem. We can convert them to unit vectors by
multiplying each vector by the reciprocal of its length. This gives the eigenvectors

1 1 1|1
V2 [ -1 and V2|1
which form an orthonormal basis for R2.

a—>b O}

1
_ -1 _ T - 1
It follows that A=UDU " =UDU ' where U = 7 [ 11 0 a+b

{|wan=]
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2 Singular value decomposition

Today, we’ll apply the results from last time to prove the existence of singular value decompositions,
which give a sort of approximate orthogonal diagonalization for any matrix, not just symmetric ones.

Let A be an m x n matrix.

Then AT A is a symmetric n x n matrix, since (AT A)T = AT(AT)T = ATA.

It follows from our results last time that AT A has all real eigenvalues. A stronger statement holds:
Lemma. All eigenvalues of AT A are nonnegative real numbers.

If \ is an eigenvalue of AT A and v € R” is a unit vector with AT Av = Av, then \ = || Av||2.

Proof. If v € R™ has |jv|| =1 and AT Av = \v then

0< ||AUH2 = (Av) o (Av) = (AU)T(AU) =0 AT Av = UT()\U) = )\(vTv) = )\Hv||2 =\

The preceding lemma allows us to make the following definition.

Definition. Let Ay > Ay > --- > X\, > 0 be the eigenvalues of ATA arranged in decreasing order. Define
o; =+ fori=1,2,...,n. We call the numbers 01 > 05 > -+ > 0,, > 0 the singular values of A.

In other words, the singular values of a matrix A are the squares roots of the eigenvalues of AT A, which
are guaranteed to be nonnegative real numbers (and therefore always have well-defined square roots).

411 14 80 100 40
Example. Suppose A = { 8 7 _9 ] Then ATA= | 100 170 140
40 140 200

This matrix AT A has characteristic polynomial
det(ATA — ) = (360 — 2)(90 — z)x
so the eigenvalues of AT A are A\; = 360, Ay = 90, and A3 = 0.
The singular values of A are therefore o7 = V360 = 6@, o9 = /90 = 3\/ﬁ, and o3 = 0.

As a sequel to the lemma above, we have this nontrivial statement about the eigenvectors of AT A.

Theorem. Suppose vy, vs,...,v, is an orthonormal basis of R™ composed of eigenvectors of AT A, ar-
ranged so that if A\; € R is the eigenvalue of v; then Ay > Ay > --- > \,,.

Assume A has r nonzero singular values.
Then Avq, Avs, ..., Av, is an orthogonal basis for the column space of A and consequently rank A = r.
Proof. Choose indices ¢ # j. Then v; @ v; = 0 so also v; ® Ajv; = 0. Then

(Avy)) T Av; = v AT Av; = v (\ju;) = v; @ N\juj = 0.

This shows that Avy, Avs, ..., Av, are orthogonal vectors in Col A.
Since ||Av;|| = v/A; > 0, these vectors are all nonzero and therefore are linearly independent.

To see that these vectors span the column space of A, suppose y € Col A.
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Then y = Az for some vector x € R™, which we can write as
T =cC1v1 +CU2 4+ -+ ChUp
for some coefficients ¢, ca, ..., ¢, € R. If ¢ > r then Av; = 0 since ||Av;|| = v/A; = 0. Therefore

y=Ax = c1Avy + coAvs + - - - 4+, Avp + ¢y 1 AV + - F AV, = 1 Avy + o Avg + - - + ¢ A,

=0

We conclude that Avq, Avs, ..., Av, is a basis for Col A. O
Corollary. The rank of a matrix is the same as its number of nonzero singular values.

We arrive at today’s main result.

Theorem (Existence of SVDs). Let A be an m x n matrix with rank r.
Suppose o1 > 09 > - -+ > 0, are the nonzero singular values of A.
Then we can write A = UXV " where

U is some m x m orthogonal matrix.

V is some n x n orthogonal matrix.

g1
02

Zisthemxnmatrixﬁ[% 8]WhereD

Oy

Comments. The three zeros in the matrix defining ¥ represent blocks of zeros: the upper right 0 stands
for an r x (n — r) zero submatrix, the lower right 0 stands for an (m — ) x (n — r) zero submatrix, and
the lower left 0 stands for an (m — r) X r zero submatrix.

Another way to think of X: place the diagonal matrix D in the upper left corner of an m x n matrix, and
then fill all of the remaining entries with zeros.

Definition. A factorization A = ULV T with U, V, ¥ as above is a singular value decomposition of A.
We sometimes abbreviate by writing SVD instead of singular value decomposition.

The matrices U and V in an SVD A = UXV T are not uniquely determined by A, but ¥ is.

The columns of U are called left singular vectors of A.

The columns of V' are called right singular vectors of A.

Proof that an SVD of A exists. Let Ay > Ay > -+ > X, be the decreasing list of eigenvalues of ATA.
The singular values of A are o; = \/\; for each i =1,2,...,n.

Let v1, v, ...,v, be a list of corresponding orthonormal eigenvectors for AT A.

Then we have \y1 = Ay = -+ = A, =0 and Avy, Avs, ..., Av, is an orthogonal basis for Col A.
For each 1 = 1,2,...,r, define u; = mAvi = ﬁAv = U%Avi.

Then wuq,us,...,u, is an orthonormal basis for Col A.

We can choose vectors u,y1,Urq2, ..., U, € R™ such that the extended list of vectors uy,us,. .., Uy, is
an orthonormal basis for R™. Make any such choice, and define

U:[ul Uy ... um] and V:[vl vy ... vn].
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These matrices are orthogonal by construction, and

AV = [ Avy Avy ... Av, ]
= [ Avy Avy ... Av, 0 ... O } = [ oiuy oouy ... opu, 0 ... 0 ]
If ¥ is the matrix given in the theorem, then we also have
Uy = [ o1u; ogus ... opu. 0 ... 0 ] = AV
so UXVT = AVV'T = AI = A, which confirms the theorem statement. O

We conclude this lecture with a small example, continuing from before.

4 11 14
8§ 7 =2 |

Example. Again suppose A = [

To find a singular value decomposition for A, there are three steps.
1. Find an orthogonal diagonalization of AT A.

In this case AT A is a 3 x 3 matrix, and by the usual methods (of row reducing A — I to find a
basis for Nul(A — AI) for each eigenvalue \), you can find that

1/3 —2/3 2/3
vp= | 2/3 |, v=| —-1/3 |, and v3= | —2/3
2/3 2/3 1/3

is an orthonormal basis of R3 consisting of eigenvectors of AT A.
The corresponding eigenvalues are A\; = 360, Ay = 90, and A3 = 0.
2. Set up V and X.

Following the proof of the theorem, we have

1 =2 2 o 0
V=[w v v ]=2]2 -1 -2 and D_{E)JJ
2 2 1

for o1 = \/)\1 = ’\/360 and 09 = \/Ag = \/%

. . | V360 0 0
Since ¥ has the same size as A, we get X = { 0 Vo0 0|

3. Construct U.

We have U = [ UL Usg ] where u; = %Avi.

In this case you can compute that

u—l[ls} and u—l[ 3}
YT VB0 6 27 V0 | -9

3 1
. . _ 1
which means that we can write U = 71 [ 1 _3 ] .

Putting everything together produces the singular value decomposition

I V][V 0 o] By A A B

A:UEVT:[V‘/E —3/V10 0 v90 0 2/3 —2/3 1/3

Be careful to note that the third matrix factor is the transpose V' ' rather than V.
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One application of singular value decompositions is to show the existence of pseudo-inverses:
Definition. A pseudo-inverse of an m x n matrix A is an n x m matrix A* such that

AATA=A and ATAAT = AT,
Example: If A is a square, invertible matrix, then AT = A~! is the pseudo-inverse of A.
Theorem. Every matrix A has a pseudo-inverse, which can be computed as follows. If A = ULV T is
a singular value decomposition, and X7 is the matrix formed by transposing ¥ and then replacing all of
its nonzero entries by their reciprocals, then AT = VEX+tUT is a pseudo-inverse for A.

Example. If A is as in (*) then a pseudo-inverse is provided by

1/3 —2/3  2/3 1/4/360 0 3/VI0 1)V

At =12/3 -1/3 -2/3 0 1/4/90 .
2;3 2?3 1?3 0 / 0 V10 —3/v10

One can show that the pseudo-inverse is unique (but we won’t prove this in these notes).
Proof. We have
AATA= UV (VU UV ) =Uuseter T

and
ATAAT = (VvESTU) UV (VETUT) = VvETtERTU T

so it suffices to check that XX = 3 and XTXXT = X1, This is easy to check because of the simple
form X and X7 (they only have nonzero entries in diagonal positions). Rather than write down a formal
argument, here is an example which captures the main idea: when a # 0 and b # 0 we have

BRI A R IE

0 0
and
1/a 0 e 0 0 1/a 0 1 0 0 1/a 0 1/a 0
0 1/b [ 0 b 0 } 0 1/b|=({0 10 0 1/b | = 0 1/b
0 0 0 0 0 0 O 0 0 0 0
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3 Vocabulary

Keywords from today’s lecture:

1. Singular values of an m x n matrix A.
The square roots of the eigenvalues of AT A, which are all nonnegative real numbers.

Example: if A is diagonal then its singular values are the absolute values of its diagonal entries.

2. Singular value decomposition of an m X n matrix A.

A decomposition A = UXV T where U is an m x m matrix with U~ = UT, V is an n X n matrix
with V=1 = VT and ¥ is the m x n matrix whose first  diagonal entries are the singular values
of A in decreasing order, and whose other entries are all zero.

There may be more than one singular value decomposition for A.

Example:

{411 14]{3/\@ 1/@“@ 0 0 ;;g :?g _;g T

8 T -2 1/v/10 =3/V10 0 V9 0 2/3  2/3 1/3

=A =U =X

=VT

3. Pseudo-inverse of an m X n matrix A.

An n x m matrix AT with AATA=A and ATAAT = AT,

1 00 1 0 0
Example: a pseudo-inverse for [ 0 2 0 [is [ 0 1/2 0
0 00 0 0 0
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