MATH 5143 - Lecture#8

Throughout i Lis semisimple Lie algebra Over algebraically closed field # of characteristic zero, dimLK or

Goals for todas:

basic concepts in representation theory of Lie algebras

discuss Casimir element as a tool for proving Weyl's thm: fin. dim. report of semisimple L are "completely reducible"

Also assume V is an IF-vector space with dimV< ~

Recall: Schur's lemma Suppose $\phi: L \rightarrow gl(v)$ is an irreducible L-repr (meaning that the allocated L-module structure on V is irreducible). Then the only linear maps f: V+V with $f \circ \phi(X) = \phi(X) \circ f \forall X \in L$ are the scalar maps fc: V-V for fixed CE FF. v +> cv

Define
$$\beta: L \times L \rightarrow F$$

(X,Y) $\mapsto \beta(X,Y) \stackrel{\text{def}}{=} trace_{Y}[\phi(X)\phi(Y)]$

This bilinear form is symmetric and associative: $\beta([x,y],z) = \beta(x,[y,z) \quad \forall x,y,z \in L$ The Killing form of L is β for $\phi = a\phi: L \rightarrow ge(L)$ The radical of β is the ideal $S = [x \in L \mid g(x,y) = 0 \quad \forall y \in L]$ $\int_{for L}$ In fact, S is a solvable ideal of L, since $S \cong \varphi(S)$ (by faithfulness of φ) and Cartan's criterion holds for $\phi(S)$ trace $(XY) = O Y \times e \phi(G)$ this is equal to B evaluated an elems of We are assuming that SXL L is semisimple, so we conclude that: Prop The form $\beta(x,y) = \text{trace}(\phi(x)\phi(y))$ is non degenerate (ie. S=0)

Conversely, suppose B: LxL+ IF is any Symmetric, associative, nondegenerate bilinear form. Choose a basis X, X2, ..., X. for L and define Y1, Y2, -, Yn 95 the (unique) dual basis with $\beta(\chi_i,\chi_j) = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{if } i\neq j \end{cases}$ Fix ZEL and define and bis EF such that $[z_1 \times i] = \Sigma_j a_{ij} \times j$ and $[z_1 \times i] = \Sigma_j b_{ij} \times j$ Lemma $Q_{ik} = -b_{ki}$ $\forall i_{k}$ Pf $q_{ik} = \xi \beta(X_{3},Y_{k}) q_{ij} = \beta([Z,X_{i}],Y_{k}) = \beta(X_{i},-[Z,Y_{k}])$ =- $\Sigma_j \beta(X_i, Y_j) b_{kj} = -b_{ki} \Box$

Suppose $\phi: L \rightarrow ge(v)$ is an $L \neg repn$. [β is given as above] Define $c_{\phi}(\beta) \stackrel{\text{def}}{=} \sum \phi(x_i) \phi(y_i) \in ge(v)$ i finese are dual bases defined with β the det here looks like it depends on the choice of these bases

Prop Then $[\phi(z), c_{\phi}(\beta)] = 0 \forall z \in L$. So (multiplication by) $c_{\phi}(\beta)$ is a linear map $V \neq V$ that (mmutes with the action of L via ϕ . Pf $[\phi(z), c_{\phi}(\beta)] = \frac{\pi}{2} [\phi(z), \phi(x_{i})] \phi(Y_{i}) + z_{i} \phi(x_{i}) [d(z), \phi(Y_{i})]$ $= \frac{\pi}{2} (a_{ij} + b_{ji}) \phi(x_{i}) \phi(Y_{j}) = 0.D$

Det when
$$\phi: L + gl(v)$$
 is a faithful L-repr
We define the Casimir element to be
as given on provides slide, requires a choice of basis + dual basis for L
 $C\phi = C\phi(\beta) \in gl(v)$ for form $\beta(x, y) = trace(\phi(x)\phi(y))$
[This makes sense since we already checked that this form
is madegenerate + associative.]
Two key facts 0 trace $(c\phi) = dimL$ of trace $(c\phi) =$
 $Two key facts 0 trace $(c\phi) = dimL$ of trace $(c\phi) =$
 $as a linear map $v \neq v$
 $z_i p(x_i, y_i) = dimL$ z_i
 $f(x_i, y_i) = dimL$ z_i
 $f(x_i, y_i) = dimL$ z_i
 $f(x_i, y_i) = dimL$ $f(x_i, y_i) = dimL$ z_i
 $f(x_i, y_i) = dimL$ $f(x_i, y_i) = dimL$ z_i
 $f(x_i, y$$$

When L is semisimple but $\phi: L + gl(v)$ is not faithful, we define $C\phi \in gl(v)$ to be the Casimir element of the faithful rep $\phi: L/\ker\phi + gl(v)$.

Lemma Let
$$\phi: L \rightarrow gl(v)$$
 be an $L \rightarrow regn, with L semisimple
Then $\phi(L) \subseteq sl(v) \subseteq gl(v)$. Thus if $din V = 1$ then
traceless
endomorphisms $\phi(L) = 0$ as $sl(v) = 0$$

 $\begin{array}{l} & \underset{(L)}{\text{Pf}} \text{ we have } L = (L,L) \text{ by semisimplicity so} \\ & \underset{(L)}{\text{Pf}} (L) = \varphi((L,L)) = (\varphi(L), \varphi(L)) \leq (g(L)), g(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = \varphi((L,L)) = (\varphi(L), \varphi(L)) \leq (g(L)), g(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = \varphi((L,L)) = (\varphi(L), \varphi(L)) \leq (g(L)), g(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = \varphi((L,L)) = (\varphi(L), \varphi(L)) \leq (g(L)), g(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = \varphi((L,L)) = (\varphi(L), \varphi(L)) \leq (g(L)), g(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = \varphi((L,L)) = (\varphi(L), \varphi(L)) \leq (g(L)), g(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (\varphi(L,L)) = (\varphi(L), \varphi(L)) \leq (g(L)), g(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (\varphi(L,L)) = (\varphi(L), \varphi(L)) \leq (g(L)), g(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (\varphi(L,L)) = (\varphi(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (\varphi(L), \varphi(L)) = (g(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (\varphi(L), \varphi(L)) = (g(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (\varphi(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (\varphi(L), \varphi(L)) = (g(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (\varphi(L), \varphi(L)) = (g(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (\varphi(L), \varphi(L)) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = (g(L), \varphi(L)) = sl(V) \\ & \underset{(L)}{\text{Pf}} (L) = sl(V) \\ & \underset{(L)}{\text{Pf}}$

Pf By replacing L by L/kerd, we may assume that & is faithful.

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$$

Then (Weyl's theorem) Suppose $\phi: L \rightarrow gl(v)$ is an L-repr. As usual, we assume L is semijimple and $\dim v < \infty$. Then ϕ is completely reducible, meaning that there are irreducible L-submodules $v_1, v_2, \dots, v_n \in V$ such that Suppose $W \leq V$ is a proper L-submodule. By induction on dimension, we just need to show that there is a complementary L-submodule U with $V = W \oplus U$ (we can find a subspace U such that direct sum holdras vector spaces;) Three steps to proof. First step: hard part is to find a submodule.

OAssume W is irreducible and dim V = dim W + 1 so V = W@ FF as a vector space

Let $C = C\phi$ be (as in it element. Then $v \mapsto Cv$ is an L-module endomorphism as C commutes with $\phi(L)$. Thus $cW \leq W$ and $ker(c) \stackrel{def}{=} \{v \in V \mid cv = 0\}$ is an L-submodule thus $cW \leq W$ is a submodule and $c \in \langle \phi(L) \rangle \leq g^{(U)}$ because c commutes $w \mid \phi(L)$.

Lacts trivially on V/W = TF because all $|-dim reprised for semisimple Lie algebras are trivial (by lemma). This means <math>c(V/W) = 0 \Rightarrow cV \leq W$. Therefore dim ker(c) ≥ 1 since otherwise cV = V.

But c acts on W as a scalar by Schur's lemma, and this scalar cannot be zero since trace (c) = trace (c) = dim L = O. Therefore ker(c) N W = O since c acts as nonzero scalor on W. As dinkerct din W > din V we conclude that $V = W \oplus kerc$ 1 1 both L-submodules

2) Suppose V = W@FF as vector rpaces (so din V = din W+1) built wis not irreducible as an L-module. Then there is a nonzero proper submodule W'CW and by induction V/W' = W/w. O U for some L-submodule ÜCV/w, 4 as L-modules. Define U to be preimage of \tilde{U} under quatient map $V \rightarrow V/W'$. Then U is an L-submodule containing W' (so $\tilde{U} = U/W'$) By induction $U = W' \oplus W''$ for some L-module W'' (as L-modules) and then V = WOW" since dimW+dimW" = dimV as L-modules (as dim (V/w') = dim (w/w') + dim (U/w'))and $W \cap W' = 0$ (as $W \cap W' = W' \wedge W' = 0$)

3 Finally suppose W is arbitrary and dim (V/W) > 1, Let Hom (V, W) be L-module of linear maps f: V+W with L acting as $X \cdot f : v \mapsto X \cdot f(v) - f(X \cdot v)$ Let A = { f ∈ Hom (V, w) | f | w is a scalar map } $B = \left[f \in Hom(V, W) \mid f \mid w = 0 \right]$ Then A and B are L-submodules with L.ASB since if f(w) = aW YwEW where a E IF then $(X \cdot f)(w) = X \cdot f(w) - f(X \cdot w) = aX \cdot a - aX \cdot w = 0$ But dim(A) = dim(B)+1 since if figeA then aftbgeB for some a, b E F

Therefore A = BBC for some L-submodule C with dim (=) (b) (ase 2). Suppose C = F-mon [h] for some h: V+W. We may assume hlw=id (after rescaling) Claim: Ker(h) = {veV | h(v) = 0] is an L-submodule and V = W@ ker(h) as L-modules Pf: If h(v)=0 and XEL then $h(X \cdot v) = -(X \cdot h)(v) + X \cdot h(v) = -0 + 0 = 0.$ scalar multiple of L Now observe V = image (h) @ ker(h) = W @ ker(h) [] T for any linew L : V-tw