Name:	
Student ID:	
Email:	

Tutorial:	T1A	T1B	T1C	T2A	T2B	T2C

Problem #	Points Possible	Score
1	20	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
13	10	
14	10	
15	10	
16	10	
17	10	
Total	180	

You have **180 minutes** to complete this exam.

No books, notes, or electronic devices can be used during the test.

RECOMMENDED: It will help us to grade your solutions if you draw a box around your answers to computational questions. If we cannot determine what your answer is, you may lose points. Partial credit can be given on some problems.

Good luck!

2

Problem 1. (20 points) Warmup: definitions and core concepts.Provide short answers to the following questions.

(1) What is the definition of a **linear** function $f : \mathbb{R}^n \to \mathbb{R}^m$?

(2) How many solutions can a linear system have?

(3) What is the definition of a **subspace** of a vector space?

(4) How can you compute the rank of an $m \times n$ matrix *A*?

(5) How can you compute the inverse of an invertible $n \times n$ matrix *A*?

(6) What region of \mathbb{R}^2 always has area equal to $\pm \det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$? Draw and label a picture that represents this region.

(7) The least-squares solutions to Ax = b are the exact solutions to what matrix equation?

(8) What $n \times n$ matrices have *n* orthonormal eigenvectors?

(9) What is the definition of the **singular values** of a matrix *A*?

(10) Suppose A is a $2 \times n$ matrix with a singular value decomposition

 $A = U \Sigma V^{\top}.$

Assume rank A = 2. Describe the shape

 $\{Av \in \mathbb{R}^2 : v \in \mathbb{R}^n \text{ with } \|v\| = 1\}$

and explain how this shape is related to the matrices U and Σ .

6

Problem 2. (10 points) Suppose *a* and *b* are real numbers. Consider the lines

$$L_1 = \left\{ \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \in \mathbb{R}^2 : v_2 = av_1 \right\} \text{ and } L_2 = \left\{ \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \in \mathbb{R}^2 : w_2 = bw_1 \right\}.$$

For which values of a and b is there exactly one way of writing

$$\left[\begin{array}{c}2\\6\end{array}\right] = v + w$$

where $v \in L_1$ and $w \in L_2$? Find a formula for v and w in this case.

8

Problem 3. (10 points) Does there exist a pair of 2×2 matrices *A* and *B* with all real entries such that *A* has only one real eigenvalue, *B* has only one real eigenvalue, and A + B has two distinct real eigenvalues?

Find an example or explain why none exists.

Problem 4. (10 points) Let V be the vector space of polynomials $f = ax^2 + bx + c$ of degree at most two with all coefficients $a, b, c \in \mathbb{R}$. Given $f, g \in V$ let

$$f \bullet g = \int_0^1 fg.$$

Here we define integration \int_0^1 to be the linear operation on polynomials with

$$\int_0^1 x^n = 1/(n+1)$$

Find a basis for V that is orthonormal using this definition of inner product.

In other words, if $d = \dim V$, then find a basis f_1, f_2, \ldots, f_d for V such that

$$f_i \bullet f_i = 1$$
 and $f_i \bullet f_j = 0$ for all $i, j \in \{1, 2, \dots, d\}$ with $i \neq j$.

Problem 5. (10 points) Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a one-to-one linear transformation with standard matrix A. If all we know is that $n \in \{1, 2, 3\}$ and $m \in \{1, 2, 3\}$, then what matrices could occur as $\mathsf{RREF}(A)$?

Describe the possibilities for RREF(A) in as much detail as you can.

Problem 6. (10 points) Suppose $A = \begin{bmatrix} 2 & 0 & 2 \\ 1 & 2 & 0 \\ 2 & 3 & 4 \end{bmatrix}$ and $v \in \mathbb{R}^3$.

Define w_i to be the determinant of A with column *i* replaced by v.

Does any matrix B exist with $Bv = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$ for all choices of $v \in \mathbb{R}^3$?

Compute the matrix *B* or explain why no such *B* exists.

Problem 7. (10 points) Suppose $u, v, w \in \mathbb{R}^3$ and $A = \begin{bmatrix} u & v & w \end{bmatrix}$. If det(A) = 30 then what is

 $\det \left[\begin{array}{ccc} u+2v-3w & v+w & 2u+v+2w \end{array} \right]?$

Justify your answer to receive full credit.

Problem 8. (10 points) Is the matrix

$$A = \left[\begin{array}{rrr} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right]$$

diagonalizable over the complex numbers?

If it is not, then explain why not. If it is, then find an invertible matrix P and a diagonal matrix D, possibly with complex entries, such that $A = PDP^{-1}$.

Problem 9. (10 points) Let *A* be a symmetric $n \times n$ matrix with exactly one nonzero position in each row and exactly one nonzero position in each column.

Suppose the nonzero positions of *A* that are on or above the diagonal are

 $(i_1, j_1), (i_2, j_2), \dots, (i_k, j_k).$

In terms of this data, describe an orthogonal basis for \mathbb{R}^n that consists of eigenvectors for A. Be as concrete as possible.

Problem 10. (10 points) Suppose *A* is a 3×3 matrix with all real entries, whose eigenvalues include the complex numbers 2 and 1 - i. Find a polynomial formula for the function $f(x) = \det(A^{-1} - xI)$ and compute f(5).

Problem 11. (10 points) Suppose $u, v, w \in \mathbb{R}^n$ are linearly independent vectors.

For which values of $c \in \mathbb{R}$ are the three vectors

5w - 3u, 5u + 3v + 4w, 6v - 2u + cw

linearly dependent?

20

Problem 12. (10 points) Suppose $u, v, w \in \mathbb{R}^5$. What are the possible values of rank $(uu^{\top} + vv^{\top} + ww^{\top})$? Justify your answer to receive full credit. Solution: **Problem 13.** (10 points) *A* is a 2×2 matrix and $-1 < \lambda < 1$ is a real number with

$$A\begin{bmatrix}2\\2\end{bmatrix} = \lambda\begin{bmatrix}2\\2\end{bmatrix}$$
 and $A\begin{bmatrix}2\\-2\end{bmatrix} = \begin{bmatrix}2\\-2\end{bmatrix}$.

Compute *A* and $\lim_{n\to\infty} A^n$.

The entries in your answer for *A* should be expressions involving λ .

Problem 14. (10 points) Suppose

$$v = \begin{bmatrix} 1\\ 1\\ -1\\ 0 \end{bmatrix}$$
 and $w = \begin{bmatrix} -1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}$.

Find a matrix A such that if $x\in \mathbb{R}^4$ then

Ax = (the vector in \mathbb{R} -span $\{v, w\}$ that is as close to x as possible).

24

Problem 15. (10 points) A is an invertible $n \times n$ matrix with at least one real eigenvalue. There is no nonzero vector $v \in \mathbb{R}^n$ such that Av = v. If 3 is the only eigenvalue of $A + 2A^{-1}$ then what number must be an eigenvalue of A? Justify your answer to receive full credit.

Problem 16. (10 points) Does there exist an invertible 3×3 matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

for which the determinant of every 2×2 submatrix involving **consecutive** rows and columns is zero? In other words, with

$$\det \begin{bmatrix} a_{ij} & a_{i,j+1} \\ a_{i+1,j} & a_{i+1,j+1} \end{bmatrix} = 0$$

for all $i \in \{1, 2\}$ and $j \in \{1, 2\}$?

Find an example or explain why none exists.

Problem 17. (10 points) What is the largest possible number that can occur as the determinant of a 3×3 matrix with all entries in $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$? What matrix achieves this determinant?