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You have 180 minutes to complete this exam.

No books, notes, or electronic devices can be used during the test.

RECOMMENDED: It will help us to grade your solutions if you draw a box
around your answers to computational questions. If we cannot determine what
your answer is, you may lose points. Partial credit can be given on some problems.

Good luck!
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Problem 1. (20 points) Warmup: definitions and core concepts.

Provide short answers to the following questions.

(1) What is the definition of a linear function f : Rn → Rm?

(2) How many solutions can a linear system have?

(3) What is the definition of a subspace of a vector space?
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(4) How can you compute the rank of an m× n matrix A?

(5) How can you compute the inverse of an invertible n× n matrix A?

(6) What region of R2 always has area equal to ±det

[
a b
c d

]
? Draw and

label a picture that represents this region.
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(7) The least-squares solutions toAx = b are the exact solutions to what matrix
equation?

(8) What n× n matrices have n orthonormal eigenvectors?

(9) What is the definition of the singular values of a matrix A?
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(10) Suppose A is a 2× n matrix with a singular value decomposition

A = UΣV >.

Assume rankA = 2. Describe the shape

{Av ∈ R2 : v ∈ Rn with ‖v‖ = 1}
and explain how this shape is related to the matrices U and Σ.
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Problem 2. (10 points) Suppose a and b are real numbers. Consider the lines

L1 =

{[
v1
v2

]
∈ R2 : v2 = av1

}
and L2 =

{[
w1

w2

]
∈ R2 : w2 = bw1

}
.

For which values of a and b is there exactly one way of writing[
2
6

]
= v + w

where v ∈ L1 and w ∈ L2? Find a formula for v and w in this case.

Solution:
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Problem 3. (10 points) Does there exist a pair of 2×2 matricesA andB with all real
entries such that A has only one real eigenvalue, B has only one real eigenvalue,
and A+B has two distinct real eigenvalues?

Find an example or explain why none exists.

Solution:
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Problem 4. (10 points) Let V be the vector space of polynomials f = ax2 + bx+ c
of degree at most two with all coefficients a, b, c ∈ R. Given f, g ∈ V let

f • g =

∫ 1

0

fg.

Here we define integration
∫ 1

0
to be the linear operation on polynomials with∫ 1

0

xn = 1/(n+ 1).

Find a basis for V that is orthonormal using this definition of inner product.

In other words, if d = dimV , then find a basis f1, f2, . . . , fd for V such that

fi • fi = 1 and fi • fj = 0 for all i, j ∈ {1, 2, . . . , d}with i 6= j.

Solution:
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Problem 5. (10 points) Suppose T : Rn → Rm is a one-to-one linear transformation
with standard matrix A. If all we know is that n ∈ {1, 2, 3} and m ∈ {1, 2, 3}, then
what matrices could occur as RREF(A)?

Describe the possibilities for RREF(A) in as much detail as you can.

Solution:
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Problem 6. (10 points) Suppose A =

 2 0 2
1 2 0
2 3 4

 and v ∈ R3.

Define wi to be the determinant of A with column i replaced by v.

Does any matrix B exist with Bv =

 w1

w2

w3

 for all choices of v ∈ R3?

Compute the matrix B or explain why no such B exists.

Solution:
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Problem 7. (10 points) Suppose u, v, w ∈ R3 and A =
[
u v w

]
.

If det(A) = 30 then what is

det
[
u+ 2v − 3w v + w 2u+ v + 2w

]
?

Justify your answer to receive full credit.

Solution:
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Problem 8. (10 points) Is the matrix

A =

 0 0 1
1 0 0
0 1 0


diagonalizable over the complex numbers?

If it is not, then explain why not. If it is, then find an invertible matrix P and a
diagonal matrix D, possibly with complex entries, such that A = PDP−1.

Solution:
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Problem 9. (10 points) LetA be a symmetric n×nmatrix with exactly one nonzero
position in each row and exactly one nonzero position in each column.

Suppose the nonzero positions of A that are on or above the diagonal are

(i1, j1), (i2, j2), . . . , (ik, jk).

In terms of this data, describe an orthogonal basis for Rn that consists of eigenvec-
tors for A. Be as concrete as possible.

Solution:
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Problem 10. (10 points) Suppose A is a 3 × 3 matrix with all real entries, whose
eigenvalues include the complex numbers 2 and 1− i. Find a polynomial formula
for the function f(x) = det(A−1 − xI) and compute f(5).

Solution:
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Problem 11. (10 points) Suppose u, v, w ∈ Rn are linearly independent vectors.

For which values of c ∈ R are the three vectors

5w − 3u, 5u+ 3v + 4w, 6v − 2u+ cw

linearly dependent?

Solution:
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Problem 12. (10 points) Suppose u, v, w ∈ R5.

What are the possible values of rank(uu> + vv> + ww>)?

Justify your answer to receive full credit.

Solution:
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Problem 13. (10 points) A is a 2× 2 matrix and −1 < λ < 1 is a real number with

A

[
2
2

]
= λ

[
2
2

]
and A

[
2
−2

]
=

[
2
−2

]
.

Compute A and limn→∞An.

The entries in your answer for A should be expressions involving λ.

Solution:
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Problem 14. (10 points) Suppose

v =


1
1
−1

0

 and w =


−1

1
1
1

 .
Find a matrix A such that if x ∈ R4 then

Ax = ( the vector in R-span{v, w} that is as close to x as possible ).

Solution:
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Problem 15. (10 points) A is an invertible n × n matrix with at least one real
eigenvalue. There is no nonzero vector v ∈ Rn such that Av = v. If 3 is the only
eigenvalue of A + 2A−1 then what number must be an eigenvalue of A? Justify
your answer to receive full credit.

Solution:
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Problem 16. (10 points) Does there exist an invertible 3× 3 matrix

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


for which the determinant of every 2 × 2 submatrix involving consecutive rows
and columns is zero? In other words, with

det

[
aij ai,j+1

ai+1,j ai+1,j+1

]
= 0

for all i ∈ {1, 2} and j ∈ {1, 2}?

Find an example or explain why none exists.

Solution:
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Problem 17. (10 points) What is the largest possible number that can occur as the
determinant of a 3 × 3 matrix with all entries in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}? What
matrix achieves this determinant?

Solution:
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