
MATH 2121 — Linear algebra (Fall 2024) Lecture 3

This document is an exact transcript of the lecture, with extra summary and vocabulary sections for
your convenience. Due to time constraints, the lectures sometimes only contain limited illustrations,
proofs, and examples. For a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

• A vector is a matrix with one column. We add and subtract vectors of the same size by doing the

operations component-wise:

 u1
u2
u3

±
 v1
v2
v3

 =

 u1 ± v1
u2 ± v2
u3 ± v3

 and c

 u1
u2
u3

 =

 cu1
cu2
cu3

 for c ∈ R.

• Let n be a positive integer and define Rn to be the set of vectors with n rows.

• We reuse the symbol 0 to mean the vector in


0
0
...
0

 ∈ Rn whose entries are all zeros.

• Visualize vectors a =

[
a1
a2

]
∈ R2 as arrows from the origin (x, y) = (0, 0) to (x, y) = (a1, a2).

The sum a+ b for a, b ∈ R2 is then the diagonal of the parallelogram with sides a and b:

• A linear combination of vectors v1, v2, . . . , vp ∈ Rn is a vector of the form c1v1 + c2v2 + · · ·+ cpvp
where c1, c2, . . . , cp ∈ R are numbers. The set of all linear combinations of v1, v2, . . . , vp ∈ Rn is
called the span of the vectors and is denoted by R-span{v1, v2, . . . , vp}.

Example: if e1 =


1
0
0
0

 and e3 =


0
0
1
0

 then R-span{e1, e3} =



a
0
b
0

 : a, b ∈ R

.

• If x1, x2, . . . , xn are variables and a1, a2, . . . , an, b ∈ Rm are vectors then we refer to

x1a1 + x2a2 + · · ·+ xnan = b

as a vector equation. It has the same solutions as the linear system with augmented matrix[
a1 a2 a3 . . . an b

]
.

The vector b ∈ Rm is in the span of the vectors a1, a2, . . . , an ∈ Rm precisely when this linear
system has a solution. (And we can figure out if this happens by computing the reduced echelon
form of the system’s augmented matrix and checking whether the last column contains a pivot.)
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1 Last time: row reduction to (reduced) echelon form

The leading entry in a nonzero row of a matrix is the first nonzero entry from left going right. For
example, the row

[
0 0 7 0 5

]
has leading entry 7, which occurs in the 3rd column.

Definition. A matrix with m rows and n columns is in echelon form if it has the following properties:

1. If a row is nonzero, then every row above it is also nonzero.

2. The leading entry in a nonzero row is in a column to the right of the leading entry in the row above.

3. If a row is nonzero, then every entry below its leading entry in the same column is zero.

In echelon form:

 1 2 0 0
0 3 5 0
0 0 0 0

. Not in echelon form:

 1 2 0 0
0 0 0 0
0 3 5 0

,

 0 2 0 0
0 3 5 0
0 0 0 0

,

 0 2 0 0
1 3 5 0
0 0 4 5

.

Definition. A matrix is in reduced echelon form if

1. The matrix is in echelon form.

2. Each nonzero row has leading entry 1.

3. The leading 1 in each nonzero row is the only nonzero number in its column.

Theorem. Each matrix A is row equivalent to exactly one matrix in reduced echelon form.

We denote this matrix by RREF(A).

The row reduction algorithm is a way of constructing RREF(A) from A. This algorithm is something you
should memorize and be able to perform quickly. The algorithm is illustrated by the following example:

Example. Writing → to indicate a sequence of row operations, we have 1 1 1 0
1 2 4 1
1 3 9 2

→
 1 1 1 0

0 1 3 1
0 2 8 2

→
 1 1 1 0

0 1 3 1
0 0 2 0

→
 1 1 1 0

0 1 3 1
0 0 1 0

→
 1 1 0 0

0 1 0 1
0 0 1 0

→
 1 0 0 −1

0 1 0 1
0 0 1 0


and the last matrix is the reduced echelon form of the first matrix.

Consider the nonzero rows of RREF(A). In these rows find the first nonzero entry from left to right.

If one of these leading entries is in column j, then j is a pivot column of A. For example if

RREF(A) =

 1 −2 0 3
0 0 1 2
0 0 0 0


then the leading entries are in positions (1, 1) and (2, 3) so the pivot columns of A are 1 and 3.

If A is the augmented matrix of a linear system in variables x1, x2, . . . , xn, then we say that xi is a basic
variable if i is a pivot column of A and that xi is a free variable if i is not a pivot column of A.

To determine the basic and free variables of the system, we have to perform the row reduction algorithm
to figure out what RREF(A) is first. Once we have done this, we can conclude that:

• The system has 0 solutions if the last column is a pivot column of A.

• The system has ∞ solutions if the last column is not a pivot column but there is ≥ 1 free variable.

• The system has 1 solution if there are no free variables, and the last column is not a pivot column.

1



MATH 2121 — Linear algebra (Fall 2024) Lecture 3

Moreover, here’s how you can solve the system: write down the equations in the linear system whose
augmented matrix is RREF(A). Each nontrivial equation starts with a basic variable xi and has the form

xi + ( an expression involving free variables ) = ( a number )

After moving the expression involving free variables to the right side of the equation we get

xi = ( a number )− ( an expression involving free variables ).

To form the general solution to our original linear system, we just choose arbitrary values for the free
variables and express the basic variables using these equations.

Example. The linear system
3x2 − 6x3 = 6

3x1 − 7x2 + 8x3 = −5

3x1 − 9x2 + 12x3 = −9

has augmented matrix A =

 0 3 −6 6
3 −7 8 −5
3 −9 12 −9


whose reduced echelon form is

RREF(A) =

 1 0 −2 3
0 1 −2 2
0 0 0 0

 .
This means that the pivot columns of A are columns 1 and 2, so x1 and x2 are basic variables while x3 is
a free variable. The last column is not a pivot column, so the linear system has infinitely many solutions.

The linear system with augmented matrix RREF(A) is
x1 − 2x3 = 3

x2 − 2x3 = 2

0 = 0

which we can rewrite as


x1 = 3 + 2x3

x2 = 2 + 2x3

0 = 0.

We choose an arbitrary value for the free variable x3 = a ∈ R.

Then the general solution is (x1, x2, x3) = (3 + 2a, 2 + 2a, a) where a can be any number.

Corollary. Suppose a linear system with m equations and n variables has augmented matrix A.

If RREF(A) has the form


1 b1

1 b2
. . .

...
1 bm

 where all blank entries are zero, then the linear system

has exactly one solution, and this solution is given by (x1, x2, . . . , xm) = (b1, b2, . . . , bm).

Proof. The starting linear system has the same solutions as the linear system whose augmented matrix
is RREF(A). But the second system consists of the equations x1 = b1, x2 = b2, . . . , xm = bm.

2 Vectors

Until we discuss vector spaces, the term vector will always refer to a matrix with exactly one column:

[
1
]

or

[
3
−1

]
or


1
2
3
5

 or

[ √
7√
6

]
.
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Sometimes people refer to vectors defined like this as column vectors.

We write a general vector as v =


v1
v2
...

vn

 where each vi is a real number.

Two vectors u and v are equal if they have the same number of rows and the same entries in each row.

The size of a vector is its number of rows. We can add two vectors of the same size:
v1
v2
...

vn

+


u1
u2
...

un

 =


u1 + v1
u2 + v2

...
un + vn

 .
Note that u+ v = v + u. If u and v don’t have the same size then u+ v is not defined.

If v is a vector and c ∈ R is a scalar , i.e., a real number, then we define

cv = c


v1
v2
...

vn

 =


cv1
cv2
...

cvn

 .
We call the new vector cv the scalar multiple of v by c.

For example, we have

[
1
−2

]
+

[
2
5

]
=

[
3
3

]
and −

[
1
−2

]
=

[
−1

2

]
.

We define subtraction of vectors as addition after multiplying by the scalar −1:[
1
−2

]
−
[

1
5

]
=

[
1
−2

]
+ (−1)

[
1
5

]
=

[
1
−2

]
+

[
−1
−5

]
=

[
0
−7

]
.

We write Rn for the set of all vectors with exactly n rows. Vectors a =

[
a1
a2

]
∈ R2 can be identified

with arrows in the Cartesian plane from the origin to the point (x, y) = (a1, a2):

Proposition. The sum a + b of two vectors a, b ∈ R2 is the vector represented by the arrow from the
origin to the point that is the opposite vertex of the parallelogram with sides a and b:
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Proof. We can write a2

a1
= (a2+b2)−b2

(a1+b1)−b1
and b2

b1
= (a2+b2)−a2

(a1+b1)−a1
.

The fractions a2

a1
and b2

b1
are the slopes of the lines through the origin containing the vectors a and b.

The other two fractions are the slopes of the lines (1) between the endpoints of b and a + b and (2)
between the endpoints of a and a+ b.

The first line of the proof shows that line (1) is parallel to a, and line (2) is parallel to b.

Therefore lines (1) and (2) are the other two sides of the unique parallelogram with sides a and b.

The endpoint of a+ b is where lines (1) and (2) intersect.

Therefore this endpoint is the vertex of the parallelogram opposite the origin.

The zero vector in Rn is the vector


0
0
...
0

 whose entries are all zero.

We use the same symbol “0” to mean both the number zero and the zero vector in Rn for any n. You
may have to use context to figure out which number or zero vector “0” means in a given expression.

We have 0 + v = v + 0 = v for any vector v.

Definition. Suppose v1, v2, . . . , vp ∈ Rn are vectors and c1, c2, . . . , cp ∈ R are scalars, i.e., numbers.

The vector y = c1v1 + c2v2 + · · ·+ cpvp is called a linear combination of v1, v2, . . . , vp.

We say that y is “the linear combination of v1, v2, . . . , vp with coefficients c1, c2, . . . , cp.”

Example. Suppose a =

 1
−2
−5

 and b =

 2
5
6

 and c =

 7
4
−3

. Is c a linear combination of a and b?

If it were, we could find numbers x1, x2 ∈ R such that x1a+ x2b = c, or equivalently such that

x1 + 2x2 = 7

−2x1 + 5x2 = 4

−5x1 + 6x2 = −3.

So to answer our question we need to determine if this linear system has a solution.

To do this, use row reduction:

A =

 1 2 7
−2 5 4
−5 6 −3

→
 1 2 7

0 9 18
0 16 32

→
 1 2 7

0 1 2
0 1 2

→
 1 2 7

0 1 2
0 0 0

→ RREF(A) =

 1 0 3
0 1 2
0 0 0

 .
The pivot columns of A are 1 and 2: the last column is not a pivot column. Therefore our linear system
is consistent, which means that c is a linear combination of a and b.

We generalize this example with the following statement.

Proposition. A vector equation of the form

x1a1 + x2a2 + · · ·+ xnan = b

where x1, x2, . . . , xn are variables and a1, a2, . . . , an, b ∈ Rm are vectors, has the same solutions as the
linear system with augmented matrix A =

[
a1 a2 a3 . . . an b

]
.

This notation means the matrix A whose ith column is ai and last column is b.
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In other words, the vector b is a linear combination of a1, a2, . . . , an if and only if the linear system whose
augmented matrix is A is consistent.

Definition. The span of a finite list of vectors v1, v2, . . . , vp ∈ Rn is the set of all vectors y ∈ Rn that
are linear combinations of v1, v2, . . . , vp. We denote this set by

R-span{v1, v2, . . . , vp} or span{v1, v2, . . . , vp}.

Another more direct way to define the span (without referring to linear combinations) is by the formula

R-span{v1, v2, . . . , vp} = {a1v1 + a2v2 + · · ·+ apvp : a1, a2, . . . , ap ∈ R}.

Example. The span of the zero vector 0 ∈ Rn is just R-span{0} = {a0 : a ∈ R} = {0}.

(This is the only case where the span is not an infinite set.)

The span of a nonzero vector v ∈ Rn is the set R-span{v} = {av : a ∈ R} of all scalar multiples of v.

(This set is infinite. It contains v, −v, 0 = 0v, 2v, −2v, 36475
7 v, −

√
107v, πv, and many more vectors.)

The span of two nonzero vectors v, w ∈ Rn is the set R-span{v, w} = {av + bw : a, b ∈ R}.

If v is a scalar multiple of w then R-span{v, w} = R-span{w}.

If w is a scalar multiple of v then R-span{v, w} = R-span{v}.

If these cases don’t occur, then (right now) we have no simpler way of describing R-span{v, w} except as
“the set of all vectors of the form av + bw where a and b are arbitrary real numbers.”

Remark. For most mathematical operations, we have separate words for the operation itself, the verb
that does the operation, and the result of doing the operation. For example the + operation is called
“addition”, the corresponding verb is “add”, and the result of adding is called a “sum”.

The symbol R-span is also a mathematical operation, though its inputs and outputs are not numbers:
instead, the input of R-span is a (usually finite but sometimes infinite) collection of vectors that all
have the same size, and its output is a (usually infinite) set of vectors with the same size as the inputs.

Confusingly, the words that go along with R-span are all the same, as “span” is both a noun and verb.

For example, choose some vectors v1, v2, . . . , vp ∈ Rn and let S = R-span{v1, v2, . . . , vp}.

• We refer to the operation R-span as the span.

• We refer to the output S of the R-span operation applied to v1, v2, . . . , vp as the span of v1, v2, . . . , vp.

• Sometimes we also use span as a verb and say that v1, v2, . . . , vp span the set S.

• Finally, saying that a vector w ∈ Rn is spanned by v1, v2, . . . , vp means that w ∈ S.

Corollary. If v1, v2, . . . , vp ∈ Rn, then a vector y ∈ Rn belongs to R-span{v1, v2, . . . , vp} if and only if
the n× (p+ 1) matrix

[
v1 v2 . . . vp y

]
is the augmented matrix of a consistent linear system.

What does R-span{v1, v2, . . . , vp} look like?

We can visualize the span of the 0 vector as the single point consisting of just the origin. We imagine the
span of a collection of vectors that all belong to the same line through the origin as that line.

In R2, if the span of v1, v2, . . . , vp does not consist of a line, then the span is the whole plane.

To see this, imagine we have two vectors u, v ∈ R2 that are not parallel.

The word “collection” here informally just means any ordered or unordered list, with repetitions allowed, while “set”
has a more precise mathematical meaning as a collection whose elements are neither ordered nor repeated.
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We can get to any point in the plane by traveling some distance in the u direction, then some distance in
the v direction. In other words, we can get any vector in R2 as the linear combination au+ bv for some
scalars a, b ∈ R. Draw a picture to illustrate this to yourself.

Remark. We have not yet said how to take the span of an infinite collection of vectors in Rn. The
way to formulate this is as the set of all vectors in Rn that are linear combinations of a finite subset
of the collection of input vectors. The finiteness requirement is needed because we can only form linear
combinations with finite lists of vectors, as there is no general way to compute infinite sums of vectors.

Once we make this definition, R-span becomes an operation taking any set of vectors in Rn as input,
which produces a set of vectors in Rn as its output. Notice that the inputs and outputs of this operation
have the same type, so we can compose the R-span operation with itself.

This operation is idempotent in the sense that if S ⊂ Rn is any set then R-span(R-spanS) = R-spanS.
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3 Vocabulary

Keywords from today’s lecture:

1. Vector.

A vertical list of numbers. Equivalently, a matrix with one column.

The set of all vectors with n rows is written Rn.

Example:


1
0

−5.2
3

 or
[

4
]

or

[ √
2
π

]
.

2. Scalar.

Another word for “number” or “constant.” We can multiply scalars together, but not vectors.

Example: 5 or π or
√

2.

3. The zero vector 0 ∈ Rn.

The vector


0
0
...
0

 with n rows all equal to zero.

4. Linear combination of vectors.

If u =

[
u1
u2

]
and v =

[
v1
v2

]
are vectors, then u+ v =

[
u1 + v1
u2 + v2

]
.

If c ∈ R is a scalar then cv =

[
cv1
cv2

]
.

The linear combination of vectors v1, v2, . . . , vp ∈ Rn with coefficients a1, a2, . . . , ap ∈ R is

a1v1 + a2v2 + · · ·+ apvp ∈ Rn.

Example: 2

[
1
4

]
−
[

0
1

]
+ π

[
1
3

]
=

[
2− 0 + π

8− 1 + 3π

]
=

[
2 + π

7 + 3π

]
.

5. The span of a list of vectors v1, v2, . . . , vp ∈ Rn.

The set of all linear combinations of the vectors v1, v2, . . . , vp ∈ Rn.

A vector u ∈ Rn belongs to the span of v1, v2, . . . , vp ∈ Rn if and only if the n× (p+ 1) matrix

A =
[
v1 v2 · · · vp u

]
is the augmented matrix of a consistent linear system.

This happens precisely when A has no pivot positions in the last column.
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