This document is an **exact transcript** of the lecture, with extra summary and vocabulary sections for your convenience. Due to time constraints, the lectures sometimes only contain limited illustrations, proofs, and examples. For a more thorough discussion of the course content, **consult the textbook**.

Summary

Quick summary of today's notes. Lecture starts on next page.

- If A and B are square matrices with $AB = I_n$, then it also holds that $BA = I_n$ and $A^{-1} = B$. This conclusion does not hold if A and B are non-square matrices with $AB = I_n$.
- A *subspace* H of \mathbb{R}^n is a subset of \mathbb{R}^n containing the zero vector that is closed under linear combinations. This means that $0 \in H$ and if $u, v \in H$ and $c \in \mathbb{R}$ then $u + v \in H$ and $cv \in H$.
- The zero subspace of \mathbb{R}^n is the set $\{0\}$ with just the zero vector $0 \in \mathbb{R}^n$. Let A be an $m \times n$ matrix. The column space of A is the span of the columns of A. Denoted Col A. This is a subspace of \mathbb{R}^m .

$$\operatorname{Col}\left[\begin{array}{cc} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 0 \end{array}\right] = \mathbb{R}\operatorname{-span}\left\{\left[\begin{array}{c} 1 \\ 0 \\ 1 \end{array}\right], \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right], \left[\begin{array}{c} 0 \\ 2 \\ 0 \end{array}\right]\right\} = \left\{\left[\begin{array}{c} a \\ b \\ a \end{array}\right] : a, b \in \mathbb{R}\right\} \subseteq \mathbb{R}^3.$$

The *null space* of A is the set of vectors Nul $A = \{v \in \mathbb{R}^n : Av = 0\}$. This is a subspace of \mathbb{R}^n .

$$\operatorname{Nul} \left[\begin{array}{cc} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 0 \end{array} \right] = \left\{ \left[\begin{array}{c} x \\ y \\ z \end{array} \right] \in \mathbb{R}^3 : x = y + 2z = 0 \right\} = \left\{ \left[\begin{array}{c} 0 \\ -2z \\ z \end{array} \right] : z \in \mathbb{R} \right\} \subseteq \mathbb{R}^3.$$

- A basis for a subspace $H \subseteq \mathbb{R}^n$ is a linearly independent spanning set. The standard basis of \mathbb{R}^n is e_1, \ldots, e_n where $e_i \in \mathbb{R}^n$ has a 1 in row i and 0 in all other rows.
- Non-obvious important fact: The pivot columns of an $m \times n$ matrix A form a basis for Col A.

 Easy fact: Any subspace of \mathbb{R}^m can be expressed as the column space of a matrix A with m rows. Such a matrix A has at most m pivots, so any subspace of \mathbb{R}^m has a basis with at most m vectors.
- Both A and RREF(A) have the same null space. Usually Col A ≠ Col RREF(A).
 To find a basis for Nul A, determine the indices i₁, i₂,..., i_p of the non-pivot columns of A.
 Then there are unique vectors v₁, v₂,..., v_p ∈ ℝⁿ such that any

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n \quad \text{with} \quad \mathsf{RREF}(A)x = 0$$

can be written as $x = x_{i_1}v_1 + x_{i_2}v_2 + \cdots + x_{i_p}v_p$. The vectors v_1, v_2, \dots, v_p are a basis for Nul A.

For example, if $\mathsf{RREF}(A) = \begin{bmatrix} 1 & 2 & 0 & 4 & -1 \\ 0 & 0 & 1 & 0 & 2 \end{bmatrix}$ then any $x \in \mathbb{R}^5$ with $\mathsf{RREF}(A)x = 0$ has

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 - 4x_4 + x_5 \\ x_2 \\ -2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -4 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 0 \\ 1 \end{bmatrix}.$$

The three vectors on the right are a basis for $\text{Nul } A = \text{Nul } \mathsf{RREF}(A)$.

1 Last time: inverses

The following all mean the same thing for a function $f: X \to Y$:

- 1. f is invertible.
- 2. f is one-to-one and onto.
- 3. For each $b \in Y$ there is exactly one $a \in X$ with f(a) = b.
- 4. There is a unique function $f^{-1}: Y \to X$, called the *inverse* of f, such that

$$f^{-1}(f(a)) = a$$
 and $f(f^{-1}(b)) = b$ for all $a \in X$ and $b \in Y$.

Proposition. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear and invertible then m = n and T^{-1} is linear and invertible.

The following all mean the same thing for an $n \times n$ matrix A:

- 1. A is invertible.
- 2. A is the standard matrix of an invertible linear function $T: \mathbb{R}^n \to \mathbb{R}^n$.
- 3. There is a unique $n \times n$ matrix A^{-1} , called the *inverse* of A, such that

$$A^{-1}A = AA^{-1} = I_n$$
 where we define $I_n = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$.

- 4. For each $b \in \mathbb{R}^n$ the equation Ax = b has a unique solution.
- 5. $RREF(A) = I_n$
- 6. The columns of A are linearly independent and their span is \mathbb{R}^n .

Proposition. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a 2×2 matrix.

- (1) If ad bc = 0 then A is not invertible.
- (2) If $ad bc \neq 0$ then $A^{-1} = \frac{1}{ad bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Proposition. Let A and B be $n \times n$ matrices.

- 1. If A is invertible then $(A^{-1})^{-1} = A$.
- 2. If A and B are both invertible then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
- 3. If A is invertible then A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

Process to compute A^{-1}

Let A be an $n \times n$ matrix. Consider the $n \times 2n$ matrix $\begin{bmatrix} A & I_n \end{bmatrix}$.

If A is invertible then RREF ($\begin{bmatrix} A & I_n \end{bmatrix}$) = $\begin{bmatrix} I_n & A^{-1} \end{bmatrix}$.

So to compute A^{-1} , row reduce $\begin{bmatrix} A & I_n \end{bmatrix}$ to reduced echelon form, and then take the last n columns.

2 Stronger characterization of invertible matrices

Remember that a matrix can only be invertible if it has the same number of rows and columns.

Theorem. When A is a square $n \times n$ matrix, the following are equivalent:

- (a) A is invertible.
- (b) The columns of A are linearly independent.
- (c) The span of the columns of A is \mathbb{R}^n

Proof. We already know that (a) implies both (b) and (c).

Assume just (b) holds. Then A has a pivot position in every column, so $RREF(A) = I_n$ since A has the same number of rows and columns. But this implies that A is invertible.

Similarly, if (c) holds then A has a pivot position in every row, so $\mathsf{RREF}(A) = I_n$ and A is invertible. \square

Corollary. Suppose A and B are both $n \times n$ matrices. If $AB = I_n$ then $BA = I_n$.

This means that if we want to show that $B = A^{-1}$ then it is enough to just check that $AB = I_n$.

Proof. Assume $AB = I_n$. Then the columns of A span \mathbb{R}^n since if $v \in \mathbb{R}^n$ then Au = v for $u = Bv \in \mathbb{R}^n$, so A is invertible. Therefore $B = A^{-1}AB = A^{-1}I_n = A^{-1}$ so $BA = A^{-1}A = I_n$.

Important note: this corollary only applies to square matrices. Non-square matrices A and B can satisfy $AB = I_n$ while BA is not any identity matrix. For example, when n = 1, consider $A = \begin{bmatrix} 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \end{bmatrix}$.

3 Subspaces of \mathbb{R}^n

Let n be a positive integer. Remember that $0 = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \in \mathbb{R}^n$.

Definition. Let H be a subset of \mathbb{R}^n . The subset H is a *subspace* if these three conditions hold:

- 1. $0 \in H$.
- 2. $u + v \in H$ for all $u, v \in H$.
- 3. $cv \in H$ for all $c \in \mathbb{R}$ and $v \in H$.

Common examples

 \mathbb{R}^n is a subspace of itself.

The set $\{0\}$ consisting of just the zero vector is a subspace of \mathbb{R}^n .

The empty set \varnothing is *not* a subspace since it does not contain the zero vector.

A subset $H \subseteq \mathbb{R}^2$ is a subspace if and only if $H = \{0\}$ or $H = \mathbb{R}^2$ or $H = \mathbb{R}$ -span $\{v\}$ for some $v \in \mathbb{R}^2$

The span of a set of vectors in \mathbb{R}^n is a subspace of \mathbb{R}^n .

Conversely, any subspace of \mathbb{R}^n is the span of a **finite** set of vectors, although this is not obvious.

Example. The set

$$X = \left\{ v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathbb{R}^3 : v_1 + v_2 + v_3 = 1 \right\}$$

is not a subspace since $0 \notin X$.

Example. The set

$$H = \left\{ v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathbb{R}^3 : v_1 + v_2 + v_3 = 0 \right\}$$

is a subspace since if $u, v \in H$ and $c \in \mathbb{R}$ then

$$(u_1 + v_1) + (u_2 + v_2) + (u_3 + v_3) = (u_1 + u_2 + u_3) + (v_1 + v_2 + v_3) = 0 + 0 = 0$$

and

$$cv_1 + cv_2 + cv_3 = c(v_1 + v_2 + v_3) = 0$$

so $u + v \in H$ and $cv \in H$.

Any matrix A gives rise to two subspaces, called the *column space* and *null space*.

Definition. The *column space* of an $m \times n$ matrix A is the subspace

$$\operatorname{Col} A = \{Ax : x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m.$$

This means that $\operatorname{Col} A$ is the span of the columns of A.

Example. If $V = \mathbb{R}$ -span $\left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$ then what are some matrices A with $\operatorname{Col} A = V$?

Here are four examples:

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{or} \quad A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \text{or} \quad A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 2 \end{bmatrix} \quad \text{or} \quad A = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 2 \\ 0 & 1 & 1 & 0 & 2 & 1 \\ 1 & 0 & 0 & 1 & 1 & 2 \end{bmatrix}.$$

Many different matrices can have the same column space, and it may not be at all obvious whether a subspace V is equal to the column space of a given matrix A.

Remark. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is the linear function T(x) = Ax then $\operatorname{Col} A = \operatorname{range}(T)$.

A vector $b \in \mathbb{R}^m$ belongs to Col A if and and only if Ax = b has a solution.

Thus $\operatorname{Col} A = \mathbb{R}^m$ if and only if Ax = b has a solution for each $b \in \mathbb{R}^m$ ($\Leftrightarrow A$ has a pivot in every row).

Definition. The *null space* of an $m \times n$ matrix A is the subspace

$$\operatorname{Nul} A = \{ v \in \mathbb{R}^n : Av = 0 \} \subseteq \mathbb{R}^n$$

This means that Nul A is exactly the set of solutions to the matrix equation Ax = 0.

Proof that Nul A is a subspace. First note that $0 \in \text{Nul } A \text{ since } A0 = 0$.

Next, if $u, v \in \text{Nul } A$ and $c \in \mathbb{R}$ then A(u+v) = Au + Av = 0 + 0 = 0 and A(cv) = c(Av) = 0, so $u+v \in \text{Nul } A$ and $cv \in \text{Nul } A$. Thus Nul A is a subspace of \mathbb{R}^n .

Remark. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is the linear function T(x) = Ax then Nul $A = \{x \in \mathbb{R}^n : T(x) = 0\}$.

The column space is a subspace of \mathbb{R}^m where m is the number of rows of A.

The null space is a subspace of \mathbb{R}^n where n is the number of columns of A.

A subspace can be completely determined by a finite amount of data. This data will be called a basis.

Definition. Let H be a subspace of \mathbb{R}^n . A *basis* for H is a set of vectors $\{v_1, v_2, \dots, v_k\} \subseteq H$ that are linearly independent and have span equal to H.

The empty set $\emptyset = \{\}$ is considered to be a basis for the zero subspace $\{0\}$ of \mathbb{R}^n .

Example. The set
$$\{e_1, e_2, \dots, e_n\} \subseteq \mathbb{R}^n$$
 where $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, and so on, is a basis for \mathbb{R}^n .

We call this the *standard basis* of \mathbb{R}^n .

Theorem. Every subspace H of \mathbb{R}^n has a basis of size at most n.

Proof. If $H = \{0\}$ then \emptyset is a basis.

Assume $H \neq \{0\}$. Let \mathcal{B} be a set of linearly independent vectors in H that is as large as possible. The size of \mathcal{B} must be at most n since any n+1 vectors in \mathbb{R}^n are linearly dependent.

Let w_1, w_2, \ldots, w_k be the elements of \mathcal{B} . Since \mathcal{B} is as large as possible, if $v \in H$ is any vector then w_1, w_2, \ldots, w_k, v are linearly dependent so we can write

$$c_1w_1 + c_2w_2 + \cdots + c_kw_k + cv = 0$$

for some numbers $c_1, c_2, \ldots, c_k, c \in \mathbb{R}$ which are not all zero.

If c=0 then this would imply that the vectors in \mathcal{B} are linearly dependent. But the vectors in \mathcal{B} are linearly independent, so we must have $c \neq 0$. Therefore

$$v = \frac{c_1}{c} w_1 + \frac{c_2}{c} w_2 + \dots + \frac{c_k}{c} w_k.$$

This means that v is in the span of the vectors in \mathcal{B} . Since $v \in H$ is an arbitrary vector, we conclude that the span of the vectors in \mathcal{B} is all of H, so \mathcal{B} is a basis for H.

Example. Let
$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$
.

How can we find a basis for Nul A? Well, finding a basis for Nul A is more or less the same task as finding all solutions to the matrix equation Ax = 0. So let's first try to solve that equation.

If we row reduce the 3×6 matrix $\begin{bmatrix} A & 0 \end{bmatrix}$, we get

$$\left[\begin{array}{ccccc} A & 0 \end{array}\right] \sim \left[\begin{array}{ccccc} 1 & -2 & 0 & -1 & 3 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right] = \mathsf{RREF}(\left[\begin{array}{cccc} A & 0 \end{array}\right]).$$

This tells us that Ax = 0 if and only if $\begin{cases} x_1 - 2x_2 - x_4 + 3x_5 = 0 \\ x_3 + 2x_4 - 2x_5 = 0 \end{cases}$ or equivalently $\begin{cases} x_1 = 2x_2 + x_4 - 3x_5 \\ x_3 = -2x_4 + 2x_5. \end{cases}$

By substituting these formulas for the basic variables x_1 and x_3 , we deduce that $x \in \text{Nul } A$ if and only if

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}.$$

The vectors

$$\left\{ \begin{bmatrix} 2\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-2\\1\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\2\\0\\1 \end{bmatrix} \right\}$$

are a basis for Nul A: we just computed that these vectors span the null space, and they are linearly independent since each has a nonzero entry in some row (namely, either row 2, 4, or 5) where the others have zeros. (Why does this imply linear independence?)

This example is important: the procedure just described works to construct a basis of Nul A for any matrix A. The size of this basis will always be equal to the number of free variables in the linear system Ax = 0. How to find a basis for Nul A is something you should learn and remember.

Example. Let
$$B = \begin{bmatrix} 1 & 0 & -3 & 5 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
.

This matrix is in reduced echelon form. How to find a basis for Col B?

The columns of B automatically span Col B, but they might not be linearly independent.

The largest linearly independent subset of the columns of B will be a basis for Col B, however.

In our example, the pivot columns 1, 2 and 5 are linearly independent since each has a row with a 1 where the others have 0s. These columns span columns 3 and 4, so a basis for Col B is

$$\left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}.$$

This example was special since the matrix B was already in reduced echelon form. To find a basis of the column space of an arbitrary matrix, we rely on the following observation:

Proposition. Let A be any matrix. The pivot columns of A form a basis for $\operatorname{Col} A$.

Proof. Let v_1, v_2, \ldots, v_n be the columns of $A = [v_1 \ v_2 \ \ldots \ v_n]$.

Consider the matrices $A_k = [v_1 \quad v_2 \quad \dots \quad v_k]$ for $k = 1, 2, \dots, n$.

Observe that $RREF(A_k)$ is equal to the first k columns of RREF(A).

If k is not a pivot column of A, then the last column of A_k is not a pivot column.

This means that $A_{k-1}x = v_k$ is consistent so v_k is in the span of $v_1, v_2, \ldots, v_{k-1}$.

Thus each non-pivot column of A is a linear combination of earlier columns. This means that each non-pivot column of A is a linear combination of earlier columns that are pivot columns: if i_1 is the first non-pivot column, then v_{i_1} is a linear combination of earlier columns, which are all pivots; if i_2 is the second non-pivot column, then v_{i_2} is a linear combination of earlier columns, and these are all either

pivots or v_{i_1} , but in any linear combination involving v_{i_1} we can replace v_{i_1} by a linear combination of pivot columns to get a linear combination involving only pivot columns; if i_3 is the third non-pivot column, then v_{i_3} is a linear combination of earlier columns, and these are all either pivots or v_{i_1} or v_{i_2} , and we can replace v_{i_1} and v_{i_2} by combinations of pivot columns as needed; and so on.

We conclude that $\operatorname{Col} A$ is spanned by the pivot columns of A. Why are they linearly independent? If k is a pivot column of A, then the last column of A_k is a pivot column.

This means that $A_{k-1}x = v_k$ is inconsistent so v_k is not in the span of $v_1, v_2, \ldots, v_{k-1}$.

Therefore v_k is also not in the span of the (smaller) set of earlier columns that are pivot columns.

Thus if $j_1 < j_2 < \cdots < j_q$ are the pivot columns of A then we have a strictly increasing chain of subspaces

$$\mathbb{R}\operatorname{-span}\{v_{j_1}\}\subsetneq\mathbb{R}\operatorname{-span}\{v_{j_1},v_{j_2}\}\subsetneq\mathbb{R}\operatorname{-span}\{v_{j_1},v_{j_2},v_{j_3}\}\subsetneq\cdots\subsetneq\mathbb{R}\operatorname{-span}\{v_{j_1},v_{j_2},\ldots,v_{j_q}\}.$$

The fact that this chain is strictly increasing means $v_{j_1}, v_{j_2}, \dots, v_{j_q}$ are also linearly independent. \square

Example. The matrix

$$A = \left[\begin{array}{rrrrr} 1 & 3 & 3 & 2 & -9 \\ -2 & -2 & 2 & -8 & 2 \\ 2 & 3 & 0 & 7 & 1 \\ 3 & 4 & -1 & 11 & -8 \end{array} \right]$$

is row equivalent to the matrix B in the previous example. Columns 1, 2, and 5 of A have pivots, so

$$\left\{ \begin{bmatrix} 1\\-2\\2\\3 \end{bmatrix}, \begin{bmatrix} 3\\-2\\3\\4 \end{bmatrix}, \begin{bmatrix} -9\\2\\1\\-8 \end{bmatrix} \right\}$$

is a basis for Col A.

Next time: we will show that if H is a subspace of \mathbb{R}^n then all of its bases have the same size. The common size of each basis is called the *dimension* of H.

4 Vocabulary

Keywords from today's lecture:

1. Subspace of \mathbb{R}^n

A subset $H \subseteq \mathbb{R}^n$ such that $0 \in H$; if $u, v \in H$ then $u + v \in H$; and if $v \in H$, $c \in \mathbb{R}$ then $cv \in H$.

Example: Pick any vectors $v_1, v_2, \dots, v_p \in \mathbb{R}^n$. Then \mathbb{R} -span $\{v_1, v_2, \dots, v_p\}$ is a subspace.

2. Column space of an $m \times n$ matrix A.

The subspace $\operatorname{Col} A = \{Av : v \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$. The span of the columns of A.

Example: If
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 then $\operatorname{Col} A = \left\{ \begin{bmatrix} x \\ y \\ 0 \end{bmatrix} \in \mathbb{R}^3 : x, y \in \mathbb{R} \right\}$.

3. Null space of an $m \times n$ matrix A.

The subspace Nul $A = \{v \in \mathbb{R}^n : Av = 0\} \subseteq \mathbb{R}^n$.

Example: If
$$A = \begin{bmatrix} 1 & -2 & 0 \\ -1 & 2 & 0 \end{bmatrix}$$
 then Nul $A = \left\{ \begin{bmatrix} 2x \\ x \\ y \end{bmatrix} \in \mathbb{R}^3 : x, y \in \mathbb{R} \right\} = \mathbb{R}$ -span $\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$.

4. **Basis** of a subspace $H \subseteq \mathbb{R}^n$

A set of linearly independent vectors in H whose span is H.

Example: The vectors
$$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$ are a basis for the subspace $\left\{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathbb{R}^3 : v_1 + v_2 + v_3 = 0 \right\}$.

The **standard basis** of
$$\mathbb{R}^n$$
 consists of the vectors $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, ..., $e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$.