
MATH 2121 — Linear algebra (Fall 2024) Lecture 11

This document is an exact transcript of the lecture, with extra summary and vocabulary sections for
your convenience. Due to time constraints, the lectures sometimes only contain limited illustrations,
proofs, and examples. For a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

• Let n be any positive integer. The determinant is a function det : {n× n matrices} → R.

• The value of the function det at the n× n identity matrix is one, so det In = 1.

• If A is an n× n matrix and B is formed by swapping two columns of A, then detA = −detB:

det

 1 2 3
0 4 5
0 0 6

 = 24 and det

 1 3 2
0 5 4
0 6 0

 = −24.

• Choose any vectors a2, a3, . . . , an ∈ Rn.

Then the function f : Rn → R with the formula f(v) = det
[
v a2 a3 . . . an

]
is linear.

For example, it turns out that

det

 v1 2 3
v2 4 5
v3 0 6

 = 24v1 − 2(6v2 − 5v3) + 3(−4v3) =
[

24 −12 −2
]  v1

v2
v3


︸ ︷︷ ︸
formula for a linear function

.

• There is only one function {n×n matrices} → R that has the preceding properties, and we define
det to be this function. Although it’s not obvious, these properties lead to a formula for det.

• det

[
a b
c d

]
= ad− bc and det

 a b c
d e f
g h i

 = a(ei− fh)− b(di− fg) + c(dh− eg).

• Permutation matrices are square matrices formed by rearranging the columns in In. For example: 1 0 0
0 1 0
0 0 1


det=1
inv=0

 1 0 0
0 0 1
0 1 0


det=−1
inv=1

 0 1 0
1 0 0
0 0 1


det=−1
inv=1

 0 1 0
0 0 1
1 0 0


det=1
inv=2

 0 0 1
1 0 0
0 1 0


det=1
inv=2

 0 0 1
0 1 0
1 0 0


det=−1
inv=3

.

Determinants of n× n permutation matrices are always ±1.

Suppose A is a permutation matrix.

If inv(A) is the number of 2× 2 submatrices of A equal to

[
0 1
1 0

]
, then detA = (−1)inv(A).

• There is a general formula for detA given by a sum over all n× n permutation matrices.

The n = 2 and n = 3 formulas for detA are special cases of this formula.

The general formula is sometimes useful but is probably not worth memorizing.

We will describe a more efficient way to compute detA next time.

• If A is not invertible then detA = 0.

Next time, we will show that if A is invertible then detA 6= 0.
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1 Last time: theorems about bases and rank

A subspace of Rn is a nonempty subset H with the property that u + v ∈ H and cv ∈ H whenever
u, v ∈ H and c ∈ R. (Requiring that H be nonempty is equivalent to requiring that 0 ∈ H.)

A basis of a subspace is a linearly independent set of vectors whose span is the whole subspace.

The plural of “basis” is “bases.” Two crucial facts about bases:

• Every subspace has a basis.

• Every basis of a given subspace has the same number of elements.

The dimension of a subspace is the common size of all of its bases.

If H is a subspace with dimH = p then any set of p vectors in H that are linearly independent, or that
span H, form a basis for H. The dimension of Rn is n, while the dimension of {0} is 0.

Every subspace H of Rn that is not {0} or Rn has 0 < dimH < n.

Be sure to know how to (1) construct a basis of NulA and (2) construct a basis of ColA.

Theorem (Rank theorem). Let A be an m× n matrix.

1. The dimension of NulA = {v ∈ Rn : Av = 0} is the number of free variables in Ax = 0.

2. The dimension of ColA = (the span of the columns of A) is the number of pivot columns in A.

3. It holds that rankA + dim NulA = n, where we define rankA = dim ColA.

Corollary. For an n× n matrix A, the following are equivalent:

1. A is invertible.

2. rankA = n.

3. dim NulA = 0.

If U and V are two sets then U ⊆ V means that every element of U is also an element of V .

The only way that we can have both U ⊆ V and V ⊆ U is if U = V .

Proposition. Suppose U ⊆ V are subspaces of Rn. Then dimU ≤ dimV .

Moreover, if U 6= V then dimU < dimV . Equivalently, if dimU = dimV , then U = V .

2 Determinants

The subject of the next few lectures is the determinant of a square matrix. The determinant shows up in
various parts of mathematics and physics, for example, in computing integrals in multivariable calculus.

The determinant is a function that assigns a square matrix to a number. The following theorem says
that a set of three special properties uniquely identifies the determinant among all functions on n × n
matrices. This result tells us some important facts about the determinant, but it’s not clear at first how
we are supposed to compute this function.

Theorem. Let n be any positive integer. There exists a unique function

det : {n× n matrices} → R,

called the determinant , with the following properties:
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(1) det In = 1. In words: the determinant of the identity matrix is 1.

(2) If a1, a2, . . . , an ∈ Rn and 1 ≤ i < j ≤ n then

det
[
a1 · · · ai · · · aj · · · an

]
= −det

[
a1 · · · aj · · · ai · · · an

]
In words: interchanging two columns in an n× n matrix reverses the sign of the determinant.

(3) Choose any vectors a2, a3, . . . , an ∈ Rn. If u, v ∈ Rn then

det
[
u + v a2 a3 · · · an

]
= det

[
u a2 a3 · · · an

]
+det

[
v a2 a3 · · · an

]
and if c ∈ R then

det
[
cv a2 a3 · · · an

]
= c · det

[
v a2 a3 · · · an

]
.

In words: if all but the first column of an n× n matrix are fixed, and the determinant is viewed as
a function of the first column, then it is a linear function Rn → R.

Remark. The determinant is a function, but we also say “the determinant of A” to refer to output of
this function at an input matrix A. This output could also be written as detA or det(A).

The theorem is a very abstract way of defining a function. However, the upshot is that later this descrip-
tion will make it easy to derive some useful, but not obviously equivalent, formulas for the determinant.

We spend the rest of this lecture proving the theorem. To do this, we start by assuming there exists a
function det with the given properties. We will use these properties to narrow the possibilities for det
down to one function given by a certain formula, and then check that this formula does satisfy (1)-(3).

Let A =
[
a1 a2 . . . an

]
be an n× n matrix with columns a1, a2, . . . , an ∈ Rn.

Lemma. If A has two equal columns then detA = 0.

Proof. Suppose ai = aj for i < j.

Then detA = − det
[
a1 · · · aj · · · ai · · · an

]
= −detA so 2(detA) = 0 and detA = 0.

Corollary. If the columns of A are linearly dependent, then detA = 0.

Proof. Assume the columns of A are linearly dependent.

This means that one column ai of A is a linear combination of the others.

If a1 = c2a2 + c3a3 + · · ·+ cnan for some c2, c3, . . . , cn ∈ R, then property (3) implies that

detA = c2 det
[
a2 a2 . . . an

]
+c3 det

[
a3 a2 a3 . . . an

]
+· · ·+cn det

[
an a2 . . . an

]
.

Each determinant in the sum is zero by the previous lemma so detA = 0.

If a different column of A is a linear combination of the others, then define B by swapping that column
and the first column of A. Then detA = −detB and the argument just given shows that detB = 0.

Corollary. If A is not invertible then detA = 0.

Proof. If A is not invertible then its columns are not linearly independent.

Recall that A =
[
a1 a2 . . . an

]
where each ai ∈ Rn.
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Lemma. Suppose 1 ≤ i ≤ n and ai = pu + qv for some p, q ∈ R and u, v ∈ Rn. Define

B =
[
a1 . . . ai−1 u ai+1 . . . an

]
and C =

[
a1 . . . ai−1 v ai+1 . . . an

]
.

Then detA = p · detB + q · detC.

In other words, det is linear as a function of any single column in a matrix, not just the first.

Proof. If i = 1 then this follows by property (3) in the theorem defining det.

If i > 1 then form A′, B′, and C ′ by swapping columns 1 and i in A, B, and C.

Then detA′ = p · detB′ + q · detC ′ by property (3).

Now substitute detA′ = −detA and detB′ = − detB and detC ′ = − detC and cancel signs.

Example. For 1× 1 matrices we have det
[
a
]

= adet
[

1
]

= a.

Example. For 2× 2 matrices, the preceding lemma means that we always have

det

[
a b
c d

]
= det

[
a b
0 d

]
+ det

[
0 b
c d

]
= a det

[
1 b
0 d

]
+ cdet

[
0 b
1 d

]

since

[
a
c

]
=

[
a
0

]
+

[
0
c

]
= a

[
1
0

]
+ c

[
0
1

]
, and also

det

[
a b
c d

]
= det

[
a b
c 0

]
+ det

[
a 0
c d

]
= bdet

[
a 1
c 0

]
+ ddet

[
a 0
c 1

]

since

[
b
d

]
=

[
b
0

]
+

[
0
d

]
= b

[
1
0

]
+ d

[
0
1

]
. Combining these observations gives

det

[
a b
c d

]
= a det

[
1 b
0 d

]
+ cdet

[
0 b
1 d

]
= a

(
bdet

[
1 1
0 0

]
+ ddet

[
1 0
0 1

])
+ c

(
bdet

[
0 1
1 0

]
+ ddet

[
0 0
1 1

])
= abdet

[
1 1
0 0

]
︸ ︷︷ ︸

=0

+addet

[
1 0
0 1

]
︸ ︷︷ ︸

=det I2=1

+bcdet

[
0 1
1 0

]
︸ ︷︷ ︸
=− det I2=−1

+cddet

[
0 0
1 1

]
︸ ︷︷ ︸

=0

= ad− bc.

A formula to remember: det

[
a b
c d

]
= ad− bc

3 Permutation matrices

To continue, we need to discuss a family of square matrices whose determinants are easy to compute.

A permutation matrix is an n×n matrix whose entries are all 0 or 1, and which has exactly one nonzero
entry in each row and in each column. Let Sn be the set of n× n permutation matrices.

Example. The elements of S2 are

[
1 0
0 1

]
and

[
0 1
1 0

]
.
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Example. The elements of S3 are 1 0 0
0 1 0
0 0 1

  1 0 0
0 0 1
0 1 0

  0 1 0
1 0 0
0 0 1

  0 1 0
0 0 1
1 0 0

  0 0 1
1 0 0
0 1 0

  0 0 1
0 1 0
1 0 0

 .

Let Rn be the set of n × n matrices whose entries are all 0 or 1, and which have exactly one nonzero
entry in each column (but possibly multiple nonzero entries in a given row).

Example. The elements of R2 are

[
1 0
0 1

]
,

[
1 1
0 0

]
,

[
0 1
1 0

]
, and

[
0 0
1 1

]
.

We always have Sn ⊆ Rn. The size of Sn is n! while the size of Rn is nn.

Lemma. If X ∈ Rn but X /∈ Sn then detX = 0.

Proof. In this case X must have two equal columns.

Given X ∈ Sn, define inv(X) to be the number of 2× 2 submatrices of X equal to

[
0 1
1 0

]
.

To form a 2× 2 submatrix of X, choose any two rows and any two columns, not necessarily adjacent,
and then take the 4 entries in those rows and columns.

A 3× 3 matrix has nine 2× 2 submatrices: a b c
d e f
g h i

 ;

[
a b
d e

]
,

[
a c
d f

]
,

[
b c
e f

]
,

[
a b
g h

]
,

[
a c
g i

]
,

[
b c
h i

]
,

[
d e
g h

]
,

[
d f
g i

]
,

[
e f
h i

]
.

The value of inv(X) is also the number of pairs of 1s in X with one 1 below and to the left of the other:

inv

 0 0 1
1 0 0
0 1 0

 = 2, inv

 1 0 0
0 1 0
0 0 1

 = 0, inv

 0 0 1
0 1 0
1 0 0

 = 3.

Lemma. If X ∈ Sn then detX = (−1)inv(X).

Proof. If X ∈ Sn and inv(X) > 0, then X must have two adjacent columns where the 1 in the left column
is below the 1 in the right column. Form Y by interchanging these two columns.

Drawing a picture of X and Y shows that inv(Y ) = inv(X)− 1. We know that detY = −detX.

If inv(Y ) > 0, then construct a permutation matrix Z from Y in the same way. Continuing this process
will eventually give a permutation matrix A ∈ Sn with detX = (−1)inv(X) detA and inv(A) = 0.

The only permutation matrix A ∈ Sn with inv(A) = 0 is A = In, so det(X) = (−1)inv(X).

4 A formula for detA

Given a matrix X ∈ Rn and an arbitrary n× n matrix A, define

prod(X,A) = the product of the entries of A in the nonzero positions of X.

For example, prod

 0 0 1
1 0 0
0 1 0

 ,

 a b c
d e f
g h i

 = cdh.
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We can now give the first concrete (though still complicated) description of the determinant.

Theorem. Suppose A is an n× n matrix. Then detA =
∑

X∈Sn

prod(X,A)(−1)inv(X)

Here the notation
∑

X∈Sn
means “compute prod(X,A)(−1)inv(X) for each n × n permutation matrix X

and then take the sum of all of the resulting numbers.”

The function given by this formula has the defining properties of the determinant. This confirms our first
theorem: the only function with the properties we originally ascribed to the determinant is this formula.

Example. We can use the general formula for detA to compute the determinant of a 3× 3 matrix.

Suppose A =

 a b c
d e f
g h i

. Then our formula becomes

detA = prod

 1
1

1

 , A

 (−1)0 + prod

 1
1

1

 , A

 (−1)1 +

prod

 1
1

1

 , A

 (−1)1 + prod

 1
1

1

 , A

 (−1)2 +

prod

 1
1

1

 , A

 (−1)2 + prod

 1
1

1

 , A

 (−1)3 = aei− afh− bdi+ bfg + cdh− ceg.

The 0s are omitted in the permutation matrices to improve readability. We can rewrite this as

det

 a b c
d e f
g h i

 = a(ei− fh)− b(di− fg) + c(dh− eg)

Note that each term in parentheses is the determinant of a 2× 2 submatrix of A.

Proof of theorem. The most difficult part of the proof is our notation, which gets fairly complicated.

Suppose A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

an1 an2 . . . ann

 . Then A =
[ ∑n

i=1 ai1ei
∑n

j=1 aj2ej . . .
∑n

k=1 aknek
]
.

In words: express each column of A as a linear combination of the basis vectors e1, e2, . . . , en of Rn.

Using the fact that the determinant is linear as a function of each column of A, it follows that

detA = det
[ ∑n

i=1 ai1ei
∑n

j=1 aj2ej . . .
∑n

k=1 aknek
]

=

n∑
i=1

ai1 · det
[
ei

∑n
j=1 aj2ej . . .

∑n
k=1 aknek

]
=

n∑
i=1

n∑
j=1

ai1aj2 · det
[
ei ej . . .

∑n
k=1 aknek

]
...

=

n∑
i=1

n∑
j=1

· · ·
n∑

k=1︸ ︷︷ ︸
n summations

ai1aj2 · · · akn︸ ︷︷ ︸
=prod(X,A)

det
[
ei ej . . . ek

]︸ ︷︷ ︸
this is a matrix X ∈ Rn

.
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If this sequence of equalities is confusing, try to see if the corresponding step in our calculation of

det

[
a b
c d

]
makes more sense. We are really just generalising that calculation from 2 to n dimensions.

Key observation: the matrix
[
ei ej . . . ek

]
varies over all elements of Rn as the indices i, j, . . . , k

vary in the summations
∑n

i=1

∑n
j=1 · · ·

∑n
k=1.

This means we can rewrite the last formula as

detA =
∑

X∈Rn

prod(X,A) detX.

Let X ∈ Rn. Then detX = (−1)inv(X) if X ∈ Sn and otherwise detX = 0. Therefore, we actually have

detA =
∑

X∈Sn

prod(X,A)(−1)inv(X). (*)

This formula was computed under the assumption that a function det exists with the properties in our
first theorem. This means that if our first theorem is true, then the determinant must be given by the
formula (*). To finish, we just need to check that the function (*) actually has properties (1)-(3).

This is not too hard, and involves some exercises in algebra manipulating the expression (*):

(1) We have det In =
∑

X∈Sn
prod(X, In)(−1)inv(X) = 1 .

Proof. This holds since prod(X, In) = 0 unless X = In if X ∈ Sn.

(2) If we interchange two columns in A then detA changes by a factor of −1.

Proof. Let X̃ be the matrix given by interchanging columns i and j in X.

If X ∈ Sn then X̃ ∈ Sn and inv(X̃)− inv(X) is an odd number.

This is not obvious but can be shown by drawing a picture of X compared to X̃.

Hence (−1)inv(X) = −(−1)inv(X̃).

If X ∈ Sn then prod(X,A) = prod(X̃, Ã) for all matrices A. (Why?)

Thus detA =
∑

X∈Sn
prod(X,A)(−1)inv(X) = −

∑
X∈Sn

prod(X̃, Ã)(−1)inv(X̃) = −det Ã.

(3) The formula (*) is linear as a function Rn → R of the first column of A.

Proof. Suppose the first column of A is the vector v =


v1
v2
...

vn

 where each vi is a variable.

Assume all the other columns of A are fixed vectors.

Let X ∈ Sn. Suppose the one in the first column of X is in row i.

Form Y ∈ Sn−1 from X by deleting the first column and ith row.

Form B from A by deleting the first column and ith row.

Now observe that prod(X,A)(−1)inv(X) = cvi where c = (−1)inv(X)prod(Y,B) ∈ R.

The formula v 7→ cvi is a linear function Rn → R whenever c ∈ R.

Sums of linear functions Rn → R are linear.

Hence the formula (*) is linear as function of the first column of A.
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This confirms that (*) does have the properties we stated in our first theorem.

The formula detA =
∑

X∈Sn
prod(X,A)(−1)inv(A) is not an efficient way of computing the determinant

of most matrices since the sum involves a huge number of terms if n is large.

There are 2 terms for n = 2, 6 for n = 3, 24 terms for n = 4, and 120 terms for n = 5.

Next time: more properties of determinants and how to compute them efficiently.
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5 Vocabulary

Keywords from today’s lecture:

1. Permutation matrix.

A square matrix P whose entries are each 0 or 1, that has exactly one nonzero entry equal to 1 in
each row and each column.

If P is an n × n permutation matrix and A is a matrix with n rows then PA is a matrix formed
by rearranging (“permuting”) the rows of A. If A is a matrix with n columns then AP is a matrix
formed by rearranging the columns of A.

Example:

 1 0 0
0 1 0
0 0 1

 ,

 1 0 0
0 0 1
0 1 0

 ,

 0 1 0
1 0 0
0 0 1

 ,

 0 1 0
0 0 1
1 0 0

 ,

 0 0 1
1 0 0
0 1 0

 , or

 0 0 1
0 1 0
1 0 0

 .

2. Determinant.

The unique function
det : {n× n matrices} → R

with det In = 1, with the property that interchanging two columns in an n × n matrix A reverses
the sign of detA, and with the property that if all columns but the first in an n× n matrix A are
fixed, then detA is a linear function of the first column.

Example: det

[
a b
c d

]
= ad− bc.
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