
MATH 2121 — Linear algebra (Fall 2024) Lecture 12

This document is an exact transcript of the lecture, with extra summary and vocabulary sections for
your convenience. Due to time constraints, the lectures sometimes only contain limited illustrations,
proofs, and examples. For a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

• Let n be a positive integer and let A and B be n× n matrices.

• It always holds that detA = detA>.

• If A is invertible then detA 6= 0. If A is not invertible then detA = 0.

• It always holds that detAB = (detA)(detB).

• A matrix is triangular if it looks like
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 or


∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗


where the ∗’s are arbitrary entries.

Let aij ∈ R denote the entry of A in the ith row and jth column.

If A is triangular then detA = a11a22a33 · · · ann = the product of the diagonal entries of A.

The matrix A is diagonal if aij = 0 whenever i 6= j. Diagonal matrices are triangular.

• Here is an algorithm to compute detA:

– Perform a series of row operations to transform A to a matrix E in echelon form.

– Keep track of a scalar denom ∈ R as you do this. Start with denom = 1.

– Whenever you swap two rows of A, multiply denom by −1.

– Whenever you multiply a row of A by a nonzero number, multiply denom by that number.

– Then detA =
detE

denom
=

product of diagonal entries of E

denom
.

• Here is another way to compute detA.

Again write aij for the entry of A in row i and column j.

Also let A(i,j) be the matrix formed from A by deleting row i and column j.

Then detA = a11 detA(1,1) − a12 detA(1,2) + a13 detA(1,3) − · · · − (−1)na1n detA(1,n) .

This formula is complicated and inefficient for generic matrices.

It is useful when many entries of A are equal to zero, since then the formula has few terms.

Also, when n ≤ 3 and you expand all the terms in this formula, you get the identities

det

[
a b
c d

]
= ad− bc and det

 a b c
d e f
g h i

 = a(ei− fh)− b(di− fg) + c(dh− eg).
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1 Last time: introduction to determinants

Let n be a positive integer.

A permutation matrix is a square matrix formed by rearranging the columns of the identity matrix.

Equivalently, a permutation matrix is a square matrix whose entries are all 0 or 1, and that has exactly
one nonzero entry in each row and in each column.

Let Sn be the set of n× n permutation matrices.

If A is an n× n matrix and X ∈ Sn, then AX has the same columns as A but in a different order.

The columns of A are “permuted” by X to form AX.

Example. The six elements of S3 are 1 0 0
0 1 0
0 0 1

  1 0 0
0 0 1
0 1 0

  0 1 0
1 0 0
0 0 1

  0 1 0
0 0 1
1 0 0

  0 0 1
1 0 0
0 1 0

  0 0 1
0 1 0
1 0 0

 .
Notice that

 a b c
d e f
g h i

 0 0 1
1 0 0
0 1 0

 =

 b c a
e f d
h i g

.

Given X ∈ Sn and an arbitrary n× n matrix A:

• Define prod(X,A) to be the product of the entries of A in the nonzero positions of X.

• Define inv(X) to be the number of 2× 2 submatrices of X equal to

[
0 1
1 0

]
.

To form a 2× 2 submatrix of X, choose any two rows and any two columns, not necessarily adjacent,
and then take the 4 entries determined by those rows and columns.

Each 2× 2 submatrix of a permutation matrix is either[
0 0
0 0

]
or

[
1 0
0 0

]
or

[
0 0
0 1

]
or

[
0 1
0 0

]
or

[
0 0
1 0

]
or

[
1 0
0 1

]
or

[
0 1
1 0

]
.

Example. prod

 0 0 1
1 0 0
0 1 0

 ,
 a b c
d e f
g h i

 = cdh

Example. inv

 0 0 1
1 0 0
0 1 0

 = 2 and inv

 1 0 0
0 1 0
0 0 1

 = 0 and inv

 0 0 1
0 1 0
1 0 0

 = 3.

Definition. The determinant of an n× n matrix A is detA =
∑

X∈Sn

prod(X,A)(−1)inv(X) .

This general formula simplifies to the following expressions for n = 1, 2, 3:

det
[
a
]

= a, det

[
a b
c d

]
= ad− bc, det

 a b c
d e f
g h i

 = a(ei− fh)− b(di− fg) + c(dh− eg).

For n ≥ 4, our formula for detA is a sum with at least 24 terms, which is not easy to compute by hand
(or with a computer, for slightly larger n). We will describe a better way to compute determinants today.
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The most important properties of the determinant are described by the following theorem:

Theorem. The determinant is the unique function det : {n× n matrices} → R with these 3 properties:

(1) det In = 1 .

(2) If B is formed by switching two columns in an n× n matrix A, then detA = −detB .

(3) Suppose A, B, and C are n× n matrices with columns

A =
[
a1 a2 . . . an

]
and B =

[
b1 b2 . . . bn

]
and C =

[
c1 c2 . . . cn

]
.

Assume that ai = pbi + qci for numbers p, q ∈ R.

Assume also that aj = bj = cj for all other indices i 6= j ∈ {1, 2, . . . , n}.

Then detA = p detB + q detC .

Remark. Our formulation of this theorem last time required i = 1 in property (3). However, we showed
that this property combined with (2) implies the more general version of (3) described here.

Corollary. If A is a square matrix that is not invertible then detA = 0.

Corollary. If A is a permutation matrix then detA = (−1)inv(A).

Proof. prod(X,Y ) = 0 if X and Y are different n× n permutation matrices, but prod(X,X) = 1.

2 More properties of the determinant

Recall that A> denotes the transpose of a matrix A (the matrix whose rows are the columns of A).

Lemma. If X ∈ Sn then X> ∈ Sn and inv(X) = inv(X>).

Proof. Transposing a permutation matrix does not affect the # of 2×2 submatrices equal to

[
0 1
1 0

]
.

Corollary. If A is any square matrix then detA = det(A>).

Proof. If X ∈ Sn then prod(X,A) = prod(X>, A>), so our formula for the determinant gives

detA =
∑

X∈Sn

prod(X,A)(−1)inv(X) =
∑

X∈Sn

prod(X>, A>)(−1)inv(X
>).

As X ranges over all elements of Sn, the transpose X> also ranges over all elements of Sn.

The second sum is therefore equal to
∑

X∈Sn
prod(X,A>)(−1)inv(X) = det(A>).

Corollary. If A is a square matrix with two equal rows then detA = 0.

Proof. In this case A> has two equal columns, so 0 = detA> = detA.

The following lemma is a weaker form of a statement we will prove later in the lecture.

Lemma. Let A and B be n× n matrices with detA 6= 0. Then det(AB) = (detA)(detB).
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Proof. This property is not straightforward to show directly from the formula for det as a sum over
permutation matrices. Instead, we take the following approach.

Define f : { n× n matrices } → R to be the function f(M) = det(AM)
detA .

This definition makes sense because detA 6= 0.

Key claim: then the function f has the three defining properties of the determinant. Therefore f must
be equal to det since det is the unique function with these properties. In more detail:

• We have f(In) = det(AIn)
detA = detA

detA = 1.

• If M ′ is given by swapping two columns in M , then AM ′ is given by swapping the two corresponding

columns in AM , so f(M ′) = det(AM ′)
detA = − det(AM)

detA = −f(M).

• If column i of M is p times column i of M ′ plus q times column i of M ′′ and all other columns of
M , M ′, and M ′′ are equal, then the same is true of AM , AM ′, and AM ′′ so

f(M) =
det(AM)

detA
=
pdet(AM ′) + q det(AM ′′)

detA
= pf(M ′) + qf(M ′′).

These properties uniquely characterize det, so f and det must be the same function.

Therefore f(B) = det(AB)
detA = detB for any n× n matrix B, so det(AB) = (detA)(detB).

3 Determinants of triangular and invertible matrices

An n × n matrix A is upper-triangular if all of its nonzero entries occur in positions on or above the
diagonal positions (1, 1), (2, 2), (3, 3), . . . , (n, n). Such a matrix looks like

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗


where the ∗ entries can be any numbers. The zero matrix is considered to be upper-triangular.

An n × n matrix A is lower-triangular if all of its nonzero entries occur in positions on or below the
diagonal positions. Such a matrix looks like

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗


where the ∗ entries can again be any numbers. The zero matrix is also considered to be lower-triangular.

The transpose of an upper-triangular matrix is lower-triangular, and vice versa.

We say that a matrix is triangular if it is either upper- or lower-triangular.

A matrix is diagonal if it is both upper- and lower-triangular.

This happens precisely when all nonzero entries are on the diagonal:


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗


The diagonal entries of A are the numbers that occur in positions (1, 1), (2, 2), (3, 3), . . . , (n, n).

Proposition. If A is a triangular matrix then detA is the product of the diagonal entries of A.
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For example, we have det

 a 0 0
0 b 0
0 0 c

 = abc.

Proof. Assume A is upper-triangular.

If X ∈ Sn and X 6= In then at least one nonzero entry of X is in a position below the diagonal, in which
case prod(X,A) is a product of numbers which includes 0 (since all positions below the diagonal in A
contain zeros) and is therefore 0.

Hence detA =
∑

X∈Sn
prod(X,A)(−1)inv(X) = prod(In, A) = the product of the diagonal entries of A.

If A is lower-triangular then the same result follows since detA = det(A>).

Lemma. If A is an n× n matrix then detA is a nonzero multiple of det (RREF(A)).

Proof. Suppose B is obtained from A by an elementary row operation. To prove the lemma, it is enough
to show that detB is a nonzero multiple of detA. There are three possibilities for B:

1. If B is formed by swapping two rows of A then B = XA for a permutation matrix X ∈ Sn.

Therefore detB = det(XA) = (detX)(detA) = ±detA.

2. Suppose B is formed by rescaling a row of A by a nonzero scalar λ ∈ R.

Then B = DA where D is a diagonal matrix of the form

D =



1
. . .

1
λ

1
. . .

1


and in this case detD = λ 6= 0, so detB = det(DA) = (detD)(detA) = λ detA.

3. Suppose B is formed by adding a multiple of row i of A to row j.

Then B = TA for a triangular matrix T whose diagonal entries are all 1 and whose only other
nonzero entry appears in column i and row j.

For example, if n = 4 and B is formed by adding 5 times row 2 of A to row 3 then

B =


1 0 0 0
0 1 0 0
0 5 1 0
0 0 0 1

A.
We therefore have detB = det(TA) = (detT )(detA) = detA.

This shows that performing any elementary row operation to A multiplies detA by a nonzero number.
It follows that det(RREF(A)) is a sequence of nonzero numbers times detA.

This brings us to an important property of the determinant that is worth remembering.

Theorem. An n× n matrix A is an invertible if and only if detA 6= 0.
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Proof. We have already seen that if A is not invertible then detA = 0.

Assume A is invertible. Then RREF(A) = In, so det(RREF(A)) = det In = 1.

Hence detA 6= 0 since detA is a nonzero multiple of det(RREF(A)).

Our next goal is to show that the determinant is a multiplicative function.

Lemma. Let A and B be n× n matrices. If A or B is not invertible then AB is not invertible.

Proof. Let X and Y be n× n matrices.

We have seen that X and Y are inverses of each other if XY = In, in which case also Y X = In.

Suppose AB is invertible with inverse X. Then (AB)X = X(AB) = In.

Then A is invertible with A−1 = BX since A(BX) = (AB)X = In.

Likewise, B is invertible with B−1 = XA since (XA)B = X(AB) = In.

Thus, if A or B is not invertible then AB cannot be invertible.

Theorem. If A and B are any n× n matrices then det(AB) = (detA)(detB).

Proof. We already proved this in the case when detA 6= 0.

If detA = 0, then A is not invertible, so AB is not invertible either, so det(AB) = 0 = (detA)(detB).

It is difficult to derive this theorem directly from the formula detA =
∑

X∈Sn
prod(X,A)(−1)inv(X).

Example. We have det

[
1 2
3 4

]
= 4− 6 = −2 and det

[
2 3
4 5

]
= 10− 12 = −2.

On the other hand, det

([
1 2
3 4

] [
2 3
4 5

])
= det

[
10 13
22 29

]
= 290− 286 = 4.

4 Computing determinants

Our proof that detA is a nonzero multiple of det(RREF(A)) can be turned into an effective algorithm.

Algorithm to compute detA (useful when A is larger than 3× 3).

Input: an n× n matrix A.

1. Start by setting a scalar denom = 1.

2. Row reduce A to an echelon form E. It is not necessary to bring A all the way to reduced echelon
form. We just need to row reduce A until we get an upper triangular matrix.

Each time you perform a row operation in this process, modify denom as follows:

(a) When you switch two rows, multiply denom by −1.

(b) When you multiply a row by a nonzero scalar λ, multiply denom by λ.

(c) When you add a multiple of a row to another row, don’t do anything to denom.

The determinant detE is the product of the diagonal entries of E.

The determinant of A is given by detA =
detE

denom
.
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Example. We reduce the following matrix to echelon form:

A =

 1 3 5
0 −3 −9
2 4 6

 denom = 1

∼

 1 3 5
0 −3 −9
0 −2 −4

 (we added a multiple of row 1 to row 3) denom = 1

∼

 1 3 5
0 1 3
0 −2 −4

 (we multiplied row 2 by −1/3) denom = −1/3

∼

 1 3 5
0 1 3
0 0 2

 = E (we added a multiple of row 2 to row 3) denom = −1/3

Therefore detA =
detE

denom
=

1 · 1 · 2
−1/3

= −6.

Another algorithm to compute detA (useful when A has many entries equal to zero).

Define A(i,j) to be the submatrix formed by removing row i and column j from A.

For example, if A =

 a b c
d e f
g h i

 then A(1,2) =

[
d f
g i

]
.

Theorem. If A is the n× n matrix with entry aij row i and column j, then

(1) detA = a11 detA(1,1) − a12 detA(1,2) + a13 detA(1,3) − · · · − (−1)na1n detA(1,n) .

(2) detA = a11 detA(1,1) − a21 detA(2,1) + a31 detA(3,1) − · · · − (−1)nan1 detA(n,1).

Note that each A(1,j) or A(j,1) is a square matrix smaller than A.

Thus detA(1,j) or detA(j,1) can be computed by the same formula on a smaller scale.

Proof. The second formula follows from the first formula since detA = det(A>). (Why?)

The first formula is a consequence of the formula for detA we derived last lecture. One needs to show

−(−1)ja1j detA(1,j) =
∑

X∈S(j)
n

prod(X,A)(−1)inv(X)

where S
(j)
n is the set of n× n permutation matrices which have a 1 in column j of the first row.

Summing the left expression over j = 1, 2, . . . , n gives the desired formula.

Summing the right expression over j = 1, 2, . . . , n gives
∑

X∈Sn
prod(X,A)(−1)inv(X) = detA.

Example. This result can be used to derive our formula for the determinant of a 3-by-3 matrix:

det

 a b c
d e f
g h i

 = a det

[
e f
h i

]
−bdet

[
d f
g i

]
+cdet

[
d e
g h

]
= a(ei−fh)−b(di−fg)+c(dh−eg).
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5 Vocabulary

Keywords from today’s lecture:

1. Upper-triangular matrix.

A square matrix of the form


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 with zeros in all positions below the main diagonal.

2. Lower-triangular matrix.

A square matrix of the form


∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗

 with zeros in all positions above the main diagonal.

The transpose of an upper-triangular matrix.

3. Triangular matrix.

A matrix that is either upper-triangular or lower-triangular.

4. Diagonal matrix.

A square matrix of the form


∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗

 with zeros in all non-diagonal positions.

A matrix that is both upper-triangular and lower-triangular.
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