
MATH 2121 — Linear algebra (Fall 2024) Lecture 13

This document is an exact transcript of the lecture, with extra summary and vocabulary sections for
your convenience. Due to time constraints, the lectures sometimes only contain limited illustrations,
proofs, and examples. For a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

• The determinant has a geometric interpretation in terms of volume. This is the reason why deter-
minants appear when you do substitutions in multivariable integrals.

The columns of a 2× 2 matrix A are the sides of a unique parallelogram in R2.

The absolute value of detA is the area of this parallelogram.

This fact generalizes to n dimensions if we replace “parallelogram” by its n-dimensional analogue.

• We introduce the concept of a vector space to generalize the idea of a subspace of Rn.

Formally, an (abstract) vector space is a nonempty set with a “zero vector” and two operations that
can be thought of a “vector addition” and “scalar multiplication.”

These operations are subject to several conditions.

All subspaces of Rn, including Rn itself, are examples of vector spaces.

The set of polynomials in one variable is another example of a vector space.

• There are notions of linear combinations, span, linear independence, subspaces, bases, and dimen-
sion for vector spaces. The definitions are the same as the ones we already used for Rn.

• If X and Y are sets, then let Functions(X,Y ) be the set of functions f : X → Y .

The sets Functions(X,R) and Functions(X,Rn) are vector spaces.

More generally, if V is a vector space, then Functions(X,V ) is a vector space.

The corresponding vector operations and zero vector are

f + g = ( the function with the formula x 7→ f(x) + g(x) for x ∈ X ),

cf = ( the function with the formula x 7→ c · f(x) for x ∈ X ),

0 = ( the function with the formula x 7→ 0 ∈ V for x ∈ X ),

for f, g ∈ Functions(X,V ) and c ∈ R.

Many abstract vector spaces arise as subspaces of Functions(X,V ) for some V .

• If U and V are vector spaces then a function f : U → V is linear if

f(u+ v) = f(u) + f(v) and f(cv) = c · f(v)

for all u, v ∈ U and c ∈ R.
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1 Last time: determinants

Let n be a positive integer.

Theorem. The determinant is the unique function det : { n× n matrices } → R such that

(1) det In = 1 where In =

 1
. . .

1

 is the n× n identity matrix.

(2) Switching two columns reverses the sign of the determinant.

(3) detA is linear as a function of a single column A if all other columns are fixed.

For 1× 1 and 2× 2 matrices, we have det
[
a
]

= a and det

[
a b
c d

]
= ad− bc.

The diagonal (positions) of an n× n matrix are the positions (1, 1), (2, 2), . . . , (n, n).

The diagonal entries of a matrix are the entries in these positions.

A matrix is upper triangular if all of its nonzero entries are in positions on or above the diagonal.

A matrix is lower triangular if all of its nonzero entries are in positions on or below the diagonal.

A triangular matrix is a square matrix that is either upper or lower triangular.

A diagonal matrix is a matrix that is both upper and lower triangular: in other words, all of its nonzero
entries appear in diagonal positions.

Theorem. If A is triangular square matrix then detA is the product of the diagonal entries of A.

Theorem. A square matrix A is invertible if and only if detA 6= 0.

Theorem. If A and B are n× n matrices then det(AB) = (detA)(detB) and det(AT ) = detA.

Algorithm to compute detA.

Input: an n× n matrix A.

1. Start by setting denom = 1.

2. Row reduce A to an echelon form E, while doing the following:

(a) When you switch two rows, multiply denom by −1.

(b) When you rescale a row by a nonzero factor λ, multiply denom by λ.

(c) When you add a multiple of a row to another row, don’t do anything to denom.

Then detA = detE
denom = the product of the diagonal entries of E

denom .

Here is one more way to compute detA, which can be useful if there are many zero entries:

Theorem. Consider the matrix A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a2n
...

...
...

. . .
...

an1 an2 an3 . . . ann

 .

Define A(i,j) as the submatrix formed by deleting row i and column j. Then
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detA = a11 detA(1,1) − a12 detA(1,2) + a13 detA(1,3) − · · · − (−1)na1n detA(1,n)

Each A(1,j) is a square matrix smaller than A, so detA(1,j) can be computed by the same formula.

Example. det

 a b c
d e f
g h i

 = a(ei− fh)− b(di− fg) + c(dh− eg).

This recursive formula for detA can be useful if A has many entries that are zero.

Example. If A =


1 0 2 0
0 3 4 5
1 6 0 0
0 1 1 1

 then detA = det

 3 4 5
6 0 0
1 1 1

− 0 + 2 det

 0 3 5
1 6 0
0 1 1

− 0 and

det

 3 4 5
6 0 0
1 1 1

 = −det

 6 0 0
3 4 5
1 1 1

 = −6(4− 5) = 6

since swapping two rows multiplies the determinant by −1. Similarly, we have

det

 0 3 5
1 6 0
0 1 1

 = det

 0 1 0
3 6 1
5 0 1

 = −det

[
3 1
5 1

]
= −(3− 5) = 2

since transposes don’t change the determinant. Therefore detA = 6 + 2 · 2 = 10.

2 Interpreting the determinant geometrically

The last thing we’ll mention about determinants is this physical interpretation of their values:

Proposition. If A is an n× n matrix then |detA| is the volume of the n-dimensional parallelogram

P (A) = {Av : v ∈ Rn with 0 ≤ vi ≤ 1 for all i = 1, 2, . . . , n} .

Proof idea for n = 2 case. Assume n = 2 and A =
[
u v

]
for some vectors u, v ∈ R2.

Make things simple by putting u and v both in the first quadrant. Draw a picture of the parallelogram
P (A) inside the rectangle R whose diagonal is u + v and whose sides are on the x- and y-axes. Then
compute the area of P (A) by subtracting the areas of an appropriate number of rectangular and triangular

regions from R. One finds that this area is ad− bc if u =

[
a
c

]
and v =

[
b
d

]
.

Corollary. Suppose T : Rn → Rn is a linear transformation with standard matrix A. If S is any region
in Rn with finite volume then the volume of T (S) is the volume of S times |detA|.

Proof idea. If T is not invertible that T (S) has zero volume (why?) while detA = 0, so the result holds.

Assume T is invertible. Given a vector u ∈ Rn and a scalar c > 0, let u+ cS = {u+ cv : v ∈ S}.

Define Q = {v ∈ Rn : 0 ≤ vi ≤ 1 for all i}. Then P (A) = T (Q), so T (u+ cQ) = Au+ cP (A).

The volume of u+ cQ is cn and the volume of T (u+ cQ) is cn|detA|.

It follows that if R ⊆ S is any disjoint union of translated rescaled cubes of the form u+ cQ, then

vol(R)|detA| = vol(T (R)) ≤ vol(T (S)).
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Since this holds for all of the estimated volumes vol(R), it follows that vol(S)|detA| ≤ vol(T (S)).

The same argument with S replaced by T (S) and T replaced by T−1 shows vol(T (S))|detA−1| ≤ vol(S).

Since |detA−1| = 1/|detA|, it follows that vol(S)|detA| ≥ vol(T (S)) so vol(S)|detA| = vol(T (S)).

3 Vector spaces

This course focuses on Rn and its subspaces.

These objects are examples of (real) vector spaces.

There is also a notion of a complex vector space where our scalars can be complex numbers from C rather
than just R. Essentially all of the theory is the same, so for now we stick to real vector spaces which are
more closely aligned with applications.

The general definition of a vector space is given as follows:

Definition. A vector space is a nonempty set V with two operations called vector addition and scalar
multiplication satisfying several conditions. We refer to the elements of V as vectors.

The vector addition operation for V must be a rule that takes two input vectors u, v ∈ V and produces
an output vector u+ v ∈ V such that

(a) u+ v = v + u.

(b) (u+ v) + w = u+ (v + w).

(c) There exists a unique zero vector 0 ∈ V with the property that 0 + v = v for all v ∈ V .

The scalar multiplication operation for V must be a rule that takes a scalar input c ∈ R and an input
vector v ∈ V and produces an output vector cv ∈ V such that

(a) If c = −1 then v + (−1)v = 0.

(b) c(u+ v) = cu+ cv.

(c) (c+ d)v = cv + dv for c, d ∈ R.

(d) c(dv) = (cd)v for c, d ∈ R.

(e) If c = 1 then 1v = v.

Notation: If V is a vector space and v ∈ V then we define −v = (−1)v and u− v = u+ (−v).

Example. Rn and any subspace of Rn are vector spaces, with the usual operations of vector addition
and scalar multiplication.

Example. The set Rm×n of m× n matrices is a vector space. Its zero vector is the zero m× n matrix.

Example. The set of linear functions f : Rn → Rm is a vector space. Its zero vector is the function f
with the formula f(x) = 0 for all x ∈ Rn.

Example. The set of positive real numbers R+ = {x ∈ R : x > 0} is a vector space, but not for the
usual addition and multiplication operations. Instead, define a new version of addition ⊕ by x⊕ y = xy
for x, y ∈ R+ and new version of scalar multiplication � by c� x = xc for c ∈ R and x ∈ R+. The zero
vector for this vector space (R+,⊕,�) is the number 1. We also have 	x = 1/x and x	 y = x/y.

It is rarely necessary to check the axioms of a vector space in detail, and there is not much need to
memorize the abstract definition. If we have a set with operations that look like vector addition and
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scalar multiplication for Rn, then we usually have a vector space. Moreover, it’s typically easy to identify
every vector space we encounter as a special case of a few general constructions like the following:

Example. Let X be any set. Define Functions(X,R) to be the set of functions f : X → R.

Given f, g ∈ Functions(X,R) define f + g to be the function with the formula

(f + g)(x) = f(x) + g(x) for x ∈ X.

Given c ∈ R and f ∈ Functions(X,R), define cf to be the function with the formula

(cf)(x) = cf(x) for x ∈ X.

The set Functions(X,R) is a vector space relative to these operations.

The corresponding zero vector in Functions(X,R) is the function with the formula f(x) = 0 for all x ∈ X.

In a sense which can be made precise, the vector space Rn “is the same as” Functions({1, 2, 3, . . . , n},R).

More generally, if V is any vector space then the set of functions Functions(X,V ) = {f : X → V } is a
vector space for similar definitions of vector addition and scalar multiplication.

As an example of how one can use the axioms to prove properties of a general vector space, consider the
following identities which are obvious for subspaces of Rn.

Proposition. If V is a vector space then 0v = 0 and c0 = 0 for all c ∈ R and v ∈ V .

Proof. We have 0v = (0 + 0)v = 0v+ 0v so 0 = 0v− 0v = (0v+ 0v)− 0v = 0v+ (0v− 0v) = 0v+ 0 = 0v.

Similarly, c0 = c(0 + 0) = c0 + c0 so 0 = c0− c0 = (c0 + c0)− c0 = c0 + (c0− c0) = c0 + 0 = c0.

We will not focus very much in this course on the art of coming up with these sorts of algebraic derivations.
Mostly, we can just rely on our intuition from subspaces of Rn when working with more general spaces.

4 Subspaces, bases, and dimension

Notions of subspaces, bases, and dimension for vector spaces are essentially the same as for Rn.

Definition. A subspace of a vector space V is a subset H containing the zero vector of V , such that if
u, v ∈ H and c ∈ R then u+ v ∈ H and cv ∈ H.

If H ⊂ V is a subspace then H is itself a vector space with the same operations of scalar multiplication
and vector addition.

Example. V is a subspace of itself and {0} ⊂ V is a subspace.

Example. R2 is technically not a subspace of R3 since R2 is not a subset of R3.

If you want a subspace of R3 that “looks like” R2, three candidates are
 x
y
0

 : x, y ∈ R

 ,


 x

0
y

 : x, y ∈ R

 , and


 0
x
y

 : x, y ∈ R

 .

Is there anything intrinsic that makes one of these subspaces more natural than the rest?

Example. Let X be any set. Let Y ⊂ X be a subset. Define H as the subset of Functions(X,R) consists
of the functions f : X → R with f(y) = 0 for all y ∈ Y . Then H is a subspace.
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Example. The set of all functions Functions(Rn,Rm) is a vector space since Rm is a vector space. The
subset of linear functions f : Rn → Rm is a subspace of this vector space.

Let V be a vector space.

Definition. A linear combination of a finite list of vectors v1, v2, . . . , vk ∈ V is a vector of the form

c1v1 + c2v2 + · · ·+ ckvk

for some scalars c1, c2, . . . , ck ∈ R. A linear combination of an infinite set of vectors is a linear combination
of some finite subset. A linear combination by definition only involves finitely many vectors.

Definition. The span of a set of vectors is the set of all linear combinations that can be formed from
the vectors. It is important to note that each such linear combination can only involve finitely many
vectors. The span of a set of vectors in V is a subspace of V .

Example. Let V = Functions(R,R). The span of the infinite set of functions 1, x, x2, x3, · · · ∈ V is the
subspace of polynomial functions. Each polynomial function is a linear combination of a finite number of
monomials cnx

n + cn−1x
n−1 + · · ·+ c1x+ c0. An infinite sum like 1 + x+ x2 + . . . is not a polynomial.

Definition. A finite list of vectors v1, v2, . . . , vk ∈ V is linearly independent if it is impossible to express
0 = c1v1 + c2v2 + · · ·+ ckvk for some c1, c2, . . . , ck ∈ R except when c1 = c2 = · · · = ck = 0. An infinite
list of vectors is linearly independent if every finite subset is linearly independent.

Definition. A basis of a vector space V is a subset of linearly independent vectors whose span is V .
Saying that b1, b2, b3, . . . is a basis for V is the same thing as saying that each v ∈ V can be expressed as
a uniquely linear combination of basis elements.

Theorem. Let V be a vector space.

1. V has at least one basis.

2. Every basis of V has the same size.

3. If A is a subset of linearly independent vectors in V then V has a basis B with A ⊂ B.

4. If C is a subset of vectors in V whose span is V then V has a basis B with B ⊂ C.

When V has a basis that is finite in size, the proof of the previous theorem is the same as for the case
when V is a subspace Rn (which was shown in earlier lectures). When V has no finite basis, the properties
in the theorem still hold, but their proofs require some ideas beyond the scope of this course.

Definition. As for subspaces of Rn, we define the dimension of a vector space V to be the common
number of elements in any of its bases. Denote the dimension of V by dimV .

Corollary. If H ⊂ V is a subspace then dimH ≤ dimV .

Moreover, if H ⊂ V is a subspace with dimH = dimV then H = V .

Proof. This follows from the last two parts of the previous theorem.

Example. If X is a finite set then dimFunctions(X,R) = |X| where |X| is the size of X. A basis is given
by the functions δy : X → R for y ∈ X, defined by the formulas

δy(x) =

{
1 if x = y

0 if x 6= y
for x ∈ X.
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Suppose U and V are vector spaces.

Definition. A function f : U → V is linear if

f(u+ v) = f(u) + f(v) and f(cv) = cf(v) for all c ∈ R and u, v ∈ U .

Define range(f) = {f(x) : x ∈ U} and kernel(f) = {x ∈ U : f(x) = 0}.

Proposition. If f : U → V is linear then range(f) and kernel(f) are subspaces.

These subspaces are generalizations of the column space and null space of a matrix.

Proposition. If U, V,W are vector spaces and f : V → W and g : U → V are linear functions then
f ◦ g : U → V →W is linear, where f ◦ g(x) = f(g(x)).

Check this yourself!
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5 Vocabulary

Keywords from today’s lecture:

1. Vector spaces.

A vector space is a nonempty set V with two operations called vector addition and scalar mul-
tiplication that formally resemble the operations of vector addition and scalar multiplication for
elements of Rn. The precise definition involves a long list of axioms governing these operations, but
in practice it’s rarely necessary to remember the axioms.

Example: Any subspace of Rn.

Example: Given a set X, the set Functions(X,R) of functions f : X → R, provided we define f + g
as the function with the formula

(f + g)(x) = f(x) + g(x) for x ∈ X

and define cf as the function with the formula

(cf)(x) = cf(x) for x ∈ X

whenever f, g : X → R and c ∈ R.

2. Subspace of a vector space.

A nonempty subset closed under linear combinations.

3. Linearly combination and span of elements in a vector space.

A linear combination of a finite set of vectors v1, v2, . . . vp ∈ V is a vector of the form

c1v1 + c2v2 + · · ·+ cpvp

where c1, c2, . . . , cp ∈ R. A linear combination of an infinite set of vectors is a linear combination of
some finite subset. The set of all linear combinations of a set of vectors is the span of the vectors.

4. Linearly independent elements in a vector space.

A list of elements in a vector space is linearly dependent if one vector can be expressed as a
linear combination of a finite subset of the other vectors. If this is impossible, then the vectors are
linearly independent.

Example: cos(x) and sin(x) are linearly independently in Functions(R,R).

Example: the infinite list of functions 1, x, x2, x3, x4, . . . are linearly independent in Functions(R,R).

5. Basis and dimension of a vector space.

A set of linearly independent elements whose span is the entire vector space.

Every basis in a vector space has the same number of elements. This number is defined to be the
dimension of the vector space.

6. Linear functions.

If U and V are vector spaces, then a function f : U → V is linear when

f(u+ v) = f(u) + f(v) and f(cv) = cf(v)

for all u, v ∈ U and c ∈ R.
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