
MATH 2121 — Linear algebra (Fall 2024) Lecture 15

This document is an exact transcript of the lecture, with extra summary and vocabulary sections for
your convenience. Due to time constraints, the lectures sometimes only contain limited illustrations,
proofs, and examples. For a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

• Let A be an n× n matrix. Let I = In be the n× n identity matrix.

Let λ be a number and suppose 0 6= v ∈ Rn.

If Av = λv then we say that v is an eigenvector for A and that λ is an eigenvalue for A.

More specifically, v is an eigenvector with eigenvalue λ for A.

• The eigenvalues of A are the solutions to the characteristic equation det(A− xI) = 0.

If λ is any number then Nul(A− λI) is the λ-eigenspace of A.

If λ is not an eigenvalue for A then the λ-eigenspace is the zero subspace {0}.

If λ is an eigenvalue for A then the λ-eigenspace is a nonzero subspace.

To find a basis for the λ-eigenspace, use our familiar algorithm for finding bases of null spaces.

• Suppose v1, v2, . . . , vr are eigenvectors for A.

Let λi be the eigenvalue such that Avi = λivi.

If λ1, λ2, . . . , λr are all distinct, then v1, v2, . . . , vr are linearly independent.

• If A and B are n× n matrices and there exists an invertible n× n matrix P with

A = PBP−1

then we say that A is similar to B and that B is similar to A.

Any matrix is similar to itself, and if A is similar to B and B is similar to C then A is similar to C.

• Similar matrices have the same characteristic equations and same eigenvalues.

• A is diagonalizable if A is similar to a diagonal matrix D.

One useful property of diagonalizable matrices: if A = PDP−1 where D is diagonal, then there are
simple formulas for each entry in the matrix An = PDnP−1 for all positive integers n.
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MATH 2121 — Linear algebra (Fall 2024) Lecture 15

1 Eigenvector and eigenvalues

Everywhere is this lecture, n is a positive integer and A is an n× n matrix.

Let I denote the n× n identity matrix. Let λ be a number.

Definition. A vector v ∈ Rn is an eigenvector for A with eigenvalue λ if v 6= 0 and Av = λv.

The set of v ∈ Rn with Av = λv is the λ-eigenspace of A for λ. This is equal to the nullspace of A− λI.

Proposition. Let λ be a number. The following are equivalent:

1. There exists an eigenvector v ∈ Rn for A with eigenvalue λ.

(Remember that eigenvectors must be nonzero.)

2. The matrix A− λI is not invertible.

3. det(A− λI) = 0.

4. The λ-eigenspace for A contains a nonzero vector.

As usual, a matrix is triangular if it is upper-triangular or lower-triangular.

The characteristic polynomial of a square matrix A is det(A− xI).

Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries. If these numbers
are d1, d2, . . . , dn then the characteristic polynomial of A is (d1 − x)(d2 − x) · · · (dn − x).

The following is true for all square matrices, not just triangular ones.

Theorem. Suppose λ1, λ2, . . . , λr are distinct eigenvalues for A, meaning λi 6= λj for i 6= j.

Let v1, v2, . . . , vr ∈ Rn be the corresponding eigenvectors, so that Avi = λivi for i = 1, 2, . . . , r.

Then the vectors v1, v2, . . . vr are linearly independent.

Proof. Suppose v1, v2, . . . , vr are linearly dependent. We argue that this leads to a logical contradiction.

There must exist an index p > 0 such that v1, v2, . . . , vp are linearly independent and vp+1 is a linear
combination of v1, v2, . . . , vp. (Otherwise, the vectors v1, v2, . . . , vr would be linearly independent.)

Let c1, c2, . . . , cp ∈ R be scalars such that vp+1 = c1v1 + c2v2 + · · ·+ cpvp. Then

λp+1vp+1 = Avp+1 = A(c1v1 + · · ·+ cpvp) = c1Av1 + · · ·+ cpAvp = c1λ1v1 + c2λ2v2 + · · ·+ cpλpvp.

On the other hand, multiplying both sides of vp+1 = c1v1 + c2v2 + · · ·+ cpvp by λp+1 gives

λp+1vp+1 = c1λp+1v1 + c2λp+1v2 + · · ·+ cpλp+1vp.

By subtracting the two equations, we get

0 = λp+1vp+1 − λp+1vp+1 = c1(λ1 − λp+1)v1 + c2(λ2 − λp+1)v2 + · · ·+ cp(λp − λp+1)vp.

Since the vectors v1, v2, . . . , vp are linearly independent by assumption, we must have

c1(λ1 − λp+1) = c2(λ2 − λp+1) = · · · = cp(λp − λp+1) = 0.

But the differences λi − λp+1 for i = 1, 2, . . . , p are all nonzero, so we must have c1 = c2 = · · · = cp = 0.
This implies that vp+1 = 0, contradicting our assumption that vp+1 is a (necessarily nonzero) eigenvector.

We conclude from this contradiction that actually the vectors v1, v2, . . . , vr are linearly independent.
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Let x be a variable. The eigenvalues of A are precisely the solutions to the equation det(A − xI) = 0
which we call the characteristic equation for A.

Example. The matrix

A =


5 −2 6 −1
0 3 −8 0
0 0 5 4
0 0 0 1


has characteristic polynomial det(A− xI) = (5− x)(3− x)(5− x)(1− x) = (5− x)2(3− x)(1− x).

Since (5−x)2 divides det(A−xI) but (5−x)3 does not divide det(A−xI), we say that 5 is an eigenvalue
of A with algebraic multiplicity 2. The other eigenvalues 1 and 3 have algebraic multiplicity 1.

In general the algebraic multiplicity of an eigenvalue λ for a square matrix A is the unique integer m ≥ 1
such that (λ− x)m divides det(A− xI) but (λ− x)m+1 does not divide det(A− xI).

We consider the following example in more depth.

Example. Consider the matrix

A =

 1 5 4
0 2 0
0 0 3

 .
Since A is triangular, its characteristic polynomial is (1− x)(2− x)(3− x) and its eigenvalues are 1, 2, 3.

Each eigenvalue in this example has algebraic multiplicity 1. We compute the corresponding eigenspaces:

1-eigenspace. The eigenvectors of A with eigenvalue 1 are the nonzero elements of Nul(A− I).

A− I =

 0 5 4
1 0

2

 ∼
 0 1 0

5 4
2

 ∼
 0 1 0

0 4
2

 ∼
 0 1 0

0 1
0

 = RREF(A− I).

This shows that x ∈ Nul(A − I) if and only if x =

 x1
x2
x3

 =

 x1
0
0

 = x1

 1
0
0

, so

 1
0
0

 is a basis

for Nul(A− I). Therefore all eigenvectors of A with eigenvalue 1 are nonzero scalar multiples of

 1
0
0

.

2-eigenspace. The eigenvectors of A with eigenvalue 2 are the nonzero elements of Nul(A− 2I).

A− 2I =

 −1 5 4
0 0

1

 ∼
 1 −5 0

0 1
0

 = RREF(A− 2I).

This shows that x ∈ Nul(A− 2I) if and only if x =

 x1
x2
x3

 =

 5x2
x2
0

 = x2

 5
1
0

, so

 5
1
0

 is a basis

for Nul(A− 2I). All eigenvectors of A with eigenvalue 2 are nonzero scalar multiples of

 5
1
0

.
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3-eigenspace. The eigenvectors of A with eigenvalue 3 are the nonzero elements of Nul(A− 3I).

A− 3I =

 −2 5 4
−1 0

0 0 0

 ∼
 −2 0 4

1 0
0

 ∼
 1 0 −2

1 0
0

 = RREF(A− 3I).

This shows that x ∈ Nul(A− 3I) if and only if x =

 x1
x2
x3

 =

 2x3
0
x3

 = x3

 2
0
1

 so

 2
0
1

 is a basis

for Nul(A− 3I). All eigenvectors of A with eigenvalue 3 are nonzero scalar multiples of

 2
0
1

.

Since the eigenvalues 1, 2, 3, are distinct, the eigenvectors

 1
0
0

,

 5
1
0

,

 2
0
1

 are linearly independent.

Consider the invertible matrix whose columns are given by these linearly independent vectors:

P =

 1 5 2
0 1 0
0 0 1

 .

As usual, let e1 =

 1
0
0

, e2 =

 0
1
0

, and e3 =

 0
0
1

 . The product Pei is the ith column of P , so

Pe1 =

 1
0
0

 and Pe2 =

 5
1
0

 and Pe3 =

 2
0
1

 .
Since Px = y means that P−1y = P−1Px = Ix = x, it follows that

P−1

 1
0
0

 = e1 and P−1

 5
1
0

 = e2 and P−1

 2
0
1

 = e3.

Combining these identities shows that

P−1APe1 = P−1A

 1
0
0

 = P−1

 1
0
0

 = e1.

P−1APe2 = P−1A

 5
1
0

 = 2P−1

 5
1
0

 = 2e2.

P−1APe3 = P−1A

 2
0
1

 = 3P−1

 2
0
1

 = 3e3.

These calculations determine the columns of the matrix P−1AP .

If fact, we see that P−1AP = D where D =
[
e1 2e2 3e3

]
=

 1 0 0
0 2 0
0 0 3

 .
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This means that A = P (P−1AP )P−1 = PDP−1, so 1 5 4
0 2 0
0 0 3

 =

 1 5 2
0 1 0
0 0 1

 1 0 0
0 2 0
0 0 3

 1 5 2
0 1 0
0 0 1

−1 .
One application of this decomposition: we can derive a simple formula for an arbitrary power An of A.

Define A0 = I, A1 = A, A2 = AA, A3 = AAA, and so on.

Lemma. For any integer n ≥ 0 we have An = (PDP−1)n = PDnP−1.

Proof. Do some small examples and convince yourself that the pattern continues:

A2 = AA = PDP−1PDP−1 = PDIDP−1 = PD2P−1

A3 = A2A = PD2P−1PDP−1 = PD2IDP−1 = PD3P−1

A4 = A3A = PD3P−1PDP−1 = PD3IDP−1 = PD4P−1

...

and so on.

Lemma. For any integer n ≥ 0 we have

Dn =

 1n 0 0
0 2n 0
0 0 3n

 =

 1 0 0
0 2n 0
0 0 3n

 .
Proof. To multiply diagonal matrices we just multiply the entries in the corresponding diagonal positions:

x1
x2

. . .

xk



y1

y2
. . .

yk

 =


x1y1

x2y2
. . .

xkyk

 .
Therefore to evaluate Dn = DD · · ·D, we just raise each diagonal entry to the nth power.

Finally, by the usual algorithm we can compute P−1 =

 1 −5 −2
0 1 0
0 0 1

.

(Check that this is the correct inverse of P !)

Putting everything together gives the identity

An = PDnP−1 =

 1 5 2
0 1 0
0 0 1

 1 0 0
0 2n 0
0 0 3n

 1 −5 −2
0 1 0
0 0 1


=

 1 5 · 2n 2 · 3n
0 2n 0
0 0 3n

 1 −5 −2
0 1 0
0 0 1

 =

 1 5(2n − 1) 2(3n − 1)
0 2n 0
0 0 3n

 .
Remark. We’ve done all these calculations in detail as a means of illustrating some key concepts. But
these calculations would also come up in the solution of the following discrete dynamical system. Suppose
a0, a1, a2, . . . , b0, b1, b2, . . . , and c0, c1, c2, . . . are sequences of numbers.

4



MATH 2121 — Linear algebra (Fall 2024) Lecture 15

For each integer n ≥ 1, suppose

an = an−1 + 5bn−1 + 4cn−1 and bn = 2bn−1 and cn = 3cn−1. (*)

How could we find a formula for an, bn, and cn in terms of n and the sequences’ initial values a0, b0, c0?

The system of formulas (*) is equivalent to an
bn
cn

 =

 1 5 4
0 2 0
0 0 3

 an−1
bn−1
cn−1

 = A

 an−1
bn−1
cn−1

 = A2

 an−2
bn−2
cn−2

 = · · · = An

 a0
b0
c0

 .
Thus, our formula for An gives

an = a0 + 5(2n − 1)b0 + 2(3n − 1)c0 and bn = 2nb0 and cn = 3nc0.

If a0 = b0 = c0 = 1 then a10 = 123212 and b10 = 1024 and c10 = 59049. Moreover,

lim
n→∞

an
3n

= lim
n→∞

a0 + 5(2n − 1)b0 + 2(3n − 1)c0
3n

= 2c0.

So being able to compute the matrix decomposition A = PDP−1 lets us determine the asymptotic growth
rate of the quantities in our discrete dynamical system as n→∞.

2 Similar matrices

When do square matrices have the same eigenvalues? Here is one condition that guarantees this to occur:

Definition. Two n× n matrices X and Y are similar if there exists an invertible n× n matrix P with

X = PY P−1.

In this case it also holds that Y = P−1PY P−1P = P−1XP .

If X and Y are similar, then we say that “X is similar to Y ” and “Y is similar to X.”

In the previous example we showed that A =

 1 5 4
0 2 0
0 0 3

 and D =

 1 0 0
0 2 0
0 0 3

 are similar matrices.

There is a special name for this kind of similarity:

Definition. A square matrix X is diagonalizable if X is similar to a diagonal matrix

Proposition. An n× n matrix A is always similar to itself.

(This means that similarity is a reflexive relation on square matrices.)

Proof. Since I = I−1 we have A = PAP−1 for P = I.

Proposition. Suppose A,B,C are n× n matrices.

Assume A and B are similar. Assume B and C are also similar. Then A and C are similar.

(This means that similarity is a transitive relation on square matrices.)

Proof. If A = PBP−1 and B = QCQ−1 then R = PQ is invertible and A = RCR−1.
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Theorem. If A and B are similar n×n matrices then A and B have the same characteristic polynomial
and so they have the same eigenvalues.

(Similar matrices usually have different eigenvectors, however.)

Proof. Recall that det(XY ) = det(X) det(Y ). Assume A = PBP−1. Then

A− xI = P (B − xI)P−1 and det(A− xI) = det(P (B − xI)P−1) = det(P ) det(B − xI) det(P−1).

But det(P ) det(P−1) = det(PP−1) = det(I) = 1, so det(A− xI) = det(B − xI).
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3 Vocabulary

Keywords from today’s lecture:

1. Characteristic equation of a square matrix A.

The equation det(A− xI) = 0, where I is the identity matrix with the same size as A.

The solutions x for this equation give all eigenvalues of A.

Example: If A =

 0 2 0
2 0 0
0 0 2

 then

det(A− xI) = det

 −x 2 0
2 −x 0
0 0 2− x

 = (2− x)(x2 − 4) = (2− x)2(−2− x) = 0

has solutions x = 2 and x = −2. These solutions are the eigenvalues for A.

2. Algebraic multiplicity of an eigenvalue λ of square matrix A.

The number of times the factor (λ− x) divides the characteristic polynomial det(A− xI).

If A =

 0 2 0
2 0 0
0 0 2

 then 2 has algebraic multiplicity 2 and −2 has algebraic multiplicity 1.

3. Similar matrices.

Two n× n matrices A and B are similar if there exists an invertible n× n matrix M with

A = MBM−1.

If A and B are similar and B and C are similar, then A and C are similar.

Example:

 1 0 0
0 2 0
0 0 3

 is similar to

 3 0 0
0 2 0
0 0 1

 =

 0 0 1
0 1 0
1 0 0

 1 0 0
0 2 0
0 0 3

 0 0 1
0 1 0
1 0 0

−1.

4. Diagonalizable matrix.

A matrix that is similar to a diagonal matrix.
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