
MATH 2121 — Linear algebra (Fall 2024) Lecture 16

This document is an exact transcript of the lecture, with extra summary and vocabulary sections for
your convenience. Due to time constraints, the lectures sometimes only contain limited illustrations,
proofs, and examples. For a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

• Let A be an n× n matrix. Let I = In be the n× n identity matrix.

Let λ be a number and suppose 0 6= v ∈ Rn.

If Av = λv then we say that v is an eigenvector for A and that λ is an eigenvalue for A.

• A is diagonalizable if A = PDP−1 for some invertible matrix P and diagonal matrix D.

An n× n matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

An n× n matrix with n distinct eigenvalues is always diagonalizable.

• The Fibonacci numbers are defined by f0 = 0, f1 = 1, and fn = fn−2 + fn−1 for n ≥ 2.

The ability to diagonalize a matrix lets us derive the exact formula

fn =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
≈ 0.447 (1.618n − (−0.618)n) ≈ 0.447 · 1.618n.

• Suppose an n× n matrix A has p ≤ n distinct eigenvalues λ1, λ2, . . . , λp.

Then A is diagonalizable if and only if

dim Nul(A− λ1I) + dim Nul(A− λ2I) + · · ·+ dim Nul(A− λpI) = n.

Assume this holds. Suppose Bi is a basis for Nul(A− λiI).

Then the union B1 ∪ B2 ∪ · · · ∪ Bp is a set of n linearly independent eigenvectors for A.

If the elements of this union are the vectors v1, v2, . . . , vn then the matrix

P =
[
v1 v2 . . . vn

]
is invertible and the matrix D = P−1AP is diagonal, and A = PDP−1.
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1 Last time: similar and diagonalizable matrices

Let n be a positive integer. Suppose A is an n× n matrix, v ∈ Rn, and λ ∈ R.

Recall that v an eigenvector for A with eigenvalue λ if 0 6= v ∈ Nul(A−λI), which means that Av = λv.

The number λ is an eigenvalue of A if there exists some eigenvector with this eigenvalue.

If the nullspace Nul(A− λI) is nonzero, then it is called the λ-eigenspace of A.

The eigenvalues of A are the solutions to the polynomial equation det(A− xI) = 0.

Important fact. Any set of eigenvectors of A with all distinct eigenvalues is linearly independent.

Two n× n matrices A and B are similar if there is an invertible n× n matrix P such that A = PBP−1.

Example. The matrix A =

 1 2 3
4 5 6
7 8 9

 is similar to

 0 0 1
0 1 0
1 0 0

A
 0 0 1

0 1 0
1 0 0

−1 =

 9 8 7
6 5 4
3 2 1

 .
Similar matrices have the same eigenvalues but usually different eigenvectors.

However, matrices may have the same eigenvalues but not be similar.

Example. The matrices

A =

[
2 0
0 2

]
and B =

[
2 1
0 2

]
both have only one eigenvalue given by the number 2.

But they are not similar: because A = 2I, for every invertible 2× 2 matrix P we have

PAP−1 = 2PIP−1 = 2PP−1 = 2I = A 6= B.

A matrix is diagonal if all of its nonzero entries appear in diagonal positions (1, 1), (2, 2), . . . , or (n, n).

A matrix A is diagonalizable if it is similar to a diagonal matrix.

In other words, A is diagonalizable if A = PDP−1 for some D =


λ1

λ2
. . .

λn

. In this case:

• The numbers λ1, λ2, . . . , λn are the eigenvalues of A.

Why? The matrices A and D are similar so det(A− xI) = det(D− xI) = (λ1 − x)(λ2 − x) · · · (λn − x).
The eigenvalues of A are the roots of this polynomial, which in this particular case are λ1, λ2, . . . , λn.

• If P =
[
v1 v2 . . . vn

]
then Avi = λivi for each i = 1, 2, . . . , n.

Why? We have Pei = vi so P−1vi = P−1Pei = Iei = ei. We also have Dei = λiei.
This means that Avi = PDP−1vi = PDei = P (λiei) = λiPei = λivi.

• The columns of P are a basis for Rn of eigenvectors of A.

Why? We just saw that the columns of P are eigenvectors. They are a basis because P is invertible.

We can summarize these observations as follows:
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Theorem. An n×n matrix A is diagonalizable if and only if Rn has a basis v1, v2, . . . , vn whose elements
are all eigenvectors of A. In this case, if λi is the eigenvalue such that Avi = λivi, then A = PDP−1 for

P =
[
v1 v2 · · · vn

]
and D =


λ1

λ2
. . .

λn

 .

Not every matrix is diagonalizable. It takes some work to decide if a given matrix is diagonalizable.

Example. The 2× 2 matrix B =

[
2 1
0 2

]
has only one eigenvalue 2.

We saw above that B is not similar to

[
2 0
0 2

]
, so B is not diagonalizable.

Theorem. If A is an n× n matrix with n distinct eigenvalues then A is diagonalizable.

Proof. Suppose A has n distinct eigenvalues. Any choice of eigenvectors for A corresponding to these
eigenvalues will be linearly independent, so A will have n linearly independent eigenvectors.

These eigenvectors are a basis for Rn since any set of n linearly independent vectors in Rn is a basis.

Example. The matrix A =

 5 −8 1
0 0 7
0 0 −2

 is triangular so has eigenvalues 5, 0,−2.

These are distinct numbers, so A is diagonalizable.

Example. Every diagonal matrix D is diagonalizable, since D = PDP−1 for P = I.

Example. Not all diagonalizable n× n matrices have n distinct eigenvalues.

The identity matrix I is diagonal and therefore diagonalizable.

However, I only has one distinct eigenvalue (the number 1).

2 Diagonalization and Fibonacci numbers

Knowing how to diagonalize matrices will let us prove an exact formula for the Fibonacci numbers.

The sequence fn of Fibonacci numbers starts as

f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13 . . .

For n ≥ 2, the sequence is defined by fn = fn−2 + fn−1.

We have f10 = 55 and f100 = 354224848179261915075.

Define an = f2n and bn = f2n+1 for n ≥ 0.

If n > 0 then an = f2n = f2n−2 + f2n−1 = an−1 + bn−1.
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Similarly, if n > 0 then bn = f2n+1 = f2n−1 + f2n = bn−1 + an = an−1 + 2bn−1.

We can put these two equations together into one matrix equation:[
an
bn

]
=

[
1 1
1 2

] [
an−1
bn−1

]
.

Since this holds for all n > 0, we have[
an
bn

]
=

[
1 1
1 2

] [
an−1
bn−1

]
=

[
1 1
1 2

]2 [
an−2
bn−2

]
=

[
1 1
1 2

]3 [
an−3
bn−3

]
= · · · =

[
1 1
1 2

]n [
a0
b0

]
.

In other words,

[
an
bn

]
=

[
1 1
1 2

]n [
0
1

]
.

Thus if we could get an exact formula for the matrix

[
1 1
1 2

]n
then we could derive a formula for

an = f2n and bn = f2n+1, which would determine fn for all n.

The best way we know to compute An for large values of n is to diagonalize A, that is, to find an invertible
matrix P and a diagonal matrix D such that A = PDP−1, since then An = PDnP−1 as

An = (PDP−1)n = (PDP−1)(PDP−1)(PDP−1) · · · (PDP−1)

= PD(P−1P )D(P−1P )D(P−1 · · ·P )DP−1 = PDDD · · ·DP−1 = PDnP−1.

From this point on we let A =

[
1 1
1 2

]
.

To determine if A is diagonalizable, our first step is to compute its eigenvalues, which are solutions to

0 = det(A− xI) = det

[
1− x 1

1 2− x

]
= (1− x)(2− x)− 1 = x2 − 3x+ 1.

By the quadratic formula, the eigenvalues of A are α = 3+
√
5

2 and β = 3−
√
5

2 .

Since α− β =
√

5 6= 0, these eigenvalues are distinct so A is diagonalizable. Note that

αβ = (3−
√

5)(3 +
√

5)/4 = (9− 5)/4 = 1.

Our next step is to find bases for the α- and β-eigenspaces of A.

To find an eigenvector for A with eigenvalue α, we row reduce

A−αI =

[
1− α 1

1 2− α

]
∼
[

1 2− α
1− α 1

]
∼
[

1 2− α
0 1− (2− α)(1− α)

]
=

[
1 2− α
0 0

]
= RREF(A−αI).

The second equality holds since (2− α)(1− α) = (1−
√

5)(−1−
√

5)/4 = (−1 + 5)/4 = 1.

This computation shows that x ∈ Nul(A− αI) if and only if x =

[
x1
x2

]
where x1 + (2− α)x2 = 0, so

v =

[
α− 2

1

]
is an eigenvector for A with Av = αv.

To find an eigenvector for A with eigenvalue β, we similarly row reduce

A−βI =

[
1− β 1

1 2− β

]
∼
[

1 2− β
1− β 1

]
∼
[

1 2− β
0 1− (2− β)(1− β)

]
=

[
1 2− β
0 0

]
= RREF(A−βI).
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The second equality holds since also (2− β)(1− β) = 1.

By algebra identical to the previous case, we deduce that

w =

[
β − 2

1

]
is an eigenvector for A with Aw = βw.

This means that for

P =
[
v w

]
=

[
α− 2 β − 2

1 1

]
and D =

[
α 0
0 β

]
we have A = PDP−1. Since P is 2× 2 with detP = (α− 2)− (β − 2) = α− β =

√
5, we have

Dn =

[
αn 0

0 βn

]
and P−1 =

1√
5

[
1 2− β
−1 α− 2

]
.

We therefore have[
an
bn

]
= An

[
0
1

]
= PDnP−1

[
0
1

]
=

1√
5

[
α− 2 β − 2

1 1

] [
αn 0

0 βn

] [
1 2− β
−1 α− 2

] [
0
1

]
.

Before computing anything further, it helps to make a few simplifications. Note that

α− 2 =
−1 +

√
5

2
= 1− β and β − 2 =

−1−
√

5

2
= 1− α.

Hence [
an
bn

]
=

1√
5

[
1− β 1− α

1 1

] [
αn 0

0 βn

] [
1 α− 1
−1 1− β

] [
0
1

]
=

1√
5

[
1− β 1− α

1 1

] [
αn 0

0 βn

] [
α− 1
1− β

]
=

1√
5

[
1− β 1− α

1 1

] [
(α− 1)αn

−(β − 1)βn

]
=

1√
5

[
(α− 1)(β − 1) (βn − αn)

(α− 1)αn − (β − 1)βn

]
.

Since (α− 1)(β − 1) = (1−
√
5)(1+

√
5)

4 = 1−4
4 = −1, rewriting this matrix equation gives

f2n = an = 1√
5

(αn − βn) and f2n+1 = bn = 1√
5

((α− 1)αn − (β − 1)βn) . (*)

We now make one more unexpected observation:

(α− 1)2 =
(

1+
√
5

2

)2
=

1 + 2
√

5 + 5

4
=

3 +
√

5

2
= α

and

(β − 1)2 =
(

1−
√
5

2

)2
=

1− 2
√

5 + 5

4
=

3−
√

5

2
= β.

Thus (*) become

f2n = 1√
5

(
(α− 1)2n − (β − 1)2n

)
and f2n+1 = 1√

5

(
(α− 1)2n+1 − (β − 1)2n+1

)
. (**)

Now we combine the identities in (**). Since α− 1 = 1+
√
5

2 and β − 1 = 1−
√
5

2 , we get:
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Theorem. For all integers n ≥ 0 it holds that

fn =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
≈ 0.447 (1.618n − (−0.618)n)

Remark. Since 1−
√
5

2 = −0.618 . . . , if n is large then fn ≈ 1√
5

(
1+
√
5

2

)n
.

3 Diagonalizing matrices whose eigenvalues are not distinct

Suppose A is n× n and diagonalizable.

Then there exists an invertible n× n matrix P such that D = P−1AP is diagonal, and A = PDP−1.

If A has n distinct eigenvalues with corresponding eigenvectors v1, v2, . . . , vn, then an easy way to con-
struct such a matrix P is to just form P =

[
v1 v2 . . . vn

]
.

How do we find P if A does not have n distinct eigenvalues?

Recall: the multiplicity of an eigenvalue λ is the largest integer m such that (λ−x)m divides det(A−xI).

Theorem. Let A be an n× n matrix with distinct eigenvalues λ1, λ2, . . . , λp where p ≤ n. Then:

(a) The dimension of the λi-eigenspace Nul(A− λiI) is at most the multiplicity of λi.

(b) A is diagonalizable if and only if the sum of the dimensions of the eigenspaces of A is n, i.e.:

dim Nul(A− λ1I) + dim Nul(A− λ2I) + · · ·+ dim Nul(A− λpI) = n. (*)

(c) Suppose (*) holds and Bi is a basis for the λi-eigenspace.

Then the union B1 ∪ B2 ∪ · · · ∪ Bp is a basis for Rn consisting of eigenvectors of A.

If the elements of this union are the vectors v1, v2, . . . , vn then the matrix

P =
[
v1 v2 . . . vn

]
is invertible and the matrix D = P−1AP is diagonal, and A = PDP−1.

Before giving the proof in the next section, we illustrate the result through an example.

Example. Consider the lower-triangular matrix

A =


5 0 0 0
0 5 0 0
1 4 −3 0
−1 −2 0 −3

 .
Its characteristic polynomial is det(A− xI) = (5− x)2(−3− x)2.

The eigenvalues of A are therefore 5 and −3, each with multiplicity 2. Since

A− 5I =


0 0 0 0
0 0 0 0
1 4 −8 0
−1 −2 0 −8

 ∼


1 0 8 16
0 1 −4 −4
0 0 0 0
0 0 0 0

 = RREF(A− 5I)
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it follows that x ∈ Nul(A− 5I) if and only if

x =


x1
x2
x3
x4

 =


−8x3 − 16x4

4x3 + 4x4
x3
x4

 = x3


−8

4
1
0

+ x4


−16

4
0
1


so 

−8
4
1
0

 ,

−16

4
0
1

 is a basis for Nul(A− 5I).

Since

A− (−3)I = A+ 3I =


8 0 0 0
0 8 0 0
1 4 0 0
−1 −2 0 0

 ∼


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 = RREF(A+ 3I)

it follows that x ∈ Nul(A+ 3I) if and only if

x =


x1
x2
x3
x4

 =


0
0
x3
x4

 = x3


0
0
1
0

+ x4


0
0
0
1


so 

0
0
1
0

 ,


0
0
0
1

 is a basis for Nul(A+ 3I).

Each eigenspace has dimension 2, so the sum of the dimensions of the eigenspaces of A is 2 + 2 = 4 = n.

Thus A is diagonalizable. In particular, if

P =


−8 −16 0 0

4 4 0 0
1 0 1 0
0 1 0 1

 and D =


5 0 0 0
0 5 0 0
0 0 −3 0
0 0 0 −3


then A = PDP−1.

4 Proof of the diagonalization theorem

We present a proof of the theorem in the previous section. Feel free to skip these details on first reading.

Setup: let A be an n× n matrix with distinct eigenvalues λ1, λ2, . . . , λp where p ≤ n.

Fix an index i ∈ {1, 2, . . . , p}.

Let λ = λi and suppose λ has multiplicity m and Nul(A− λI) has dimension d.

Let v1, v2, . . . , vd be a basis for Nul(A− λI).

One of the corollaries we saw for the dimension theorem is that it is always possible to choose vectors
vd+1, vd+2, . . . , vn ∈ Rn such that v1, v2, . . . , vd, vd+1, vd+2, . . . , vn is a basis for Rn.
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Define Q =
[
v1 v2 . . . vn

]
. The columns of this matrix are linearly independent, so Q is invertible

with Qej = vj and Q−1vj = ej for all j = 1, 2, . . . , n. Define B = Q−1AQ.

If j ∈ {1, 2, . . . , d} then the jth column of B is Bej = Q−1AQej = Q−1Avj = λQ−1vj = λej .

This means that the first d columns of B are

λ
λ

. . .

λ
0 0 . . . 0
...

...
0 0 . . . 0


so B has the block-triangular form

B =



λ ∗ ∗ . . . ∗
λ ∗ ∗ . . . ∗

. . .
...

...
. . .

...
λ ∗ ∗ . . . ∗

0 0 . . . 0 ∗ ∗ . . . ∗
...

...
...

...
. . .

...
0 0 . . . 0 ∗ ∗ . . . ∗


=

[
λId Y

0 Z

]

where Y is an arbitrary d× (n− d) matrix and Z is an arbitrary (n− d)× (n− d) matrix.

Now, we want to deduce that det(B − xI) = (λ− x)d det(Z − xI).

Since det(A− xI) = det(B − xI) as A and B are similar, and since det(Z − xI) is a polynomial in x, we
see that det(A− xI) can be written as (λ− x)dp(x) for some polynomial p(x). Since m is maximal such
that det(A− xI) = (λ− x)mp(x), it must hold that d ≤ m. This proves part (a).

To prove parts (b) and (c), suppose v1i , v
2
i , . . . , v

`i
i is a basis for the λi-eigenspace of A for each i =

1, 2, . . . , p. Let Bi = {v1i , v2i , . . . , v
`i
i }. We claim that B1 ∪ B2 ∪ . . .Bp is a linearly independent set.

To prove this, suppose
∑p

i=1

∑`i
j=1 c

j
iv

j
i = 0 for some cji ∈ R. It suffices to show that every cji = 0.

Let wi =
∑`i

j=1 c
j
iv

j
i ∈ Rn. We then have w1 + w2 + · · ·+ wp = 0.

Each wi is either zero or an eigenvector of A with eigenvalue λi. (Why?)

Since eigenvectors of A with distinct eigenvalues are linearly independent, we must have

w1 = w2 = · · · = wp = 0.

But since each set Bi is linearly independent, this implies that cji = 0 for all i, j.

We conclude that B1 ∪ B2 ∪ . . .Bp is a linearly independent set.

If the sum of the dimensions of the eigenspaces of A is n then B1 ∪ B2 ∪ · · · ∪ Bp is a set of n linearly
independent eigenvectors of A, so A is diagonalizable.

If A is diagonalizable then A has n linearly independent eigenvectors. Among these vectors, the number
that can belong to any particular eigenspace of A is necessarily the dimension of that eigenspace, so it
follows that sum of the dimensions of the eigenspaces of A at least n. This sum cannot be more than n
since the sum is the size of the linearly independent set B1 ∪ B2 ∪ · · · ∪ Bp ⊂ Rn. This proves part (b).
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To prove part (c), note that if A is diagonalizable then B1∪B2∪· · ·∪Bp is a set of n linearly independent
vectors in Rn, so is a basis for Rn. The last assertion in part (c) is something we discussed at the
beginning of this lecture.

5 An interesting property of the Fibonacci sequence

This is another optional section, which explains a curious application of our exact formula for fn.

Fun fact. The first few Fibonacci numbers are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

If we add up all the decimal numbers
0.0
0.01
0.001
0.0002
0.00003
0.000005
0.0000008
0.00000013
0.000000021
0.0000000034
0.00000000055
0.000000000089
0.0000000000144
...

then we get exactly 1/89 = 0.011235955056179 · · · . More precisely:

1

89
=

∞∑
n=0

fn
10n+1

.

Proof. If x 6= 1 then
∑N−1

n=0 x
n = 1−xN

1−x since

(1− x)
N−1∑
n=0

xn = (1 + x+ x2 + · · ·+ xN−1)− (x+ x2 + x3 + · · ·+ xN ) = 1− xN .

It follows that if |x| < 1 so that xN → 0 as N →∞ then
∑∞

n=0 x
n = limN→∞

∑N
n=0 x

n = 1
1−x . Now

∞∑
n=0

fn
10n+1

=
1

10
√

5

∞∑
n=0

((
1 +
√

5

20

)n

−

(
1−
√

5

20

)n)
.

We have both | 1+
√
5

20 | < 1 and | 1−
√
5

20 | < 1 so

∞∑
n=0

((
1+
√
5

20

)n
−
(

1−
√
5

20

)n)
=

∞∑
n=0

(
1+
√
5

20

)n
−
∞∑

n=0

(
1−
√
5

20

)n
=

1

1− 1+
√
5

20

− 1

1− 1−
√
5

20

.

The last expression can be simplified a lot:

1

1− 1+
√
5

20

− 1

1− 1−
√
5

20

=
20

19−
√

5
− 20

19 +
√

5
=

20(19 +
√

5)− 20(19−
√

5)

(19−
√

5)(19 +
√

5)
=

40
√

5

192 − 5
=

40
√

5

356
=

10
√

5

89
.

Substituting this above gives
∑∞

n=0
fn

10n+1 = 1
10
√
5

∑∞
n=0

((
1+
√
5

20

)n
−
(

1−
√
5

20

)n)
= 1

10
√
5
10
√
5

89 = 1
89 .
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