
MATH 2121 — Linear algebra (Fall 2024) Lecture 19

This document is an exact transcript of the lecture, with extra summary and vocabulary sections for
your convenience. Due to time constraints, the lectures sometimes only contain limited illustrations,
proofs, and examples. For a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

• The inner product or dot product of two vectors u, v ∈ Rn is the scalar u • v = u>v ∈ R.

• We always have v • v ≥ 0. The length of v ∈ Rn is ‖v‖ =
√
v • v.

If c ∈ R and v ∈ Rn then ‖cv‖ = |c|‖v‖.

The distance between u ∈ Rn and v ∈ Rn is defined to be the length ‖u− v‖.

• A unit vector is a vector u ∈ Rn with ‖u‖ = 1.

If v ∈ Rn is any nonzero vector, then the unit vector in the direction of v is u = 1
‖v‖v ∈ Rn.

• Two vectors u, v ∈ Rn are orthogonal if u • v = 0.

If V ⊆ Rn is a subspace then its orthogonal complement is the subspace

V ⊥ = {w ∈ Rn : v • w = 0 for all v ∈ V }.

We always have V ∩ V ⊥ = {0} ⊆ Rn. Next time, we’ll see that dimV + dimV ⊥ = n.

If A is an m× n matrix then (ColA)⊥ = Nul(A>).

• An orthogonal basis is a basis in which any two vectors are orthogonal.

Suppose v1, v2, . . . , vp ∈ Rn are nonzero vectors with vi • vj = 0 for all i 6= j.

Then these vectors are linearly independent, and therefore an orthogonal basis for their span.

• Let u ∈ Rn be a nonzero vector. Let L = R-span{u}. Suppose y ∈ Rn is any vector.

The orthogonal projection of y onto L is the vector projL(y) = y•u
u•uu ∈ L.

The component of y orthogonal to L is the vector z = y − projL(y) = y − y•u
u•uu ∈ L

⊥.

We always have projL(y) + z = y and projL(y) • z = 0.

These formulas do not depend of the choice of u, only on the subspace L that u spans.
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1 Last time: properties of eigenvalues

The trace of a square matrix A is the sum of its diagonal entries.

We denote this by the symbol tr(A). For 2× 2 matrices we have tr

([
a b
c d

])
= a+ d.

Suppose A and B are n× n matrices. Although in general tr(AB) 6= tr(A)tr(B), we have both

tr(AB) = tr(BA) and det(AB) = det(A) det(B) = det(B) det(A) = det(BA).

Theorem. Let A be an n×n matrix and write I for the n×n identity matrix. The fundamental theorem
of algebra tells us that there are complex numbers λ1, λ2, . . . , λn ∈ C such that

det(A− xI) = (λ1 − x)(λ2 − x) · · · (λn − x).

For these numbers it holds that det(A) = λ1λ2 · · ·λn and tr(A) = λ1 + λ2 + · · ·+ λn.

In words: the product of the eigenvalues of A, repeated with multiplicity, is the determinant of A, while
the sum of the eigenvalues of A, repeated with multiplicity, is the trace of A.

The theorem is easy to observe when A is a triangular matrix: for example if A =

 λ1 a b
0 λ2 c
0 0 λ3

 then

det(A− xI) = (λ1 − x)(λ2 − x)(λ3 − x) and trA = λ1 + λ2 + λ3 and detA = λ1λ2λ3.

A few other properties of eigenvalues and eigenvectors worth noting:

Proposition. If A is a square matrix then A and A> have the same eigenvalues.

Proof. This follows since det(A− xI) = det((A− xI)>) = det(A> − xI>) = det(A> − xI).

Proposition. Let A be a square matrix. Then A is invertible if and only if 0 is not one of its eigenvalues.

Proof. 0 is an eigenvalue of A if and only if detA = 0 which occurs precisely when A is not invertible.

Proposition. Assume A is invertible. Then A and A−1 have the same eigenvectors, but v is an eigen-
vector of A with eigenvalue λ if and only if v is an eigenvector of A−1 with eigenvalue λ−1.

Proof. If A is invertible and Av = λv then v = A−1Av = A−1λv = λA−1v so A−1v = λ−1v.

Corollary. If A is invertible and diagonalizable then A−1 is diagonalizable.

Proof. If A is invertible and diagonalizable, then Rn has a basis consisting of eigenvectors of A, but this
basis is then also made up of eigenvectors of A−1, so A−1 is diagonalizable.

Corollary. If A is diagonalizable then A> is diagonalizable.

Proof. Suppose A = PDP−1 where D is diagonal. Let Q = (P−1)> = (P>)−1.

Then D> = D so A> = (PDP−1)> = (P−1)>D>P> = QDQ−1.
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2 Inner products and orthogonality

In this lecture, we will only work with vectors in Rn and with matrices that have all real entries.

Definition. The inner product or dot product of two vectors

u =


u1
u2
...

un

 and v =


v1
v2
...

vn


in Rn is the scalar u • v = u1v1 + u2v2 + · · ·+ unvn = u>v = v>u = v • u.

For example,

[
a
b

]
•
[
−b
a

]
= −ab+ ab = 0 for any a, b ∈ R.

Definition. The length of a vector v ∈ Rn is ‖v‖ =
√
v • v =

√
v21 + v22 + · · ·+ v2n.

Essential properties of length and inner product.

Let u, v, w ∈ Rn and c ∈ R.

(a) u • v = v • u and (u+ v) • w = u • w + v • w and (cv) • w = c(v • w), while ‖cv‖ = |c|‖v‖.

(b) v • v = v21 + v22 + · · ·+ v2n ≥ 0 and ‖v‖ ≥ 0.

(c) v • v = 0 if and only if ‖v‖ = 0 if and only if v = 0 ∈ Rn.

(d) There is a general trigonometric identity relating u • v to the angle θ between u and v:

u • v = ‖u‖‖v‖ cos θ.

This holds even when u = 0 or v = 0 (as both sides are zero), although then θ is not defined.

We won’t need to use this identity directly very often.

However, it is useful for gaining intuition about the sign of u • v: this value is negative if and only
if cos θ ∈ [−1, 0), which happens precisely when u and v form an obtuse angle θ.

The distance between two vectors u, v ∈ Rn is the length of the difference ‖u− v‖.

A unit vector is a vector u ∈ Rn with ‖u‖ = 1.

If v ∈ Rn is any nonzero vector, then the unit vector in the direction of v is u = 1
‖v‖v ∈ Rn.

Note that for this u we have ‖u‖ = ‖ 1
‖v‖v‖ = | 1

‖v‖ |‖v‖ = 1
‖v‖‖v‖ = 1.

Example. The unit vector in the direction of v =


1
1
1
1

 is u = 1√
12+12+12+12

v =


1/2
1/2
1/2
1/2

 .
Definition. Two vectors u, v ∈ Rn are orthogonal if u • v = 0.

When u and v are orthogonal we also say that “u is orthogonal to v.”’
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Proposition. Suppose u, v ∈ R2 are nonzero vectors that are orthogonal to each other, so that u•v = 0.
Then u and v, drawn as arrows in the xy-plane, belong to perpendicular lines through the origin. In
other words, these vectors are perpendicular in the usual sense of planar geometry.

Concretely, if u, v ∈ R2 are orthogonal and 0 6= u =

[
a
b

]
, then v is a scalar multiple

[
−b
a

]
, which is

the vector obtained by rotating u counterclockwise by 90 degrees.

Proof. This follows directly from the identity u • v = ‖u‖‖v‖ cos θ, which implies that u • v = 0 if and
only if the angle θ between u and v is ±π2 . Below is a more self-contained proof.

Write u =

[
a
b

]
and v =

[
x
y

]
. Then u • v = ax+ by = 0.

If a = 0 then b 6= 0 since u 6= 0, so y = −abx = 0 and v =

[
x
0

]
= −xb

[
−b

0

]
.

If a 6= 0 then x = −b
a y so v =

[
− b
ay
y

]
= y

a

[
−b
a

]
. Thus v is a scalar multiple of

[
−b
a

]
.

To see that

[
a
b

]
and

[
−b
a

]
are perpendicular, note that

[
−b
a

]
=

[
0 −1
1 0

] [
a
b

]
.

The 2-by-2 matrix

[
0 −1
1 0

]
acts by rotating a vector 90 degrees counterclockwise.

3 Orthogonal complements

Let V ⊆ Rn be a subspace. The orthogonal complement of V is V ⊥ = {w ∈ Rn : v •w = 0 for all v ∈ V }.

We pronounce “V ⊥” as “vee perp.”

Proposition. If V ⊆ Rn is a subspace then its orthogonal complement V ⊥ ⊆ Rn is also a subspace.

Proof. Since v • 0 = 0 for all v ∈ Rn it holds that 0 ∈ V ⊥. This confirms that V ⊥ is nonempty.

If x, y ∈ V ⊥ and c ∈ R then v • cx = c(v • x) = 0 and v • (x+ y) = v • x+ v • y = 0 + 0 = 0 for all v ∈ V
so cx and x+ y both belong to V ⊥. Hence V ⊥ is a subspace.

The operation (·)⊥ relates the column space, null space, and transpose of a matrix in the following way:

Theorem. Suppose A is an m× n matrix. Then (ColA)⊥ = Nul(A>) ⊆ Rm.

Proof. Write A =
[
a1 a2 . . . an

]
where ai ∈ Rm. Let v ∈ Rm.

If v ∈ (ColA)⊥ then we must have v • ai = a>i v = 0 for all i.

Conversely, if v • ai = a>i v = 0 for all i then

(c1a1 + c2a2 + · · ·+ cnan) • v = c1(a1 • v︸ ︷︷ ︸
=0

) + c2(a2 • v︸ ︷︷ ︸
=0

) + · · ·+ cn(an • v︸ ︷︷ ︸
=0

) = 0

for any scalars c1, c2, . . . , cn ∈ R so v ∈ (ColA)⊥.
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Thus v ∈ (ColA)⊥ if and only if v • ai = a>i v = 0 for all i. This holds if and and only if

A>v =


a>1
a>2
...

a>n

 v =


a1 • v
a2 • v

...
an • v

 = 0 ∈ Rm, which means that v ∈ Nul(A>).

Lemma. Let V ⊆ Rn be a subspace. If w ∈ V ∩ V ⊥ then w = 0.

Proof. If w ∈ V and w ∈ V ⊥ then w • w = 0 so w = 0.

Proposition. Let V ⊆ Rn be a subspace. If S ⊆ V and T ⊆ V ⊥ are two sets of linearly independent
vectors, then S ∪ T is also linearly independent.

Proof. Suppose there was a nontrivial linear dependence among the elements of S ∪ T equal to zero.
Rewrite this linear dependence so that the terms from S are on the left side of the equals sign and the
terms from T are on the other side. Then we would have an equation of the form

a1v1 + · · ·+ akvk︸ ︷︷ ︸
∈V

= b1w1 + · · ·+ blwl︸ ︷︷ ︸
∈V ⊥

where v1, . . . , vk ∈ S and w1, . . . , wl ∈ T , for some coefficients a1, a2, . . . , ak, b1, b2, . . . , bl ∈ R which are
not all zero. But such an equation would imply that a nonzero element of V is equal to a nonzero element
of V ⊥, which is impossible by the lemma.

Corollary. If V ⊆ Rn is a subspace then dimV ⊥ ≤ n− dimV .

Proof. If S is a basis for V and T is a basis for V ⊥ then dimV + dimV ⊥ = |S| + |T | = |S ∪ T |. Since
S ∪ T is a set of linearly independent vectors in Rn, its size must be at most n.

We will see next lecture that the inequality ≤ in this corollary is actually always equality =.

4 Orthogonal bases and orthogonal projections

The following proposition is called the Generalized Pythagorean theorem.

Proposition. Two vectors u, v ∈ Rn are orthogonal if and only if ‖u+ v‖2 = ‖u‖2 + ‖v‖2.

Proof. The proof is just a little algebra:

‖u+v‖2 = (u+v)• (u+v) = u• (u+v) +v • (u+v) = u•u+u•v+v •u+v •v = ‖u‖2 +‖v‖2 + 2(u•v).

Then ‖u+ v‖2 = ‖u‖2 + ‖v‖2 if and only if u • v = 0.

The equivalence of this proposition to the classical Pythagorean theorem boils down to our observation
earlier that orthogonal vectors in R2 form the sides of a right triangle.
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A collection of vectors u1, u2, . . . , up ∈ Rn is orthogonal if ui • uj = 0 whenever 1 ≤ i < j ≤ p.

In particular, an orthogonal basis of Rn is a basis in which any two vectors are orthogonal.

For example, the standard basis e1, e2, . . . , en is an orthogonal basis for Rn.

Theorem. Suppose the vectors u1, u2, . . . , up ∈ Rn are orthogonal and all nonzero.

Then u1, u2, . . . , up are linearly independent.

Proof. Suppose c1u1 + c2u2 + · · ·+ cpup = 0 for some coefficients c1, c2, . . . , cp ∈ R.

For each i = 1, 2, . . . , p, we then have

0 = (c1u1 + c2u2 + · · ·+ cpup) • ui = c1(u1 • ui) + c2(u2 • ui) + · · ·+ cp(up • ui) = ci‖ui‖2

since uj •ui = 0 if i 6= j. But since ui is nonzero, ‖ui‖2 6= 0, so it must hold that ci = 0. As this argument
applies to each index i, we deduce that c1 = c2 = · · · = cp = 0.

In other words, the only way we can have c1u1 + c2u2 + · · ·+ cpup = 0 is if all of the coefficients are zero,
which is the definition of linear independence.

Corollary. Any set of nonzero, orthogonal vectors is an orthogonal basis for the subspace they span.

Any set of n nonzero, orthogonal vectors in Rn is an orthogonal basis for Rn.

Proposition. Suppose u1, u2, . . . , up is an orthogonal basis for a subspace V ⊆ Rn.

Let y ∈ V . Then we can write y = c1u1 + c2u2 + · · ·+ cpup where

ci =
y • ui
ui • ui

=
y • ui
‖ui‖2

.

Proof. A basis must span V , so y = c1u1 + c2u2 + · · ·+ cpup for some coefficients c1, c2, . . . , cp ∈ R.

Since y • ui = ci(ui • ui) for each i = 1, 2, . . . , p, the result follows.

Example. Suppose u1 =

 3
1
1

 and u2 =

 −1
2
1

 and u3 =

 −1/2
−2
7/2

.

You can check that these three vectors are orthogonal.

For example, u1 • u3 = −3/2− 2 + 7/2 = 0.

The vectors are therefore linearly independent, so are an orthogonal basis for R3.

For y =

 6
1
8

 we have y • u1 = 11 and y • u2 = −12 and y • u3 = −33.

We also have u1 • u1 = 11 and u2 • u2 = 6 and u3 • u3 = 33/2. Therefore y = u1 − 2u2 − 2u3.

Let u ∈ Rn be a nonzero vector. Suppose y ∈ Rn is any vector.

Definition. The orthogonal projection of y onto u is the vector ŷ =
y • u
u • u

u.

This vector is scalar multiple of u, and can be zero.
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The component of y orthogonal to u is the vector z = y − ŷ = y − y • u
u • u

u.

It always holds that y = ŷ + z. Moreover, as its name suggests, we have z • u = 0 since

z • u = y • u− y • u
u • u

u • u = y • u− y • u = 0.

Observation. The vectors ŷ and z do not change if u is replaced by a nonzero scalar multiple: if we
change u to cu for some 0 6= c ∈ R then all the factors of c cancel:

y • cu
cu • cu

cu =
c(y • u)

c2(u • u)
cu =

y • u
u • u

u = ŷ.

Let L = R-span{u}. Then ŷ and z may also be called the orthogonal projection of y onto L the component

of y orthogonal to L. We will write projL(y) = ŷ ∈ L.

In R2, the distance from a point (x, y) to a line L = R-span{u} is the length

∥∥∥∥[ x
y

]
− projL

([
x
y

])∥∥∥∥ .
Example. To find the distance from the point (x, y) = (7, 6) to the line L defined by y = 1

2x, note that L

contains the vector u =

[
4
2

]
. Let w =

[
7
6

]
. Then projL

([
7
6

])
= w•u

u•u u = 28+12
16+4 u = 40

20u =

[
8
4

]
so the distance is

∥∥∥∥[ 7
6

]
−
[

8
4

]∥∥∥∥ =

∥∥∥∥[ −1
2

]∥∥∥∥ =
√

1 + 4 =
√

5.

6



MATH 2121 — Linear algebra (Fall 2024) Lecture 19

5 Vocabulary

Keywords from today’s lecture:

1. Inner product of vectors u, v ∈ Rn.

The scalar u • v = u>v ∈ R.

Example:

 1
2
3

 •
 −1
−10
−100

 = −1− 20− 300 = −321.

2. Length of a vector v ∈ Rn and distance between u, v ∈ Rn.

The length of v ∈ Rn is ‖v‖ =
√
v • v =

√
v21 + v22 + · · ·+ vnn where v =


v1
v2
...

vn

.

The distance from u ∈ Rn to v ∈ Rn is ‖u− v‖.

3. Unit vector.

A unit vector is a vector in Rn with length 1.

The unit vector in the same direction as a nonzero vector v ∈ Rn is u = 1
‖v‖v.

4. Orthogonal vectors.

Two vectors u, v ∈ Rn are orthogonal if u • v = 0.

A collection of vectors in Rn is orthogonal if any two of the vectors are orthogonal.

A basis of a subspace is orthogonal if any two vectors in the basis are orthogonal.

Example: In R2, the vectors

[
a
b

]
and

[
−b
a

]
are always orthogonal.

5. Orthogonal complement of a subspace V ⊆ Rn.

The subspace V ⊥ = {w ∈ Rn : v • w = 0 for all v ∈ V }.

Example: If V = R-span{e1, e2, . . . , ei} ⊆ Rn then V ⊥ = R-span{ei+1, ei+2, . . . , en}.

If V = Rn then V ⊥ = {0}. If V = {0} ⊆ Rn then V ⊥ = Rn.

6. Orthogonal projection of a vector y ∈ Rn onto a line L = R-span{u} where 0 6= u ∈ Rn.

The unique vector projL(y) ∈ L such that y − projL(y) is orthogonal to all vectors in L.

This vector has the formula projL(y) = y•u
u•uu for any choice of 0 6= u ∈ L.

The value of projL(y) given by this formula does not change if u is replaced by cu for 0 6= c ∈ R.

Example: if u =

[
1
1

]
and y =

[
a
b

]
then projL(y) = 1

2

[
a+ b
a+ b

]
.
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