
MATH 2121 — Linear algebra (Fall 2024) Lecture 20

This document is an exact transcript of the lecture, with extra summary and vocabulary sections for
your convenience. Due to time constraints, the lectures sometimes only contain limited illustrations,
proofs, and examples. For a more thorough discussion of the course content, consult the textbook.

Summary

Quick summary of today’s notes. Lecture starts on next page.

• The inner product or dot product of two vectors u, v ∈ Rn is the scalar

u • v = u1v1 + u2v2 + · · ·+ unvn = u>v = v>u ∈ R1 = R.

A unit vector is a vector v ∈ Rn with v • v = 1.

• Two vectors u, v ∈ Rn are orthogonal if u • v = 0.

If V ⊆ Rn is a subspace then its orthogonal complement is the subspace

V ⊥ = {w ∈ Rn : v • w = 0 for all v ∈ V }.

• A set of nonzero vectors v1, v2, . . . , vp ∈ Rn is orthogonal if vi • vj = 0 for all i 6= j.

Any such set is automatically linearly independent and therefore a basis for a subspace.

• An orthogonal basis is orthonormal if it consists entirely of unit vectors.

If u1, u2, . . . , un ∈ Rm are orthonormal and U =
[
u1 u2 . . . un

]
then U>U = In.

A square matrix U is orthogonal if U−1 = U>.

This occurs if and only if the columns of U are orthonormal.

• Any subspace V ⊆ Rn has an orthogonal basis.

Any subspace V ⊆ Rn therefore also has an orthonormal basis.

If u1, u2, . . . , up is an orthogonal basis for V then the projection of y ∈ Rn onto V is the vector

projV (y) =
y • u1
u1 • u1

u1 +
y • u2
u2 • u2

u2 + · · ·+ y • up
up • up

up ∈ V.

This formula does not depend on the choice of orthogonal basis for V .

The projection of y onto V is the unique vector in V such that y − projV (y) ∈ V ⊥.

The projection of y onto V is also characterized as the vector in V that is the shortest distance
away from y. If v ∈ V and v 6= projV (y) then ‖y − projV (y)‖ < ‖y − v‖.

• The Gram-Schmidt process is an algorithm that takes a basis x1, x2, . . . , xp for a subspace of Rn as
input, and produces an orthogonal basis v1, v2, . . . , vp of the same subspace as output.

The orthogonal basis v1, v2, . . . , vp is defined from the input basis x1, x2, . . . , xp by these formulas:

v1 = x1.

v2 = x2 − x2•v1
v1•v1 v1.

v3 = x3 − x3•v1

v1•v1 v1 −
x3•v2
v2•v2

v2.

v4 = x4 − x4•v1
v1•v1 v1 −

x4•v2
v2•v2

v2 − x4•v3
v3•v3 v3.

...

vp = xp − xp•v1
v1•v1 v1 −

xp•v2
v2•v2 v2 − · · · −

xp•vp−1

vp−1•vp−1
vp−1.
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1 Last time: inner products and orthogonality

The inner product or dot product of two vectors

u =


u1
u2
...

un

 and v =


v1
v2
...

vn


in Rn is the scalar u • v = u1v1 + u2v2 + · · ·+ unvn = u>v = v>u = v • u.

The length of a vector v ∈ Rn is ‖v‖ =
√
v • v =

√
v21 + v22 + · · ·+ v2n.

A vector with length 1 is a unit vector . Note that ‖v‖2 = v • v.

Two vectors u, v ∈ Rn are orthogonal if u • v = 0.

In R2, two vectors are orthogonal if and only if they belong to perpendicular lines through the origin.

Pythagorean Theorem. Two vectors u, v ∈ Rn are orthogonal if and only if ‖u+ v‖2 = ‖u‖2 + ‖v‖2.

The orthogonal complement of a subspace V ⊆ Rn is the subspace V ⊥ whose elements are the vectors
w ∈ Rn such that w • v = 0 for all v ∈ V .

The only vector that is in both V and V ⊥ is the zero vector.

We have {0}⊥ = Rn and (Rn)⊥ = {0}. If A is an m× n matrix then (ColA)⊥ = Nul(A>).

We also showed last time that dimV + dimV ⊥ ≤ n.

A list of vectors u1, u2, . . . , up ∈ Rn is orthogonal if ui • uj = 0 whenever 1 ≤ i < j ≤ p.

Theorem. Any list of orthogonal nonzero vectors is linearly independent and so is an orthogonal basis
of the subspace it spans.

Second proof. Suppose u1, u2, . . . , up ∈ Rn are orthogonal and nonzero.

Let A =
[
u1 u2 . . . up

]
and di = ui • ui > 0 and D =

 d1
. . .

dp

.

Check that A>A = D. Our vectors are linearly dependent if and only if Ax = 0 has a nonzero solution.
This is impossible since if Ax = 0 then A>Ax = 0 which implies x = 0 since A>A = D is invertible.

If u1, u2, . . . , up is an orthogonal basis for a subspace V ⊆ Rn and y ∈ V , then

y = c1u2 + c2u2 + · · ·+ cpup where ci =
y • ui
ui • ui

∈ R.

This is a very useful property of orthogonal bases.

In general, to determine the coefficients that express a vector in a given basis, we have to solve an entire
linear system. For orthogonal bases, we can just compute inner products.
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Example. Let’s work through this statement for the standard orthogonal basis e1, e2, . . . , en for Rn. If

y =


y1
y2
...

yn

 = y1e1 + y2e2 + · · ·+ ynen

then y = c1e1 + c2e2 + · · ·+ cnen where ci = y•ei
ei•ei . But ei • ei = 1 and y • ei = yi, so we just have ci = yi.

2 Orthogonal projection onto a line

Let L ⊆ Rn be a one-dimensional subspace.

Then L = R-span{u} for any nonzero vector u ∈ L.

Let y ∈ Rn. The orthogonal projection of y onto L is the vector

projL(y) =
y • u
u • u

u for any 0 6= u ∈ L.

The value of projL(y) does not depend on the choice of the nonzero vector u.

The component of y orthogonal to L is the vector z = y − projL(y).

Proposition. The only vector ŷ ∈ L with y − ŷ ∈ L⊥ is the orthogonal projection ŷ = projL(y).

Proof. Let u ∈ L be nonzero. Then y − projL(y) = y − y•u
u•uu and it holds that(

y − y • u
u • u

u
)
• u = y • u− y • u

u • u
u • u = y • u− y • u = 0.

This shows that y − projL(y) ∈ L⊥, and clearly projL(y) ∈ L.

To see that projL(y) is the only vector in L with this property, suppose ŷ ∈ L is such that y − ŷ ∈ L⊥.

Then (y − ŷ) • ŷ = y • ŷ − ŷ • ŷ = 0 so y • ŷ = ŷ • ŷ.

But ŷ = cu for some nonzero c ∈ R.

So we have c(y • u) = y • cu = (cu) • (cu) = c2(u • u).

Thus c = y•u
u•u so ŷ = projL(y).

Example. If y =

[
7
6

]
and L = R-span

{[
4
2

]}
then

projL(y) =

[
7
6

]
•
[

4
2

]
[

4
2

]
•
[

4
2

] [ 4
2

]
=

28 + 12

16 + 4

[
4
2

]
=

[
8
4

]
.

In R2, the distance from a point (x, y) to a line L = R-span{u} is the length

∥∥∥∥[ x
y

]
− projL

([
x
y

])∥∥∥∥ .
Example. To find the distance from the point (x, y) = (7, 6) to the line L defined by y = 1

2x, note that L

contains the vector u =

[
4
2

]
. Let w =

[
7
6

]
. Then projL

([
7
6

])
= w•u

u•u u = 28+12
16+4 u = 40

20u =

[
8
4

]
so the distance is

∥∥∥∥[ 7
6

]
−
[

8
4

]∥∥∥∥ =

∥∥∥∥[ −1
2

]∥∥∥∥ =
√

1 + 4 =
√

5.
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3 Orthonormal vectors

A set of vectors u1, u2, . . . , up is orthonormal if the vectors are orthogonal and each vector is a unit vector.
In other words, if ui • uj = 0 when i 6= j and ui • ui = 1 for all i.

An orthonormal basis of a subspace is a basis that is orthonormal.

Confusing convention: a square matrix with orthonormal columns is called an orthogonal matrix .

It would make more sense to call such a matrix an “orthonormal matrix” but the term “orthogonal
matrix” is standard and widely used.

Example. The standard basis e1, e2, . . . , en is an orthonormal basis for Rn.

Example. The vectors 1√
11

 3
1
1

, 1√
6

 −1
2
1

, and 1√
66

 −1
−4

7

 are an orthonormal basis for R3.

Theorem. Let U be an m× n matrix.

The columns of U are orthonormal vectors if and only if U>U = In.

If U is square then its columns are orthonormal if and only if U> = U−1.

(In other words, a matrix U is orthogonal if and only if U is square and U> = U−1.)

Proof. Suppose U =
[
u1 u2 . . . un

]
where each ui ∈ Rm.

The entry in position (i, j) of U>U is then u>i uj = ui • uj .

Therefore ui • ui = 1 and ui • uj = 0 for all i 6= j if and only if U>U is the n× n identity matrix.

Corollary. If U is an orthogonal matrix then det(U) ∈ {−1, 1}.

Proof. We have det(U)2 = det(U>) det(U) = det(U>U) = det(I) = 1.

Theorem. Let U be an m× n matrix with orthonormal columns. Suppose x, y ∈ Rn. Then:

1. ‖Ux‖ = ‖x‖.

2. (Ux) • (Uy) = x • y.

3. (Ux) • (Uy) = 0 if and only if x • y = 0.

Proof. The first and third statements are special cases of the second since ‖Ux‖ = ‖x‖ if and only if
(Ux)•(Ux) = x•x. The second statement holds since (Ux)•(Uy) = x>U>Uy = x>Iy = x>y = x•y.

4 Orthogonal projections onto subspaces

We have already seen that if y ∈ Rn and L ⊆ Rn is a 1-dimensional subspace then y can be written
uniquely as y = ŷ + z where ŷ ∈ L and z ∈ L⊥. This generalizes to arbitrary subspaces as follows:

Theorem. Let W ⊆ Rn be any subspace. Let y ∈ Rn.

Then there are unique vectors ŷ ∈W and z ∈W⊥ such that y = ŷ + z.

3
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If u1, u2, . . . , up is an orthogonal basis for W then

ŷ =
y • u1
u1 • u1

u1 +
y • u2
u2 • u2

u2 + · · ·+ y • up
up • up

up and z = y − ŷ. (*)

It doesn’t matter which orthogonal basis is chosen for W ; this formula gives the same value for ŷ and z.

Proof. To prove the theorem, we need to assume that W has an orthogonal basis. This nontrivial fact
will be proved later in this lecture. Choose one such basis u1, u2, . . . , up ∈W .

Define ŷ by the given formula. Then ŷ ∈W and y − ŷ ∈W⊥ since for each i = 1, 2, . . . , p we have

(y − ŷ) • ui = y • ui −
y • ui
ui • ui

ui • ui = 0.

To show uniqueness, suppose y = û+ v where û ∈W and v ∈W⊥.

Since we already have y = ŷ + z, we must have û− ŷ = z − v. But û− ŷ is in W while z − v is in W⊥,
so both expressions must be zero as W ∩W⊥ = {0}. This means we must have û = ŷ and v = z.

Definition. The vector ŷ, defined relative to y and W by the formula (*) in the preceding theorem, is

the orthogonal projection of y onto W . From now on we will write projW (y) = ŷ to refer to this vector.

Corollary. If W ⊆ Rn is any subspace then dimW⊥ = n− dimW .

Proof. The preceding theorem shows that W and W⊥ together span Rn. Therefore the union of any
basis for W with a basis for W⊥ also spans Rn.

The size of such a union is at most dimW +dimW⊥ and at least n, so n ≤ dimW +dimW⊥. This means
that dimW⊥ ≥ n−dimW. We showed last time that dimW⊥ ≤ n−dimW , so dimW⊥ = n−dimW .

Properties of orthogonal projections onto a subspace W ⊆ Rn.

Fact. If y ∈W then projW (y) = y. If y ∈W⊥ then projW (y) = 0.

Proposition. If v ∈W and y ∈ Rn and v 6= projW (y) then ‖y − projW (y)‖ < ‖y − v‖.

In words: the projection projW (y) is the vector in W that is closest to y.

Proof. Let ŷ = projW (y). Then y − v = (y − ŷ) + (ŷ − v).

The first term in parentheses is in W⊥ while the second term is in W .

Therefore by the Pythagorean theorem ‖y− v‖2 = ‖y− ŷ‖2 + ‖ŷ− v‖2 > ‖y− ŷ‖2 since ‖ŷ− v‖ > 0.

Fact. Suppose u1, u2, . . . , up is an orthonormal basis of W . Then

projW (y) = (y • u1)u1 + (y • u2)u2 + · · ·+ (y • up)up.

Define the matrix U =
[
u1 u2 . . . up

]
. Then projW (y) = UU>y.
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5 The Gram-Schmidt process

The Gram-Schmidt process is an algorithm that takes an arbitrary basis for some subspace of Rn as
input, and produces an orthogonal basis of the same subspace as output.

Theorem. Let W ⊆ Rn be a nonzero subspace. Then W has an orthogonal basis.

(The zero subspace {0} has an orthogonal basis given by the empty set, but we exclude this trivial case.)

Gram-Schmidt process. Suppose x1, x2, . . . , xp is any basis for W .

Then an orthogonal basis is given by the vectors v1, v2, . . . , vp defined by the following formulas:

v1 = x1.

v2 = x2 −
x2 • v1
v1 • v1

v1.

v3 = x3 −
x3 • v1
v1 • v1

v1 −
x3 • v2
v2 • v2

v2.

v4 = x4 −
x4 • v1
v1 • v1

v1 −
x4 • v2
v2 • v2

v2 −
x4 • v3
v3 • v3

v3.

...

vp = xp −
xp • v1
v1 • v1

v1 −
xp • v2
v2 • v2

v2 − · · · −
xp • vp−1
vp−1 • vp−1

vp−1.

These formulas are inductive: to compute any vi you need to have already computed v1, v2, . . . , vi−1.

More strongly, we can say the following. Let Wi = R-span{v1, v2, . . . , vi} for each i = 1, 2, . . . , p.

Then v1, v2, . . . , vi is an orthogonal basis for Wi and vi+1 = xi+1 − projWi
(xi+1).

(Our proof of the existence of orthogonal projections relies on this theorem.)

Proof. For i = 1, 2, . . . , p and y ∈ Rn define projWi
(y) = y•v1

v1•v1 v1 + y•v2
v2•v2 v2 + · · ·+ y•vi

vi•vi vi.

We want to show that v1, v2, . . . , vi is an orthogonal basis for Wi for each i.

If we assume that this is true for any particular value of i, then the formula vi+1 = xi+1 − projWi
(xi+1)

automatically holds, which means that vi+1 ∈ W⊥i so v1, v2, . . . , vi, vi+1 is also an orthogonal set, and
therefore an orthogonal basis for Wi+1.

The single vector v1 = x1 is necessarily an orthogonal basis for W1 = R-span{v1}.

Therefore v1, v2 is an orthogonal basis for W2, which means that v1, v2, v3 is an orthogonal basis for W3;
continuing in this way, we deduce that v1, v2, . . . , vi is an orthogonal basis for Wi for each i = 1, 2, . . . , p.
In particular v1, v2, . . . , vp is an orthogonal basis for Wp = W .

Remark. To find an orthonormal basis for a subspace W , first find an orthogonal basis v1, v2, . . . , vp.
Then replace each vector vi by ui = 1

‖vi‖vi. The vectors u1, u2, . . . , up will then be an orthonormal basis.

Example. Suppose x1 =


1
1
1
1

 and x2 =


0
1
1
1

 and x3 =


0
0
1
1

.
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These vectors are linearly independent and so are a basis for the subspace W = R-span{x1, x2, x3}.

To compute an orthogonal basis for W , we carry out the Gram-Schmit process as follows:

• We set v1 = x1 =


1
1
1
1

. Then v2 = x2 − x2•v1
v1•v1 v1 =


0
1
1
1

− 3
4


1
1
1
1

 =


−3/4

1/4
1/4
1/4

.

• Finally let v3 = x3 − x3•v1
v1•v1 v1 −

x3•v2
v2•v2 v2 =


0
0
1
1

− 1
2


1
1
1
1

− 2
3


−3/4

1/4
1/4
1/4

 =


0

−2/3
1/3
1/3

.

The vectors v1 =


1
1
1
1

 , v2 =


−3/4

1/4
1/4
1/4

 , v3 =


0

−2/3
1/3
1/3

 are then an orthogonal basis for W .
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6 Vocabulary

Keywords from today’s lecture:

1. Orthonormal vectors.

Two vectors u, v ∈ Rn are orthogonal if u • v = 0.

A set of vectors in Rn is orthogonal if any two of the vectors are orthogonal.

A set of vectors in Rn is orthonormal if the vectors are orthogonal and each vector is a unit vector.

Example: the standard basis e1, e2, . . . , en of Rn is orthonormal.

2. Orthogonal projection of a vector y ∈ Rn onto a subspace W ⊆ Rn.

The unique vector projW (y) ∈W such that y − projW (y) is orthogonal to every element of W .

If u1, u2, . . . , up is an orthonormal basis for W then

projW (y) = (y • u1)u1 + (y • u2)u2 + · · ·+ (y • up)up.

3. Orthogonal matrix.

A square matrix U whose columns are orthonormal. A better name for an orthogonal matrix would
be “orthonormal matrix,” but this term is not commonly used.

Equivalently, a matrix U is orthogonal if and only if U is invertible and U−1 = U>.

Example: every rotation matrix

[
cos θ − sin θ
sin θ cos θ

]
is orthogonal.

4. Gram-Schmidt process.

A specific algorithm whose input is an arbitrary basis x1, x2, . . . , xp for a subspace of Rn and whose
output is an orthogonal basis v1, v2, . . . , vp for the same subspace. Explicitly:

v1 = x1.

v2 = x2 −
x2 • v1
v1 • v1

v1.

v3 = x3 −
x3 • v1
v1 • v1

v1 −
x3 • v2
v2 • v2

v2.

v4 = x4 −
x4 • v1
v1 • v1

v1 −
x4 • v2
v2 • v2

v2 −
x4 • v3
v3 • v3

v3.

...

vp = xp −
xp • v1
v1 • v1

− xp • v2
v2 • v2

− · · · − xp • vp−1
vp−1 • vp−1

vp−1.
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