
MATH 2121 — Linear algebra (Fall 2024) Practice Problems #8 (due 13 November)

Instructions: Choose 4 problems and write down detailed solutions, showing all necessary work. You
can earn up to 4 extra credit points by correctly solving additional problems.1

Some of the problems are more challenging than others, and there is no need to solve all of them. Problems
that would not make reasonable exam questions are marked with a star.

To get full credit for the required part of the homework, you just need to make a good-faith attempt on
4 problems. The bar for receiving extra credit points for additional problems is higher.

You are free to discuss problems with other students and to consult whatever resources you want, but
you must write up your own solutions. Solutions copied from somewhere else will receive zero credit.

Submission: Please handwrite your answers and show all steps in your calculations, as you would on an
exam. Submit your hard copy solutions before the end of the day on the due date to your tutorial’s
homework submission box outside the 3rd floor math admin offices near Lift 25/26.

Please coordinate with your tutorial TA directly if you need to submit solutions electronically.

1. Suppose V = {p(x) = c0 + c1x + c2x
2 + c3x

3 : c0, c1, c2, c3 ∈ R} is the 4-dimensional vector space
of polynomials of degree ≤ 3. Let T : V → V be the linear map defined by T (p(x)) = p(1− x).

This means that T (1 + 2x+ x3) = 1 + 2(1− x) + (1− x)3 = 4− 5x+ 3x2 − x3, for example.

Let ai = xi−1 and bi = (x+ 1)i−1 for i = 1, 2, 3, 4.

Then a1, a2, a3, a4 and b1, b2, b3, b4 are two bases for V .

As usual let e1, e2, e3, e4 be the standard basis of R4.

There are invertible linear maps f, g : R4 → V with f(ei) = ai and g(ei) = bi for all i = 1, 2, 3, 4.

This means that f−1 ◦ T ◦ f and g−1 ◦ T ◦ g and f−1 ◦ g are all linear maps R4 → R4.

Let A, B, and P be the standard matrices of f−1 ◦ T ◦ f , g−1 ◦ T ◦ g, and f−1 ◦ g, respectively.

Compute these matrices, and check that det(A) = det(B) and tr(A) = tr(B).

*2. Suppose V is an n-dimensional vector space and T : V → V is a linear map.

Assume a1, a2, . . . , an and b1, b2, . . . , bn are two bases for V .

As usual let e1, e2, . . . , en be the standard basis of Rn.

There are invertible linear maps f, g : Rn → V with f(ei) = ai and g(ei) = bi for all i = 1, 2, . . . , n.

This means that f−1 ◦ T ◦ f and g−1 ◦ T ◦ g and f−1 ◦ g are all linear maps Rn → Rn.

Let A, B, and P be the standard matrices of f−1 ◦ T ◦ f , g−1 ◦ T ◦ g, and f−1 ◦ g, respectively.

Find an expression for A in terms of B and P , and use this to explain why A and B have the same
trace and the same determinant.

The determinant and trace of T are defined to be the values of det(A) = det(B) and tr(A) = tr(B).
To compute these values, you have to pick a basis for V , but this exercise shows that the numbers
you get are the same no matter which basis you use.

3. Adopt the same setup as in the previous problem.

Explain why it still holds that T is invertible if and only det(T ) 6= 0.

In other words, explain why T is an invertible linear map if and only if the matrix A is invertible.

1 There will be ∼10 weeks of assignments, each with ∼10 practice problems, so you can earn up to ∼40 equally weighted
extra credit points. The maximum amount of extra credit you can earn is 5% of your total grade for the semester.
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MATH 2121 — Linear algebra (Fall 2024) Practice Problems #8 (due 13 November)

*4. For numbers a, b, c, d ∈ R define

[
a
c

]
•
[
b
d

]
= ab+ cd. For v ∈ R2 define ‖v‖ =

√
v • v.

Suppose v1, v2 ∈ R2 are nonzero vectors. This exercise walks through a proof of the sometimes
useful identity v1 • v2 = ‖v1‖‖v2‖ cos(θ) where θ is the angle between v1 and v2.

To define the angle θ precisely, assume that rotating v1 counterclockwise by θ radians gives a
positive scalar multiple of v2, and that v1 and v2 are labeled such that this angle has θ ∈ [0, π].
(This means that if we have to go more than π radians counterclockwise from v1 to get to v2, then
we switch the names of the vectors.)

(a) Define u1 and u2 to be the unit vectors in the directions of v1 and v2, so ui = 1
‖vi‖vi.

Explain why v1 • v2 = ‖v1‖‖v2‖(u1 • u2).

(b) Suppose ψ ∈ [0, 2π) and M =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
. Check that (Mu1) • (Mu2) = u1 • u2.

(c) Explain why you can choose a value of ψ such that Mu1 =

[
1
0

]
and Mu2 =

[
cos(θ)
sin(θ)

]
where θ is the angle between v1 and v2. Conclude that u1 • u2 = cos(θ).

Combining all three parts tells us that v1 • v2 = ‖v1‖‖v2‖ cos(θ).

5. Do there exist two linearly independent vectors in R4 that are orthogonal to all three of the vectors
1
−2

1
4

 ,


3
−1

2
5

 , and


7
1
4
7

?

Find two such vectors if they exist, and otherwise explain why there are no such vectors.

6. Consider the plane P =


 x
y
z

 ∈ R3 : 3x− 2y + 6z = 0

 in R3.

(a) The subspace P is 2-dimensional. Find an orthogonal basis for P .

(b) Find the vector in P that is closest to v =

 1
2
1

.

7. Find an orthonormal basis for the subspace of vectors of the form
a+ 3b+ 2c

3a+ 2b+ 4c
2a+ 5b+ 4c
6a+ 5b+ 4c


where a, b, c ∈ R are real numbers.

*8. Suppose A is a square matrix with all entries in R.

Let a, b ∈ R and suppose λ = a+ bi ∈ C is an eigenvalue for A.

(a) Show that if A> = −A then a = 0.

(b) Show that if A> = A then b = 0.

(c) Show that if A> = A−1 then a2 + b2 = 1.

*9. Suppose A is a square matrix with all entries in C. Determine whether the eigenvalue proper-
ties in the previous exercise still hold. That is, for each of the three statements, either find a
counterexample or show that the given property for λ is still true when A has complex entries.
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*10. Define

1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , i =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , j =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , k =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .
As with complex numbers, when a, b, c, d ∈ R we abbreviate by setting

a+ bi+ cj + dk = a1 + bi+ cj + dk =


a −b −c −d
b a −d c
c d a −b
d −c b a

 .
Now consider the real vector space of quaternionic numbers H = {a+ bi+ cj + dk : a, b, c, d ∈ R}.

(a) Compute all nine products yz for y, z ∈ {i, j, k}.

Conclude that H is closed under multiplication, that is, if y, z ∈ H then yz ∈ H.

However, multiplication in H is not commutative (as it is in R and C).

Why is multiplication in H associative? (In the sense that x(yz) = (xy)z for all x, y, z ∈ H.)

(b) Suppose z = a+ bi+ cj + dk ∈ H. Find a formula for det(z).

(c) Suppose z = a+ bi+ cj + dk ∈ H is nonzero.

Find a formula for z−1 and check that this element is also still in H.

*11. Suppose p(z) = anz
n + · · ·+ a2z

2 + a1z + a0 is polynomial with n > 0, a0, . . . , an ∈ C, and an 6= 0.

Two different versions of the fundamental theorem of algebra:

(A) There are complex numbers r1, r2, . . . , rn ∈ C such that p(z) = an(z − r1)(z − r2) · · · (z − rn).

(B) There is a complex number r ∈ C with p(r) = 0.

The goal of this exercise is the prove these two statements are equivalent.

More precisely, we want to see that if (A) holds for any polynomial p(z) of the given form, then
(B) also holds for any polynomial p(z) of the given form, and if (B) holds for any polynomial p(z)
of the given form, then (A) also holds for any polynomial p(z) of the given form.

(a) Warmup: assume (A) holds for p(z). Explain why (B) holds for p(z).

This shows that (A) implies (B). The next two parts show that (B) implies (A).

(b) Suppose r ∈ C satisfies p(r) = 0.

Explain why there are complex numbers b0, . . . , bn−1 ∈ C with bn−1 6= 0 such that

p(z + r) = (bn−1z
n−1 + · · ·+ b2z

2 + b1z + b0)z. (*)

How is bn−1 related to an?

(c) Continue the setup of part (b).

Use (*) to explain why there are complex numbers c0, . . . , cn−1 ∈ C with cn−1 6= 0 such that

p(z) = g(z)(z − r) if we define g(z) = cn−1z
n−1 + · · ·+ c2z

2 + c1z + c0.

How is cn−1 related to bn−1? How is c0 related to b0?
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Now assume (B) holds. We deduce (A) using an argument by contradiction: suppose p(z) is a
polynomial of minimal degree n > 0 for which there is no factorization of the form in (A).

Property (B) tells us that there is some r ∈ C with p(r) = 0.

This means by (b) and (c) that p(z) = g(z)(z − r) can be partially factored.

However, g(z) has smaller degree n− 1 than p(z), so by hypothesis g(z) has a factorization of the
form in (A), which means that p(z) = g(z)(z − r) also has such a factorization ; contradiction.

*12. Suppose p(z) = anz
n + · · ·+ a2z

2 + a1z + a0 is polynomial with n > 0, a0, . . . , an ∈ C, and an 6= 0.

This exercise walks through a proof of the claim that

• There is a complex number r ∈ C with p(r) = 0.

In the previous exercise we saw that this is equivalent to the Fundamental Theorem of Algebra.

This exercise is fairly long, but if you want to understand why this fundamental theorem is true, it
may be interesting!

(a) Warmup: what number works for r if we have a0 = 0?

For the rest of this exercise assume 0 6= a0 ∈ C.

For 0 < N ∈ R define C(N) ⊆ R2 to be the set of points (x, y) where x is the real part of

p(N · cos θ +N · sin θ · i)

and y is the imaginary part, as θ ∈ R varies from 0 to 2π.

C(N) is a closed curve in xy-plane that starts and ends at the point (x, y) = (Re(p(N)), Im(p(N))).

Define W (N) to be the number of times C(N) travels counter-clockwise completely around the
origin (x, y) = (0, 0) as θ varies from 0 to 2π. This called the winding number of p(z).

(b) Explain why for any positive integer n we have

(N · cos θ +N · sin θ · i)n = Nn · cos(nθ) +Nn · sin(nθ) · i.

Use the fact that N · cos θ +N · sin θ · i is N times a 2× 2 rotation matrix.

(c) Suppose p(z) = zn + 1.

Deduce that C(N) draws a circle of radius Nn centered at (x, y) = (1, 0), which travels n
times around its center point as θ varies from 0 to 1.

In this case, what is W (N) if 0 < N < 1 and what is W (N) if N > 1?

Draw a picture of C(N) for each of these two cases.

(d) Suppose p(z) = z4 − 4z3 + 5.

Find a way to draw C(N) and compute W (N) where N = 0.1, 1, 2, 10, and 100.

One way to do this is to use the parametric plot feature of Wolfram Alpha.

Do some experiments to convince yourself that when N ≈ 0 is very small the curve C(N) is
always very close to the nonzero point (x, y) = (5, 0) so W (N) = 0, while if N � 0 is very large
then C(N) looks like a circle of radius N4 that travels 4 times around the origin so W (N) = 4.

Moreover, as N increases, the value of W (N) can only change if there is real number N > 0
such that the curve C(N) passes through the origin.

(e) Suppose for a general p(z) the curve C(N) contains the origin (0, 0).

Explain why this means there is some r ∈ C with p(r) = 0.
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The observations you made in (b) for the given polynomial p(z) are completely generic.

For any p(z), when N ≈ 0 is very small the curve C(N) is very close to the nonzero point

(x, y) = (Re(a0), Im(a0))

so W (N) = 0, while if N � 0 is very large then C(N) looks like a circle of radius Nn centered at
the same point, which travels n times around the origin so W (N) = n.

But in order for W (N) to change value, there must be some N > 0 such that (0, 0) ∈ C(N). Then,
using (e), we deduce that there is some r ∈ C with p(r) = 0.

*13. This problem has two options.

Either: ask ChatGPT or another LLM to explain a concept from this week’s lecture that you
found confusing. Print out a transcript of your conversation. You can only receive credit for this
question if (1) the LLM’s explanation is correct and (2) the explanation was genuinely helpful to
your understanding. We will judge item (2) based on the length and depth of your transcript.

Or: find an instance where an LLM like ChatGPT gives an incorrect explanation when asked
about a concept or problem related to this week’s lecture. Print out a transcript of your conversation
and then explain what the error is. You cannot receive credit for this question if the error is
just a simple miscalculation or bad arithmetic. Try to encounter an interesting conceptual mistake.
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