
221
- Lecture#4

Outline for today :

① Review : vectors
,

linear combinations
, span

② Matrix-vector multiplication ,
matrix eas

③ Linear independence

Announcements : online Hw2 + offline HW]



1 Last time: Vectors

A (column) vector of size n is an n⇥ 1 matrix: v =

2

6664

v1
v2
...

vn

3

7775
.

Let Rn
be the set of all vectors with exactly n rows.

We can add two vectors of the same size:

2

6664

v1
v2
...

vn

3

7775
+

2

6664

u1

u2

...
un

3

7775
=

2

6664

u1 + v1
u2 + v2

...
un + vn

3

7775
.

& matrix
with I column

E

[

↓

two vector operations :+ and



We can multiply a vector by a scalar : cv = c

2

6664

v1
v2
...

vn

3

7775
=

2

6664

cv1
cv2

...
cvn

3

7775
for c 2 R.

We draw a =


a1
a2

�
2 R2

as arrow in Cartesian plane from origin to (x, y) = (a1, a2):

[i]+) =/) means"number" / : /
⑧ &

- --

↑ = (a] ↑
- = (8)↑
->

Can also draw vectors in R3 as arrows



Relative to this picture, the sum a+ b of two vectors a, b 2 R2
is the arrow from the

origin to the opposite vertex of the parallelogram with sides a and b:

The zero vector 0 2 Rn
is the vector 0 =

2

6664

0

0

...
0

3

7775
. We always have 0+ v = v+0 = v.

scalar multiplication :-

I ut
I...

- 11
u

↑ by what is x + x +z ?

↑x+y+z j&

&



augmented
linear system 5- matrix to

vectorequation

2x ,
+32

=T
XS UX2+S2=0 (2)
* + 22

= 1

viv b

[v vz(b)

& have -
same
solutions



A linear combination of vectors v1, v2, . . . , vp 2 Rn
is any vector of the form

y = c1v1 + c2v2 + · · ·+ cpvp 2 Rn
for any choice of numbers c1, c2, . . . , cp 2 R.

The span of vectors v1, v2, . . . , vp 2 Rn
is the set of all of their linear combinations.

We denote this set by

R-span{v1, v2, . . . , vp} or span{v1, v2, . . . , vp}.

Proposition. If v1, v2, . . . , vp 2 Rn
, then a vector y 2 Rn

belongs to R-span{v1, v2, . . . , vp}
if and only if the n⇥ (p+1) matrix

⇥
v1 v2 . . . vp y

⇤
is the augmented matrix

of a consistent linear system.

givenvectors
(all of same size)
-

6[
↑ - givenars-

E
L=

(usually an infinite set)

[
-m --

# A vi
va Va Y

W

RREF(A) has ·. 2(2) +s() + 12)i) : (5)
no pivot position

y is a linear combination of vi ,Va
,

v
>

in last column



In terms of geometry, the span of a set of vectors in R2
is either a point (at the

origin), a line (through the origin), or the whole plane R2
.

for vectors inH ,
the Span is eithera point

8 a line , or (tewhole) plane .

point : M-span[(87) = [c(s) : COR] : S1877

Conly oneway picture:
line : R-span(() =v] = (cr/ceR] if - + 18)
(many ways)

picture : pan



The span of a set of vectors in R3
is either a point (at the origin), a line (through

the origin), a plane (containing the origin), or all of R3
.

plane
: K-span (anytwovectorsnota

(many ways)

↑
↓ Owis is





2 Multiplying matrices and vectors

We have been using matrices as a compact notation for representing linear systems.

Today we introduce a second way of viewing a matrix: namely, as an operator that

transforms one vector to another.

*

-
F

--

E How to multiply an men
matrix A with VER

v
A

(i)+(f)-

m =3
, n +U result is in R*TR [Arisalinear coma



Definition. If A is a matrix with columns a1, a2, . . . , an 2 Rm
and v 2 Rn

, so that

A =
⇥
a1 a2 . . . an

⇤
and v =

2

6664

v1
v2
...

vn

3

7775

then the matrix-vector product Av is the vector in Rm
given by:

Av =
⇥
a1 a2 . . . an

⇤

2

6664

v1
v2
...

vn

3

7775
= v1a1 + v2a2 + · · ·+ vnan 2 Rm.

Thus Av is the linear combination of the columns of A with coe�cients given by the

entries of v.

A is man matrix, A =[,an --.an)
veR

, v = (i) , Avelm

--IE
- -

-



Example. If A =


1 2 �1

0 �5 3

�
and v =

2

4
4

3

7

3

5 then a1 =


1

0

�
, a2 =


2

�5

�
,

and a3 =


�1

3

�
so

Av = 4a1 + 3a2 + 7a3 =


4

0

�
+


6

�15

�
+


�7

21

�
=


3

6

�
.

Example. If A =

2

4
2 �3

8 0

�5 2

3

5 and v =


4

7

�
then a1 =

2

4
2

8

�5

3

5 and a2 =

2

4
�3

0

2

3

5

so we have

Av = 4a1 + 7a2 = 4

2

4
2

8

�5

3

5+ 7

2

4
�3

0

2

3

5 =

2

4
8

32

�20

3

5+

2

4
�21

0

14

3

5 =

2

4
�13

32

�6

3

5 .

multiplying 2x3 be 3 to get
matrix vector

q
↑↑↑ nai san 793

- =Aver

V
-
-

=AveR

49) 792

3x2 2x) 3x)multiplying with a to get a
matrix Vector rector



Comments Ar is only defined when

## columns of A) = (# rows of v

in case , (Hrows of Av) = /# rows of A)



If A is m⇥ n then Av is only defined for v 2 Rn
, and in this case Av 2 Rm

.

Thus A transforms vectors in Rn
to vectors in Rm

.

This transformation is linear :

1. If A is an m⇥ n matrix and u, v 2 Rn
then A(u+ v) = Au+ Av.

2. If A is an m⇥ n matrix and v 2 Rn
and c 2 R then A(cv) = c(Av).

->

I ↑
&

[ L

C[ #

it A = (c) and v = (h) , w = (wi)
-

then Acr +) =Al = critwic+w
-

= viai waitr+wa

=> (vii + maz) + (wtwz) =ArtAw
- ~
- Av =An



why "linear"
: multiplication byA transforms

lines to lines

a lige is the spac of one nonzero
rector (Rspank

then define AL (Aw)weL)
= R-span/Av] another

-line

Often we can interpret multiplication
by 2x2 matrices

geometrically
Ex #fA = 19 % ) then

A() = (i) + (j) = [ii+ (5) = (i)
The Vector Ar is justv rotated go can



Av -
N

-

n

A = 19 -)



Let A and v be the general m⇥ n matrix and n-row vector given by

A =

2

6664

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

3

7775
and v =

2

6664

v1
v2
...

vn

3

7775
.

To compute Av: match up entries in ith column of A with the ith row of v.
2

6664

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

3

7775

2

6664

v1
v2
...

vn

3

7775
=

2

6664

a11v1 + a12v2 + · · ·+ a1nvn
a21v1 + a22v2 + · · ·+ a2nvn

...
am1v1 + am2v2 + · · ·+ amnvn

3

7775
.

For example,
⇥
1 2 3 4

⇤

2

664

5

6

7

8

3

775 = 1 ·5+2 ·6+3 ·7+4 ·8 = 5+12+21+32 = 70.

&
oToI
20↳
I I

A
[

IXU
V

4x)



=>·] columnsoo

#rais(a) (a) * -

A
of

A



3 Matrix equations

If A is an m⇥ n matrix with columns a1, a2, . . . , an 2 Rm
and

x =

2

6664

x1

x2

...
xn

3

7775
and b =

2

6664

b1
b2
...

bm

3

7775
2 Rm

where each xi is a variable, then we call Ax = b a matrix equation.

Proposition. The matrix equation Ax = b has the same solutions as both the

vector equation x1a1+x2a2+ · · ·+xnan = b and the linear system whose augmented

matrix is
⇥
a1 a2 . . . an b

⇤
.

Proposition. The matrix equation Ax = b has a solution if and only if b is a linear

combination of the columns of A, that is, b 2 R-span{a1, a2, . . . , an}.

A = (a, 22 - - an) ⑮b a matrix

↑
equation

/  ber, !
I =(13)
*



linear system angmented
on matrix equation

I x,
+ 3xz -x3=0

(iii) Ax=b

x + +24xz =S
A - (iii)

(coefficient matrix)

Vector equation
x=1)

* (i) + x-(i) +x(i)
=1)

b = 15)



Example. Let A =

2

4
1 3 4

�4 2 �6

�3 �2 �7

3

5 and b =

2

4
b1
b2
b3

3

5.

Does Ax = b have a solution for all choices of b1, b2, b3 2 R?

The system Ax = b has a solution if and only if

2

4
1 3 4 b1

�4 2 �6 b2
�3 �2 �7 b3

3

5

is the augmented matrix of a consistent linear system. We can determine if this

system is consistent by row reducing the matrix to echelon form:

2

4
1 3 4 b1

�4 2 �6 b2
�3 �2 �7 b3

3

5 !

2

4
1 3 4 b1
0 14 10 4b1 + b2
0 7 5 3b1 + b3

3

5 !

2

4
1 3 4 b1
0 14 10 4b1 + b2
0 0 0 b1 � 1

2b2 + b3

3

5 .

[
[

ansmatrix
of

↳ a linear system
Isame solutions as Ax=b)

in echelenform
d

[
[
& maybe

leading
entre

we want to know if last colum has a pivot (if nonzero

as this would mean Ax=b has no solution



The last matrix is in echelon form, so its leading entries are the pivot positions of

our first matrix. The linear system is consistent if and only if the last column does

not contain a pivot position. This occurs precisely when b1 � 1
2b2 + b3 = 0.

But we can choose numbers such that b1� 1
2b2+b3 6= 0: take b1 = 1 and b2 = b3 = 0.

Therefore our original matrix equation Ax = b does not always have a solution.

[

=It ----

only if
this holds does

Ax =b

have a solution





We can generalize this example:

Theorem. Let A be an m ⇥ n matrix. The following properties are equivalent,

meaning that if one of them holds, then they all hold, but if one of them fails to

hold, then they all fail:

1. For each vector b 2 Rm
, the matrix equation Ax = b has a solution.

2. Each vector b 2 Rm
is a linear combination of the columns of A.

3. The span of the columns of A is the set Rm
.

(Say this as: “the columns of A span Rm
”.)

4. A has a pivot position in every row.

g
O
O

g -> not obviously equivalents
but computable

Pf idea : DO correspond to when
-

(A/b] has no pivot in last column for
all b.

this is only guarantee if RRffA) = 111 ._] haspirosnun,



as if RREf(A) has pivots in all rows then

RREf(A(b)) = (RReAsi)
= [i]

&

nopic
o



4 Linear independence

Let v1, v2, . . . , vp be vectors in Rn
.

These vectors are linearly independent if the only solution to the vector equation

x1v1 + x2v2 + · · ·+ xpvp = 0

is given by x1 = x2 = · · · = xp = 0.

The vectors v1, v2, . . . , vp are linearly dependent otherwise, that is, if there are num-

bers c1, c2, . . . , cp 2 R, at least one of which is nonzero, such that

c1v1 + c2v2 + · · ·+ cpvp = 0.

I



Example. If v1 =

2

4
1

2

3

3

5, v2 =

2

4
4

5

6

3

5, and v3 =

2

4
2

1

0

3

5.

Then v1 + v3 =

2

4
3

3

3

3

5 and v2 + v3 =

2

4
6

6

6

3

5, so

2(v1 + v3)� (v2 + v3) = 2v1 � v2 + v3 = 0.

Hence v1, v2, v3 are linearly dependent.





It is usually not so easy to determine whether a given list of vectors is linearly

independent or not. The following result gives a general way to check this:

Theorem. The columns of a matrix A are linearly independent if and only if A has

a pivot position in every column.[





Corollary. Let v1, . . . , vp 2 Rn
. If p > n then the vectors are linearly dependent.

Proof. The n ⇥ p matrix A =
⇥
v1 v2 . . . vp

⇤
has at most min(n, p) pivot

columns, because each column contains at most one pivot position, and each row

contains at most one pivot position. Therefore if p > n then A does not have a pivot

position in every column so its columns are linearly dependent.[




