
MATH2121 - Lecture#

Outline:

① Review-matrix equations

& Linear independence in more depth
③ Key idea : matrices - lineartransformations

Annancements : another round of HW assignments



1 Last time: multiplying vectors and matrices

Given a matrix A =

2

6664

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

3

7775
and vector v =

2

6664

v1
v2
...

vn

3

7775
2 Rn

define

Av = v1

2

6664

a11
a21
...

am1

3

7775
+ v2

2

6664

a12
a22
...

am2

3

7775
+ · · ·+ vn

2

6664

a1n
a2n

...
amn

3

7775
2 Rm.

Call Av the product of A and v, or the vector given by multiplying v by A.

Example.


1 2 3
5 6 7

�2

4
�1
0
1

3

5 = �

1
5

�
+0


2
6

�
+


3
7

�
=


�1 + 0 + 3
�5 + 0 + 7

�
=


2
2

�
.

ux) mx)

Ya can multiply m A
with

Vectorv
to get Vector
"Av"

the span of the

columns of A

is [Ax) xR]

A v Av

↳ ↑
Rul Av is a

linear combination of the columns of A
and any such lin . comb . is given by (A times somewester)



Picturein
[I]) (au trows of Au = #rows of 1

A



If A is an m⇥ n matrix, x =

2

6664

x1

x2

...
xn

3

7775
, b 2 Rm

, then Ax = b is a matrix equation.

Ax = b has the same solutions as linear system with augmented matrix
⇥
A b

⇤
.

Theorem. Let A be an m⇥ n matrix. The following are equivalent:

1. Ax = b has a solution for any b 2 Rm
.

2. The span of the columns of A is all of Rm
.

3. A has a pivot position in every row.

vector ofn variables

~ ② alsomeans RREFCA) has no zero rows

②

I I

&↳ coeff matrix = A =(ii)
aug .
matrix = (Alb]

b
x,+ 2x2

+3x,+2xu=7

Si =(2)
Same

S
linear system in

Cautions 2x,+UxztSxy+Xy
=2

2 egs , Wars



why does "pivot inevery row" E "Ax =b has a solutionfor anyb

000D?7??3

D If A has pirot in every now then
RREF(A) = [00car000000001I
000 p?7??3[ iand this means RREf([Ab1) = 0 0000. J . We000000001

-w

don't know what iis ,
but RREFIA) ??

and thismeans Ax=b has
there are NO plucts In LAST COLUMN

.
a solution

② If A lacks a pivot in some row then RREA) =Can
so RRf((Ab)) =[i] where 2,2

,
23 depend and00000000 24

but for some b we can make zo to so pivot in last cd , so

14=b has no solution(for some special b)



Example. The matrix equation

2

4
1 3 4

�4 2 �6

�3 �2 �7

3

5

2

4
x1

x2

x3

3

5 =

2

4
b1
b2
b3

3

5

may fail to have a solution since

RREF

0

@

2

4
1 3 4

�4 2 �6

�3 �2 �7

3

5

1

A =

2

4
1 0 ⇤
0 1 ⇤
0 0 0

3

5

has pivot positions only in rows 1 and 2.

A =1) Does Ax =b always have
- 3 -2 =7

a solution for all bes ?

REF(A)- !c-zero now
⑩

as there are not pivots
in every row of A



Terminology : choose vectors v
, va vs- -. up in

R

y = GV+crit
- -
+ CpVp isalinear combination

of our vectors if C ,,-, eR

the span of vi vn--up is the
(infinitel set of all of

their linear combinations. Denoted Re-span(u ,
v2
,
--
, p)

Notice : Rospan(v ,ra,-..ri] < R-span(ni ,Visit)
↑

Y means

"is contained in"

-

(the sets could alsobe



2 Linear independence

We briefly introduced the notion of linear independence last time.

Suppose we have some vectors v1, v2, . . . , vp 2 Rn
.

Notation: For sets S and T write S ✓ T to mean that every element of S is in T .

Recall that the span of a set of vectors is the set of all possible linear combinations

of the given vectors. If you have a smaller set of vectors inside a bigger set, then

the span of the smaller set is always contained in the span of the bigger set.

This means that if y 2 Rn
is any vector then

R-span{v1, v2, . . . , vp} ✓ R-span{v1, v2, . . . , vp, y}.

When is this containment equality?

When is it strict (meaning the two sides are not equal)?

I I

I



Case 1 If y is not a linear combination of v1, v2, . . . , vp then

R-span{v1, v2, . . . , vp} 6= R-span{v1, v2, . . . , vp, y}
since y is in the span on the right but not on the left.

Case 2 Suppose y is a linear combination of v1, v2, . . . , vp. This means that

y = c1v1 + c2v2 + · · ·+ cpvp for some ci 2 R.
Then every element of R-span{v1, . . . , vp, y} is also in R-span{v1, . . . , vp}, since
a1v1 + a2v2 + · · ·+ apvp + by| {z }

2R-span{v1,v2...,vp,y}

= (a1 + bc1)v1 + (a2 + bc2)v2 + · · ·+ (ap + bcp)vp| {z }
2R-span{v1,v2,...,vp}

.

In other words, it holds that R-span{v1, v2, . . . , vp} ◆ R-span{v1, v2, . . . , vp, y}.

But we already know that R-span{v1, v2, . . . , vp} ✓ R-span{v1, v2, . . . , vp, y}.

The only way that ◆ and ✓ can both hold is if

R-span{v1, v2, . . . , vp} = R-span{v1, v2, . . . , vp, y}.

[ [strict]

[equal]

ICo
and in comb of vis

& y can be rewritten

as a lin. comb of just the vis





Write S ( T to mean that S ✓ T and S 6= T .

Definition. The vectors v1, v2, . . . , vp 2 Rn
are linearly independent if

{0} ( R-span{v1} ( R-span{v1, v2} ( R-span{v1, v2, v3} ( · · · ( R-span{v1, v2, . . . , vp}.

Not the same definition as last lecture, but we shall see in a bit that it is equivalent.

Example. v1 =

2

4
1

0

0

3

5, v2 =

2

4
0

1

0

3

5, v3 =

2

4
0

0

1

3

5 are linearly independent, since

8
<

:

2

4
0
0
0

3

5

9
=

; (

8
<

:

2

4
a
0
0

3

5 : a 2 R

9
=

; (

8
<

:

2

4
a
b
0

3

5 : a, b 2 R

9
=

; (

8
<

:

2

4
a
b
c

3

5 : a, b, c 2 R

9
=

; .

New (but equivalent) def of linear independence :
left side is

↑ means contained in

right side but NOT
equal

# # # # #

the sequence of spans is strictly increasing

-

# #
=
3

Span (vi) # Span(v,va) # Span(vi ,Va,vs)



Picture if v = (2) and w = [i] then
-

## R-span[v] -
R-Span(v ,w] So v ,w are

L
=I·if u =(-5]

independent



Example. v1 =

2

4
1

�1

0

3

5, v2 =

2

4
0

1

�1

3

5, v3 =

2

4
�1

0

1

3

5 are not linearly independent:

R-span{v1, v2} = R-span{v1, v2,�v1 � v2} = R-span{v1, v2, v3}.

When vectors are not linearly independent, we say they are linearly dependent .
- I IC.

true that [17] #span(vi) # Spanivival

but Span(v .,+2) = Span (v,V,v)

because Vs = -4
-Un Espan (vi,2)





A linear dependence among v1, v2, . . . , vp is a way of writing the zero vector as

0 = c1v1 + c2v2 + · · ·+ cpvp

for some c1, c2, . . . , cp 2 R that are not all zero.

If 0 = c1v1 + c2v2 + · · ·+ cpvp is a linear dependence then the matrix equation

⇥
v1 v2 . . . vp

⇤

2

6664

x1

x2

...
xp

3

7775
= 0

has two di↵erent solutions given by (0, 0, . . . , 0) and (c1, c2, . . . , cp).

(This means the matrix equation has infinitely many solutions — why?)

Proposition (defn of independence from last time). The vectors v1, v2, . . . , vp 2 Rn

are linearly independent if and only if no linear dependence exists among them.

=> (i)++ (i) is a lineardependence among (i) , (i) ,fil

⑫merosolutionto
[





How to determine if v1, v2, . . . , vp 2 Rn
are linearly independent.

• Form the n⇥ p matrix A =
⇥
v1 v2 . . . vp

⇤
.

• Reduce A to echelon form to find its pivot columns.

• If every column of A has a pivot, then the vectors are linearly independent.

If some column of A is not a pivot, then the vectors are linearly dependent.

Algorithm

⑨

&

O

⑧

- if vi = (2) , va = (n) - A = (m)

-> RREF(A) = (i) only has one pivot-> DEPENDENT

= if v = (2) ,
n
= (5)+ A(2 =s)

-> RREfIA) = [7 has two pivots-> INDEPENDENT



Example. The vectors

2

4
1

0

�1

3

5,

2

4
2

3

5

3

5, and

2

4
5

9

16

3

5 are linearly dependent since

A =

2

4
1 2 5

0 3 9

�1 5 16

3

5 ⇠

2

4
1 2 5

0 3 9

0 7 21

3

5 ⇠

2

4
1 2 5

0 1 3

0 1 3

3

5 ⇠

2

4
1 0 �1

0 1 3

0 0 0

3

5 = RREF(A)

where ⇠ denotes row equivalence.

The last matrix has no pivot position in column 3. In fact, we have

�

2

4
1

0

�1

3

5+ 3

2

4
2

3

5

3

5�

2

4
5

9

16

3

5 =

2

4
0

0

0

3

5 = 0.

-

G
E

here is a linear ----
dependence :

so therectors

where do (c ,(,3) = (-1 , 3 , -1) come from? are linearly

↳ a solution Ax = () [t) dependent



Alternatively:

2

4
1

0

�1

3

5,

2

4
2

3

5

3

5, and

2

4
5

9

15

3

5 are linearly independent, since

A =

2

4
1 2 5

0 3 9

�1 5 15

3

5 ⇠

2

4
1 2 5

0 3 9

0 7 20

3

5 ⇠

2

4
1 2 5

0 1 3

0 0 �1

3

5 ⇠

2

4
1 0 0

0 1 0

0 0 1

3

5 = RREF(A).

Every column of A contains a pivot, so three vectors are linearly independent.

E
C
S





Facts about linear independence.

1. A single vector v is linearly independent if and only if v 6= 0.

2. A list of vectors in Rn
is linearly dependent if it includes the zero vector.

3. Vectors v1, v2, . . . , vp 2 Rn
are linearly dependent if and only if some vector vi

is a linear combination of the other vectors v1, . . . , vi�1, vi+1, . . . , vp.

We saw this in the previous example:

2

4
5

9

16

3

5 = 3

2

4
2

3

5

3

5�

2

4
1

0

�1

3

5.

4. If p > n then any list of p vectors in Rn
is linearly dependent.

Example.


1

2

�
,


1

3

�
,


5

60

�
2 R2

are linearly dependent since 3 > 2.

consider RREF((v)) which is (C) a let
&
C

O
if vi =0the
columni of

RREf((v, ---up))
is also g
zero





3 Linear transformations

A function f takes an input x from some set X and produces an output f(x).

We write f : X ! Y to mean that f is a function that takes inputs from the set X
and gives outputs that are contained in the set Y .

The set X is called the domain of the function f .

The set Y is called the codomain of f .

Every element x 2 X is a valid input to f .

Not every y 2 Y needs to occur as an output of f .

L

-

-

-

= the formula f(x) =x defines a function f: R+R

but no negative number occurs as
an output





Definition. Let f : Rn ! Rm
be a function whose domain and codomain are sets of

vectors. The function f is a linear transformation if both of these properties hold:

(1) f(u+ v) = f(u) + f(v) for all vectors u, v 2 Rn
.

(2) f(cv) = cf(v) for all vectors v 2 Rn
and scalars c 2 R.

Example. If A is an m ⇥ n matrix and T : Rn ! Rm
is the function with the

formula T (v) = Av for v 2 Rn
then T is a linear function.

Linear transformations have some additional properties worth noting:

Proposition. If f : Rn ! Rm
is a linear transformation then

(3) f(0) = 0.

(4) f(u� v) = f(u)� f(v) for u, v 2 Rn
.

(5) f(a1v1+a2v2+ · · ·+apvp) = a1f(v1)+ · · ·+apf(vp) for any ai 2 R and vi 2 Rn
.

we are interested in functions with vector inputs inA

and rector cutputs in Rm
: f : /"-DE

& I
- "compatible with

vectoroperations
"

I I /transformation

I
"compatible with linear combinations"



Geometric intuition : if
S&RV is any shape

then fls)(f() /veSY is another

(possibleweird) shape inside codomain of f

Idea : if f : R+R
is linear

,
and

S = (aline in1) then f(s)
= (a line inHM)



Define e1, e2, . . . , en 2 Rn
as the vectors

e1 =

2

666664

1

0

0

...
0

3

777775
, e2 =

2

666664

0

1

0

...
0

3

777775
, . . . , en�1 =

2

666664

0

...
0

1

0

3

777775
, and en =

2

666664

0

...
0

0

1

3

777775
.

Fact. If A is an m⇥ n matrix then Aei is the ith column of A.

Proof. Just do the calculation. For example


1 2 3 4

5 6 7 8

�
e3 =


1 2 3 4

5 6 7 8

�
2

664

0

0

1

0

3

775 =


3

7

�
.

-> call these
elementary (basis) vectors

-

I I
es

A

⑧

&/17+of





Theorem. Suppose T : Rn ! Rm
is a linear transformation.

Then there is a unique m⇥ n matrix A such that T (v) = Av for all v 2 Rn
.

The matrix A has the formula A =
⇥
T (e1) T (e2) . . . T (en)

⇤
.

Proof. Define A =
⇥
T (e1) T (e2) . . . T (en)

⇤
. If w 2 Rn

is any vector then

T (w) = T

0

BBB@

2

6664

w1

w2

...
wn

3

7775

1

CCCA
= T

0

BBB@
w1

2

6664

1

0

...
0

3

7775
+ w2

2

6664

0

1

...
0

3

7775
+ · · ·+ wn

2

6664

0

0

...
1

3

7775

1

CCCA

= w1T (e1) + · · ·+ wnT (en)

= Aw.

Thus A is one matrix such that T (v) = Av for all vectors v 2 Rn
.

Fundamental thi about linear transformations

! - I
ei 2z en

by linearity-
by defin of -
matrix-vector
mult



The theorem says that A is the the only matrix with this property.

To show this, suppose B is a m⇥ n matrix with T (v) = Bv for all v 2 Rn
.

Then T (ei) = Aei = Bei for all i = 1, 2, . . . , n.

But Aei and Bei are the ith columns of A and B.

Therefore A and B have the same columns, so they are the same matrix: A = B.

-
TIL-Ar for all

Vot

S
↓

as more generally, we
are assuming T(v)= Av

=Ev for all ve"





We call A the standard matrix of the linear transformation T .

The standard matrix A is the unique matrix such that T (v) = Av for all v.

Example. Suppose T : Rn ! Rn
is the function T (v) = 3v.

This is a linear transformation, and its standard matrix has the formula

A =
⇥
T (e1) T (e2) . . . T (en)

⇤
=

⇥
3e1 3e2 . . . 3en

⇤
=

2

6664

3 0 . . . 0

0 3 · · · 0

...
...

. . .
...

0 0 · · · 3

3

7775
.

A has nonzero entries only in positions (1, 1), (2, 2), . . . , (n, n).

One calls such a matrix diagonal .

A = [+(e) TSez) . -Ten)]
-man,

1
-

1 :R-R

I
-

-1





Example. Suppose T : Rn ! R is the function

T

0

BBB@

2

6664

v1
v2
...

vn

3

7775

1

CCCA
=

⇥
v1 v2 . . . vn

⇤

2

6664

v1
v2
...

vn

3

7775
= v21 + v22 + · · ·+ v2n.

This function is not linear: we have T (2v) = 4T (v) 6= 2T (v) for any 0 6= v 2 Rn
.

+ im = c+i





Example. Suppose T : Rn ! Rn
is the function

T

0

BBB@

2

6664

v1
v2
...

vn

3

7775

1

CCCA
=

2

6664

vn
...

v2
v1

3

7775
.

This function is a linear transformation. (Why?) Its standard matrix is

A =
⇥
T (e1) T (e2) . . . T (en�1) T (en)

⇤
=

⇥
en en�1 . . . e2 e1

⇤
=

2

666664

1

1

. .
.

1

1

3

777775
.

In the matrix on the right, we adopt the convention of only writing the nonzero

entries: all positions in the matrix which are blank contain zero entries.

-




