Annancements: another round of HW assignments

- (3) Key idea: matrices <> linear-transformation
- () Review matrix equations
- Outline:

1 Last time: multiplying vectors and matrices

Rmk

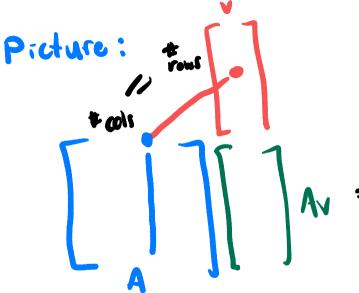
Given a matrix
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
 and vector $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{R}^n$ define
the space of the objection of A and v , or the vector given by multiplying v by A .

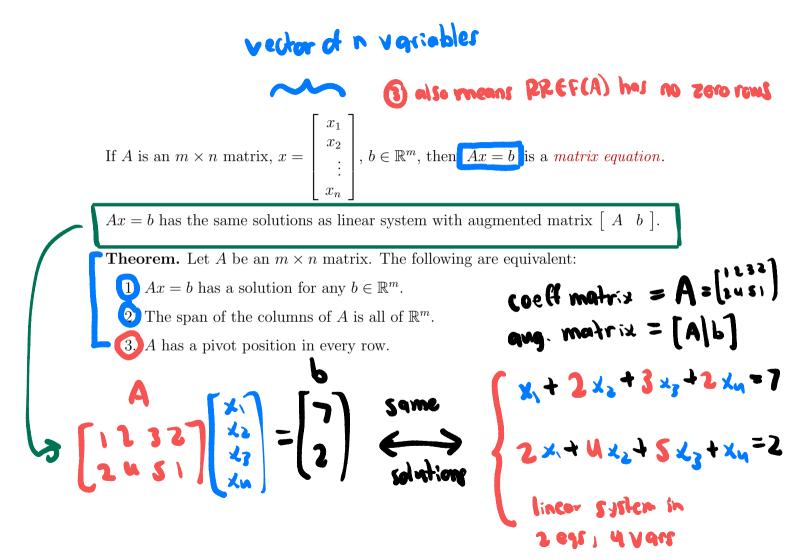
Call Av the product of A and v , or the vector given by multiplying v by A .

Example. $\begin{bmatrix} v_1 \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} = - \begin{bmatrix} v_1 \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + 0 \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} -1 + 0 + 3 \\ -5 + 0 + 7 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.

Av is a linear combination of the columns of A

any such line combination of the by (A times some vector)





why does "pivot in every row" (Ax = b has a rolution for any b' don't know What is, but RREFU) ?? there are NO PIVOTS IN LAST COLUMN. and this means Az= has but for some b we can make $z_3 \neq 0$ so pulot in last cd, so Az=b has no solution (for some special b)

Voes Ax = b always have a solution for all bt TR3? $A = \begin{bmatrix} 1 & y & y \\ -y & 2 & -6 \end{bmatrix}$

Example. The matrix equation

$$\begin{bmatrix} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

may fail to have a solution since

$$\mathbf{PREF}\left(\left[\begin{array}{ccc} 1 & 3 & 4 \\ -4 & 2 & -6 \\ -3 & -2 & -7 \end{array}\right]\right) = \left[\begin{array}{ccc} 1 & 0 & * \\ 0 & 1 & * \\ 0 & 0 & 0 \end{array}\right]$$

has pivot positions only in rows 1 and 2.

Terminology: Choose vectors v, vo vo vo in R" $y = c_1v_1 + c_2v_2 + ... + c_pv_p$ is a linear combination of our vectors if c1, C3,-, CPER the span of vive -- vp is the (infinite) set of all of their linear combinations. Denvice R-span [V1, V2, -, Vp] $\mathbb{R}\operatorname{-span}\{v_1, v_2, \ldots, v_i\} \leq \mathbb{R}\operatorname{-span}\{v_1, v_2, \ldots, v_i, v_{i+1}\}$ Notice : meons "is contained in" (the sets cauld also be

2 Linear independence

We briefly introduced the notion of linear independence ast time. Suppose we have some vectors $v_1, v_2, \ldots, v_p \in \mathbb{R}^n$.

Notation: For sets S and T write $S \subseteq T$ to mean that every element of S is in T.

Recall that the *span* of a set of vectors is the set of all possible linear combinations of the given vectors. If you have a smaller set of vectors inside a bigger set, then the span of the smaller set is always contained in the span of the bigger set.

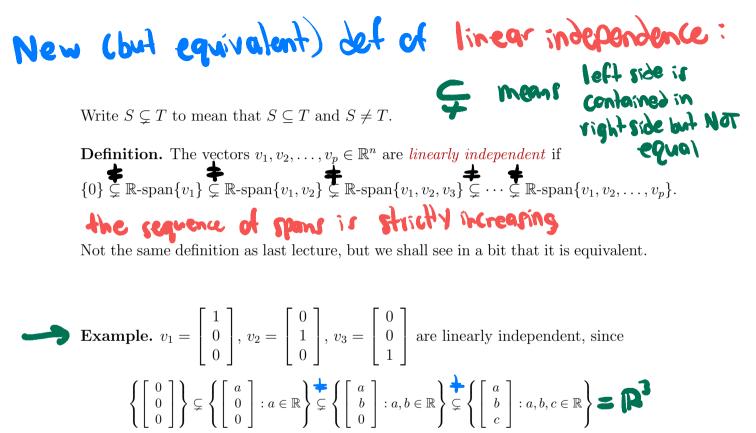
This means that if $y \in \mathbb{R}^n$ is any vector then

$$\mathbb{R}\operatorname{-span}\{v_1, v_2, \dots, v_p\} \subseteq \mathbb{R}\operatorname{-span}\{v_1, v_2, \dots, v_p, y\}.$$

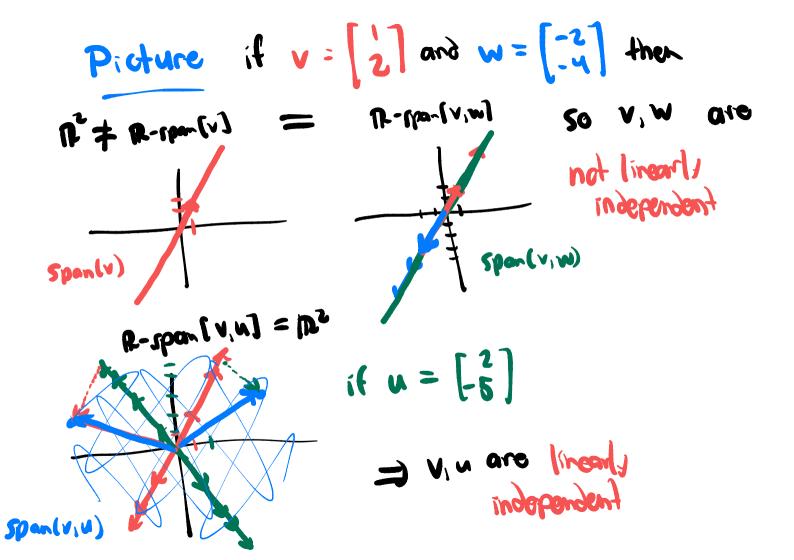
When is this containment equality?

When is it *strict* (meaning the two sides are not equal)?

Case 1 If y is **not** a linear combination of v_1, v_2, \ldots, v_p then $\mathbb{R}\operatorname{-span}\{v_1, v_2, \dots, v_p\} \neq \mathbb{R}\operatorname{-span}\{v_1, v_2, \dots, v_n, u\}$ since y is in the span on the right but **not** on the left. Case 2 Suppose y is a linear combination of v_1, v_2, \ldots, v_p . This means that $y = c_1 v_1 + c_2 v_2 + \dots + c_p v_p$ for some $c_i \in \mathbb{R}$. Then every element of \mathbb{R} -span $\{v_1, \ldots, v_p, y\}$ is also in \mathbb{R} -span $\{v_1, \ldots, v_p\}$, since $\underbrace{a_1v_1 + a_2v_2 + \dots + a_pv_p + by}_{(a_1 + bc_1)v_1 + (a_2 + bc_2)v_2 + \dots + (a_p + bc_p)v_p} = \underbrace{(a_1 + bc_1)v_1 + (a_2 + bc_2)v_2 + \dots + (a_p + bc_p)v_p}_{(a_1 + bc_1)v_1 + (a_2 + bc_2)v_2 + \dots + (a_p + bc_p)v_p}$ $\in \mathbb{R}$ -span $\{v_1, v_2, \dots, v_n\}$ $\in \mathbb{R}$ -span $\{v_1, v_2, \dots, v_n, y\}$ In other words, it holds that \mathbb{R} -span $\{v_1, v_2, \ldots, v_p\} \supseteq \mathbb{R}$ -span $\{v_1, v_2, \ldots, v_p, y\}$. But we already know that \mathbb{R} -span $\{v_1, v_2, \ldots, v_p\} \subseteq \mathbb{R}$ -span $\{v_1, v_2, \ldots, v_p, y\}$. The only way that \supseteq and \subseteq can both hold is if $\mathbb{R}\operatorname{-span}\{v_1, v_2, \dots, v_p\} = \mathbb{R}\operatorname{-span}\{v_1, v_2, \dots, v_p, y\}.$ lin comb of vis & 1 can be rewritten a lin. comb. of just the vis



 $\operatorname{Spon}(v_1) \neq \operatorname{Spon}(v_1, v_2) \neq \operatorname{Spon}(v_1, v_2, v_3)$



Example.
$$v_{1} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, v_{2} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, v_{3} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
 are not linearly independent:
 \mathbb{R} -span $\{v_{1}, v_{2}\} = \mathbb{R}$ -span $\{v_{1}, v_{2}, -v_{1} - v_{2}\} = \mathbb{R}$ -span $\{v_{1}, v_{2}, v_{3}\}$.
When vectors are not linearly independent, we say they are *linearly dependent*.
When vectors are not linearly independent, we say they are *linearly dependent*.
When vectors are not linearly independent, we say they are *linearly dependent*.
When vectors are not linearly independent, we say they are *linearly dependent*.
When vectors are find $\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) \neq \operatorname{span}(v_{1}, v_{2})$ is $\operatorname{span}(v_{1}, v_{2}, v_{3})$.
When vectors $v_{3} = -v_{1} - v_{2} \in \operatorname{span}(v_{1}, v_{2})$.

$$E_{1} \begin{bmatrix} -1 \\ -2 \end{bmatrix} + \begin{bmatrix} 0 \\ -2 \end{bmatrix} + \begin{bmatrix} -1 \\ -2 \end{bmatrix} + \begin{bmatrix} -1 \\ -2 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \end{bmatrix} \begin{bmatrix} -1 \\ -2 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \end{bmatrix} \begin{bmatrix} 0$$

A *linear dependence* among v_1, v_2, \ldots, v_p is a way of writing the zero vector as

$$0 = c_1 v_1 + c_2 v_2 + \dots + c_p v_p$$

for some $c_1, c_2, \ldots, c_p \in \mathbb{R}$ that are <u>not all zero</u>.

If $0 = c_1v_1 + c_2v_2 + \cdots + c_pv_p$ is a linear dependence then the matrix equation

$$\begin{bmatrix} v_1 & v_2 & \dots & v_p \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = 0$$

has two different solutions given by $(0, 0, \ldots, 0)$ and (c_1, c_2, \ldots, c_p) .

(This means the matrix equation has infinitely many solutions — why?)

Proposition (defn of independence from last time). The vectors $v_1, v_2, \ldots, v_p \in \mathbb{R}^n$ are *linearly independent* if and only if no linear dependence exists among them.

How to determine if $v_1, v_2, \ldots, v_p \in \mathbb{R}^n$ are linearly independent.

- Form the $n \times p$ matrix $A = \begin{bmatrix} v_1 & v_2 & \dots & v_p \end{bmatrix}$.
- Reduce A to echelon form to find its pivot columns.
- If every column of A has a pivot, then the vectors are linearly independent.
- If some column of A is not a pivot, then the vectors are linearly dependent.

Ex if
$$v_1 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} -2 \\ -4 \end{bmatrix} \longrightarrow A = \begin{bmatrix} 2 & -4 \end{bmatrix}$
 $\longrightarrow PREF(A) = \begin{bmatrix} 0 & -2 \\ 0 & 0 \end{bmatrix}$ only has one pivot $\longrightarrow DEPENDENT$
Ex if $v_1 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $v_2 = \begin{bmatrix} 2 \\ -5 \end{bmatrix} \longrightarrow A \begin{bmatrix} 2 & -5 \end{bmatrix}$
 $\longrightarrow PREF(A) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ has two pivots $\longrightarrow INDEPENDENT$

Example. The vectors
$$\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\3\\5 \end{bmatrix}$, and $\begin{bmatrix} 5\\9\\16 \end{bmatrix}$ are linearly dependent since

$$A = \begin{bmatrix} 1 & 2 & 5\\0 & 3 & 9\\-1 & 5 & 16 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 5\\0 & 3 & 9\\0 & 7 & 21 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 5\\0 & 1 & 3\\0 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1\\0\\1\\3\\0 & 0 & 0 \end{bmatrix} = \mathsf{RREF}(A)$$
where ~ denotes row equivalence.
The last matrix has no pivot position in column 3. In fact, we have
here is a linear $-\begin{bmatrix} 1\\0\\-1\end{bmatrix} + 3\begin{bmatrix} 2\\3\\5\end{bmatrix} - \begin{bmatrix} 5\\9\\16\end{bmatrix} = \begin{bmatrix} 0\\0\\0\end{bmatrix} = 0.$
So the vectors
where de $(c_{1}, c_{2}, c_{3}) = (-1, 3, -1)$ cons from?
a vec linearly dependent
dependent since

þ

Alternatively:
$$\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\3\\5 \end{bmatrix}$, and $\begin{bmatrix} 5\\9\\15 \end{bmatrix}$ are linearly independent, since

$$A = \begin{bmatrix} 1 & 2 & 5\\0 & 3 & 9\\-1 & 5 & 15 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 5\\0 & 3 & 9\\0 & 7 & 20 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 5\\0 & 1 & 3\\0 & 0 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} = \mathsf{RREF}(A).$$

Every column of A contains a pivot, so three vectors are linearly independent.

consider RREF([v]) which is [8] or [8] Facts about linear independence. 1 A single vector v is linearly independent if and only if $v \neq 0$. 2. A list of vectors in \mathbb{R}^n is linearly dependent if it includes the zero vector. 3. Vectors $v_1, v_2, \ldots, v_p \in \mathbb{R}^n$ are linearly dependent if and only if some vector v_i is a linear combination of the other vectors $v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_p$. Column i al We saw this in the previous example: $\begin{vmatrix} 5 \\ 9 \\ 16 \end{vmatrix} = 3 \begin{vmatrix} 2 \\ 3 \\ 5 \end{vmatrix} - \begin{vmatrix} 1 \\ 0 \\ -1 \end{vmatrix}$. **PP(f([v, ... vp])** is also 4 If p > n then any list of p vectors in \mathbb{R}^n is linearly dependent. 2010 **Example.** $\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} 5\\60 \end{bmatrix} \in \mathbb{R}^2$ are linearly dependent since 3 > 2.

3 Linear transformations

A *function* f takes an input x from some set X and produces an output f(x). We write $f: X \to Y$ to mean that f is a function that takes inputs from the set X and gives outputs that are contained in the set Y.

The set X is called the *domain* of the function f. The set Y is called the *codomain* of f.

Every element $x \in X$ is a valid input to f.

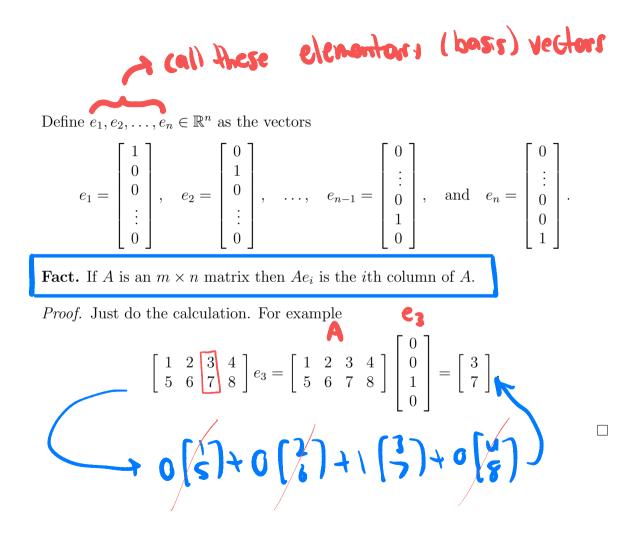
Not every $y \in Y$ needs to occur as an output of f.

Ex the formula $f(x) = x^2$ defines a function $f: \mathbb{R} \to \mathbb{R}$ but no negative number occurs as an autput

we are interested in functions with vector inputs in \mathbb{P}^n and vector adjusts in \mathbb{R}^n : $f:\mathbb{R}^n \to \mathbb{R}^n$

Definition. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function whose domain and codomain are sets of vectors. The function f is a *linear transformation* if both of these properties hold: $(1) \quad f(u+v) = f(u) + f(v) \text{ for all vectors } u, v \in \mathbb{R}^n.$ vector operations" $(2) f(cv) = cf(v) \text{ for all vectors } v \in \mathbb{R}^n \text{ and scalars } c \in \mathbb{R}.$ **Example.** If A is an $m \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^m$ is the function with the formula T(v) = Av for $v \in \mathbb{R}^n$ then T is a linear function Linear transformations have some additional properties worth noting: **Proposition.** If $f : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation then (3) f(0) = 0.(4) f(u - v) = f(u) - f(v) for $u, v \in \mathbb{R}^n$. (5) $f(a_1v_1 + a_2v_2 + \dots + a_pv_p) = a_1f(v_1) + \dots + a_pf(v_p)$ for any $a_i \in \mathbb{R}$ and $v_i \in \mathbb{R}^n$. Compatible with linear combinations

Geometric intuition: if S = IR" is any shape then $f(s) \stackrel{\text{def}}{=} \{f(v) \mid v \in S\}$ is another (possible weird) shape inside codomain of f Idea: if f: R" + D" is linear, and $S = (a line in \mathbb{R}^n)$ then $f(S) = (a line in \mathbb{R}^n)$



Fundamental this about linear transformations

Theorem. Suppose $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation.

Then there is a unique $m \times n$ matrix A such that T(v) = Av for all $v \in \mathbb{R}^n$. The matrix A has the formula $A = \begin{bmatrix} T(e_1) & T(e_2) & \dots & T(e_n) \end{bmatrix}$.

Proof. Define
$$A = \begin{bmatrix} T(e_1) & T(e_2) & \dots & T(e_n) \end{bmatrix}$$
. If $w \in \mathbb{R}^n$ is any vector then

$$T(w) = T\left(\begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} \right) = T\left(w_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + w_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + w_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \right)$$
by linearity $\longrightarrow = w_1 T(e_1) + \dots + w_n T(e_n)$
by define of $\longrightarrow = Aw$.
Thus A is one matrix such that $T(v) = Av$ for all vectors $v \in \mathbb{R}^n$.

T(v)=Av for all VETP"

The theorem says that A is the only matrix with this property.

To show this, suppose B is a $m \times n$ matrix with T(v) = Bv for all $v \in \mathbb{R}^n$.

Then
$$T(e_i) = Ae_i = Be_i$$
 for all $i = 1, 2, ..., n$.

But Ae_i and Be_i are the *i*th columns of A and B.

Therefore A and B have the same columns, so they are the same matrix: A = B. \Box

Tas more generally, we are assuming T(v) = Av = Bv for all $v \in \mathbb{R}^{n}$

$$A = [T(e_1) T(e_2) \dots T(e_n)]$$

We call A the *standard matrix* of the linear transformation T, P, P. The standard matrix A is the unique matrix such that T(v) = Av for all v.

Example. Suppose $T : \mathbb{R}^n \to \mathbb{R}^n$ is the function T(v) = 3v.

This is a linear transformation, and its standard matrix has the formula

$$A = \begin{bmatrix} T(e_1) & T(e_2) & \dots & T(e_n) \end{bmatrix} = \begin{bmatrix} 3e_1 & 3e_2 & \dots & 3e_n \end{bmatrix} = \begin{bmatrix} 3 & 0 & \dots & 0 \\ 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 3 \end{bmatrix}$$

A has nonzero entries only in positions $(1, 1), (2, 2), \ldots, (n, n)$.

One calls such a matrix *diagonal*.

Example. Suppose $T : \mathbb{R}^n \to \mathbb{R}$ is the function

$$T\left(\begin{bmatrix}v_1\\v_2\\\vdots\\v_n\end{bmatrix}\right) = \begin{bmatrix}v_1 & v_2 & \dots & v_n\end{bmatrix}\begin{bmatrix}v_1\\v_2\\\vdots\\v_n\end{bmatrix} = v_1^2 + v_2^2 + \dots + v_n^2.$$

This function is **not** linear: we have $T(2v) = 4T(v) \neq 2T(v)$ for any $0 \neq v \in \mathbb{R}^n$.

Example. Suppose $T : \mathbb{R}^n \to \mathbb{R}^n$ is the function

$$T \left(\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \right) = \begin{bmatrix} v_n \\ \vdots \\ v_2 \\ v_1 \end{bmatrix}.$$

This function is a linear transformation. (Why?) Its standard matrix is

$$A = \begin{bmatrix} T(e_1) & T(e_2) & \dots & T(e_{n-1}) & T(e_n) \end{bmatrix} = \begin{bmatrix} e_n & e_{n-1} & \dots & e_2 & e_1 \end{bmatrix} = \begin{bmatrix} & & 1 & \\ & & 1 & \\ & & \ddots & \\ & & 1 & \\ & 1 & & \\ & 1$$

In the matrix on the right, we adopt the convention of only writing the nonzero entries: all positions in the matrix which are blank contain zero entries.