MATH 2121 - Lecture #9

<u>Plan today: - some review of inverses & inverse matrix</u> - subspaces, ColA, NulA, basis

1 Last time: inverses

The following all mean the same thing for a function $f: X \to Y$:

Recall: A is standard matrix of T if T(w) = Av for all windows The following all mean the same thing for an n×n matrix A: 1. A is *invertible*. 2. A is the standard matrix of an invertible linear function T : ℝⁿ → ℝⁿ.

3. There is a unique $n \times n$ matrix A^{-1} , called the *inverse* of A, such that

 $A^{-1}A = AA^{-1} = I_n$ where we define $I_n =$

we define
$$I_n = \begin{bmatrix} 1 & & \\ & 1 & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

Γ 1

Т

4) For each $b \in \mathbb{R}^n$ the equation Ax = b has a unique solution.

$$\mathsf{RREF}(A) = I_n$$

). The columns of A are linearly independent and their span is \mathbb{R}^n .

Marm-up: inverse of a 1xl matrix A = [n]exists when $a \neq 0$ and is $A^2 = [1/a]$

Proposition. Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 be a 2 × 2 matrix.
(1) If $ad - bc = 0$ then A is not invertible.
(2) If $ad - bc \neq 0$ hen $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.
Proposition. Let A and B be $n \times n$ matrices.
1. If A is invertible then $(A^{-1})^{-1} = A$.
2. If A and B are both invertible then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
3. If A is invertible then A^{T} is invertible and $A^{T})^{-1} = (A^{-1})^{T}$.
(AB) $A^{T} = N^{T} = N^{T} = N^{T}$.

Process to compute A^{-1}

Let A be an $n \times n$ matrix. Consider the $n \times 2n$ matrix $\begin{bmatrix} A & I_n \end{bmatrix}$. If A is invertible then RREF ($\begin{bmatrix} A & I_n \end{bmatrix}$) = $\begin{bmatrix} I_n & A^{-1} \end{bmatrix}$. So to compute A^{-1} , row reduce $\begin{bmatrix} A & I_n \end{bmatrix}$ to reduced echelon form. Then take the last n columns.

In genomial RREF([AI]) = [RREF(A) B] IF A is not invertible then RREF(A) #I but otherwise B gives you A⁻¹.

$$E \times Let's invert A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 4 & 0 & s \end{bmatrix}.$$

 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \mathbf{I}_{\mathbf{Z}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ but neither matrix is square or invertible Observe: $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 10 \\ 0 & 00 \end{bmatrix} \neq I_3$

Cautionary example for non-square matrices

Ex The only subspaces of $\mathbb{R}^{1} = \mathbb{R}$ are $\{0\}$ and \mathbb{R}^{1} Pf If H is a subspace of \mathbb{R}^{1} and $0 \neq x \in H$ then $Cx \in H$ for all $C \in \mathbb{R}^{1}$ which means $y \in H$ for all $y \in \mathbb{R}^{1}$

Ex Subspaces of \mathbb{R}^2 include $\{0\} = \{1, 0\}, \mathbb{R}^2$ itself, and \mathbb{R} -span $\{1, 1, 2\} = \{1, 0\} = \{1, 0\}, \mathbb{R}^2$ itself, picture of this:

av+bv = (atb)v for a,b(R

call for the Zoro Supspace Common examples $\mathbb{R}^{n} \text{ is a subspace of itself. (largest subspace)}$ The set {0} consisting of just the zero vector is a subspace of \mathbb{R}^{n} . (smallest subspace) The empty set \emptyset is *not* a subspace since it does not contain the zero vector. If $H \subseteq \mathbb{R}^2$ is a subspace then $H = \{0\}, H = \mathbb{R}^2$, or $H = \mathbb{R}$ -span $\{v\}$ for some $v \in \mathbb{R}^2$ The span of any set of vectors in \mathbb{R}^n is a subspace of \mathbb{R}^n .

Conversely, will see that any subspace of \mathbb{R}^n is the span of a finite set of vectors.

(plane)

¢X Ŏ **Example.** Not a subspace (does not contain zero vector): ace subse $X = \left\{ v = \left| \begin{array}{c} v_1 \\ v_2 \\ v_3 \end{array} \right| \in \mathbb{R}^3 : v_1 + v_2 + v_3 = 1 \right\}.$ Example. The set $H = \left\{ v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \in \mathbb{R}^3 : v_1 + v_2 + v_3 = 0 \right\}$ is a subspace since if $u, v \in H$ and $c \in \mathbb{R}$ then **bolk zero as up the** $(u_1 + v_1) + (u_2 + v_2) + (u_3 + v_3) = (u_1 + u_2 + u_3) + (v_1 + v_2 + v_3) = 0 + 0 = 0$ and $cv_1 + cv_2 + cv_3 = c(v_1 + v_2 + v_3) = 0$ so $u + v \in H$ and $cv \in H$. this is a subspace, $\begin{bmatrix} 8 \\ 8 \end{bmatrix} \in H = \operatorname{span}\left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$

Many different matrices can have the same column space, and it may not be at all obvious whether a subspace V is equal to the column space of a given matrix A.

Ex
$$H = \left\{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \mid v_1 + v_2 + v_3 = 0 \right\} = ColA$$

for $A = \begin{bmatrix} 10 \\ 01 \\ -1 - 1 \end{bmatrix}$
also for $A = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 - 1 \end{bmatrix}$ or $\begin{bmatrix} 1 & 01 \\ -1 & 01 \\ 0 & 0 - 2 \end{bmatrix}$ etc.

Remark. If $T : \mathbb{R}^n \to \mathbb{R}^m$ is the linear function T(x) = Ax then $\operatorname{Col} A = \operatorname{range}(T)$. A vector $b \in \mathbb{R}^m$ belongs to $\operatorname{Col} A$ if and and only if Ax = b has a solution. Thus $\operatorname{Col} A = \mathbb{R}^m$ if and only if Ax = b has a solution for each $b \in \mathbb{R}^m$.

Definition. The *null space* of an $m \times n$ matrix A is the subspace Nul $A = \{v \in \mathbb{R}^n : Av = 0\} \subseteq \mathbb{R}^n$

The set Nul A is exactly the set of solutions to the matrix equation Ax = 0.

Proof that Nul A is a subspace. We have $0 \in \text{Nul } A$. Let $u, v \in \text{Nul } A$ and $c \in \mathbb{R}$. Then A(u + v) = Au + Av = 0 + 0 = 0 and A(cv) = c(Av) = 0. So $u + v \in \text{Nul } A$ and $cv \in \text{Nul } A$. Thus Nul A is a subspace of \mathbb{R}^n . The color of \mathbb{R}^n . The color of \mathbb{R}^n . No A S R No A S R

$$\underbrace{\text{Ex Notice } H = \left\{ \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \mid v_1 + v_2 + v_3 = 0 \right\} = \text{Nul B}$$

$$\underbrace{\text{for } B = \left[1 \quad 1 \quad 1 \right] \left(\text{or } B = \left[\frac{1 \quad 1 \quad 1}{1 - 1 - 1} \right] \text{etc} \right)$$

$$\underbrace{\text{since } \left[1 \quad 1 \quad 1 \\ v_3 \\ v_$$

Remark. If T : ℝⁿ → ℝ^m is linear with T(x) = Ax then Nul A = {x ∈ ℝⁿ : T(x) = 0}.
The column space is a subspace of ℝ^m where m is the number of rows of A.
The null space is a subspace of ℝⁿ where n is the number of columns of A.

A subspace can be completely determined by a finite amount of data.

This data will be called a **basis**.

plural of basis" = "bases"

Definition. Let H be a subspace of \mathbb{R}^n . A set of vectors $v_1, v_2, \ldots, v_k \in H$ is a *basis* for H if the vectors are linearly independent and their span is equal to H.

The empty set \emptyset is considered to be a basis for the zero subspace $\{0\}$.

Example. Remember the vectors $e_1, e_2, \ldots, e_n \in \mathbb{R}^n$ where $e_1 = \begin{vmatrix} 1 \\ 0 \\ 0 \\ \vdots \end{vmatrix}, e_2 = \begin{vmatrix} 0 \\ 1 \\ 0 \\ \vdots \end{vmatrix}$.

These form a basis for \mathbb{R}^n . We call this the *standard basis* of \mathbb{R}^n .

Theorem. Every subspace H of \mathbb{R}^n has a basis of size at most n.

Easy reason why a basis for $H \subseteq \mathbb{R}^{n}$ must have $\leq n$ elements:

any set of more than n vectors in TR" is linearly dependent

Note: $H = \{0\} \subseteq \mathbb{R}^n$ but its basis has zero elements Also: $H = \mathbb{R}$ -spon $[e_1] = \{[\overset{\times}{\$}] \mid x \in \mathbb{R}^n\}$ has basis $\{e_1\}$ with just one element (but $\{2e_1\}$ is another basis)

How to find a basis for ColA or NulA?

Example. Let $A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$. Null $A = \{ x \in \mathbb{R}^{5} \mid A x = 0 \}$

How can we find a basis for $\operatorname{Nul} A$?

Finding a basis for Nul A is more or less the same task as finding all solutions to the homogeneous equation Ax = 0.

So let's first try to solve that equation.

If we row reduce the 3×6 matrix $\begin{bmatrix} A & 0 \end{bmatrix}$, we get

3 free vars

$$\begin{bmatrix} A & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \text{RREF}(\begin{bmatrix} A & 0 \end{bmatrix}).$$

proof in 2 columns, not in last columns

2 basic Vars

This tells us that
$$Ax = 0$$
 f and only if
 $x_3 + 2x_4 - 2x_5 = 0$ or equivalently $\begin{cases} x_1 - 2x_2 - x_4 + 3x_5 = 0 \\ x_3 + 2x_4 - 2x_5 = 0 \end{cases}$ or equivalently $\begin{cases} x_1 = 2x_2 + x_4 - 3x_5 \\ x_3 = -2x_4 + 2x_5. \end{cases}$ or equivalently $\begin{cases} x_1 = 2x_2 + x_4 - 3x_5 \\ x_3 = -2x_4 + 2x_5. \end{cases}$

•

By substituting these formulas, we deduce that $x \in \operatorname{Nul} A$ if and only if

$$A = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$
The vectors
$$\left\{ \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix} \right\}$$
 are a basis for Nul A.

This example is important: the procedure just described works to construct a basis of Nul A for any matrix A. The size of this basis will always be equal to the number of free variables in the linear system Ax = 0.

How to find a basis for $\operatorname{Nul} A$ is something you should learn and remember.

Example. Let
$$B = \begin{bmatrix} 1 & 0 & -3 & 5 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
. What is a basis for COB?

This matrix is in reduced echelon form. How to find a basis for $\operatorname{Col} B$?

 \longrightarrow The columns of B automatically span Col B, but might be linearly dependent.

 \rightarrow The largest linearly independent subset of the columns of B will be a basis for Col B.

In our example, the pivot columns 1, 2 and 5 are linearly independent since each has a row with a 1 where the others have 0s.

These columns span columns 3 and 4, so a basis for $\operatorname{Col} B$ is

$$\left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}.$$

This example was special since the matrix B was already in reduced echelon form. To find a basis of the column space of an arbitrary matrix, we use this observation:

Proposition. Let A be any matrix. The pivot columns of A form a basis for Col A.

is row equivalent to the matrix B in the previous example.

Columns 1, 2, 5 have pivots, so $\left\{ \right.$

$$\begin{bmatrix} 1\\ -2\\ 2\\ 3\\ \end{bmatrix}, \begin{bmatrix} 3\\ -2\\ 3\\ 4\\ \end{bmatrix}, \begin{bmatrix} -9\\ 2\\ 1\\ -8\\ \end{bmatrix} \right\}$$
 is a basis for Col A.

Next time: we will show that if H is a subspace of \mathbb{R}^n then all of its bases have the same size. The common size of each basis is the *dimension* of H.