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1 Last time: inverses

The following all mean the same thing for a function f: X — Y
15 f ishnvertible,

@ f is one-to-one and onto.

(3)) For each b € Y there is exactly one a € X with f(a) =
(1Y) There is a unique function f~!:Y — X, called the im)erselof f, such that

— { =a and {f(fl(b)) =b forallae XandbeY.
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4. Proposition. If T': R® — R™ is linear and invertible then m = n and 7! is linear.
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The following all mean the same thing for an n x n matrix A:

(19 A isfinvertible.

g A is the standard matrix of an invertible linear function 7" : R* — R".

ﬁ There is a unique n x n matrix A~!, called the|inverse|of A, such that

1

|
dwe { ATA=AA" =1,  where we define I, = , =1

Condibions ﬂ C

(1) For each b € R" the equation Az = b has a unique solution.

5. RREF(A) = I,, | @ CW‘A"HQ

[6Y The columns of A are linearly independent and their span is R™.
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Warm-up:

[a b

Proposition. Let A = . d

] be a 2 X 2 matrix.

(1) If{ad — be = 0 fhen A is not invertible.
(2) I} ad — be # 0 fhen|A~! = L [ _i _2
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Proposition. Let A and B be n x n matrices.

1. If A is invertible then (A™!)~! = A.

3. If A is invertible then AT is invertible and
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2. If A and B are both invertible then AB is invertible andl (AB)™! = B7tA~L.
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Process to compute A~}

0 Let A be an n x n matrix. Consider the n x 2n matrix [ A I, ]
@ If A is invertible then RREF ([ A I, |)=[ 1, Al ]
So to compute A~!, row reduce [ A I, } to reduced echelon form.

Then take the last n columns.

In qevem\ RREF((A 1)) = [emesth) 8)
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2 Stronger characterization of invertible matrices M

Cor

A matrix can only be invertible if it has the same number of rows and columns. “*‘\
Theorem. When A is 4 square n x n matrix] the following are equivalent: mq\-f‘(q
A is invertible. ,\»‘} J
(b} The columns of A are linearly independent. 60 e !

e The span of the columns of A is R”

belore we. only oo ©) &3(© £6) no

.-a Corollary. Suppose A and B are both n x n matrices| If AB = [,, then BA =1, »\‘w\

So when A and B are both square, to show that B = A~!, can just check AB = I,,.
! Important note: this principle only applies to square matrices.

S0 achwll) yor (o B do one A b tp\icortvon,
b onck of B ois AT Wien A and Bare jgrae



Cautionasy eromp\e for molvices

(320 K‘:\ -4 = (o)

bd neder oy i€ Squave O wveiloe

O\aSQNQ.'.K \(\oo - {(\7?3 ;}_I?




nformally  SwWbasels  giver Yy
R+ rpan { somo vedonr{

el 2erg veClor

0
0
Let n be a positive integer. Remember that 0 = | | | € R™.

3 |Subspaces|of R"

0
Definition. Let H be a subset of R". The subset H is a subspace if
1. 0c H, =% SWospO@S are norempky
2. u+v e H for all u,v € H, and ~—§ swb‘ma] e o\de> “&e" +
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Common examples

R™ is a subspace of itself. ( \a“es\' S\fbtp“e)
The set {0} consisting of just the zero vector is a subspace of R™. (‘M\\e‘\' WBW)

ﬁThe empty set @ is not a subspace since it does not contain the zero vector.
e If H C R? is a subspace then H = {0}, H = R? or H = R-span{v} for some v € R

The span of any set of vectors in R™ is a subspace of R"™.

Conversely, will see that any subspace of R™ is the span of a finite set of vectors.
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Example. Not a subspace (does not contain zero vector): SO '\0\' o
X{v[v2]€R3:vl+02+v31}. s“ (b
U3

Example. The set

U1
H—{U— [Ug] €R3:01+U2+’l}3:0

" bolh20re a3 YN eEh

(U1+Ul)+(UQ+U2)+(’U,3+U3):(U1+U2+U3)+(U1+U2+03):0+0:0

and o

cvy + cvy + cvg = (v + v +v3) =0

sou+v€ Handcve H.

G s 5 o subspacs |, [§) e = sv«“i["e\,m}
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is a subspace since if u,v € H and ¢ € R then
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Any matrix A gives rise to two subspaces, called the fcolumn spacefandnull space

Definition. The column space of an m x n matrix A is the subspace
: ColA = {Az:z € R"} CR™.

The set Col A is the span of the columns of A.

=3

1 0
Example. If V = R-span 01,1 then what matrices A have]Col A = V] ®
1 0 Widw
Here are four examples: u w (" y AV A
10 0 1 1 2 1001 1 2
A=|0 1 or A=110 or A=1]2 1 or A=10110 21
10 0 1 1 2 1001 1 2

Many different matrices can have the same column space, and it may not be at all
obvious whether a subspace V' is equal to the column space of a given matrix A.
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Remark. If T : R — R™ is the linear function 7'(x) = Az the

Col A = range(T)

A vector b € R™ belongs to Col A if and and only if Az = b has a solution.
Thus Col A = R™ if and only if Az = b has a solution for each b € R™.

Definition. Thelnull spaceof an m x n matrix A is the subspace

NulA={veR": Av=0} CR"

The set Nul A is exactly the set of solutions to the matrix equation Ax = 0.

Then A(u+v) = Au+ Av =040 =0 and A(cv) = c¢(Av) = 0.

Note: {f A ig ™an Y (oA S

So u+v € Nul A and cv € Nul A. Thus Nul A is a subspace of R".

Proof that Nul A is a subspace. We have 0 € Nul A. Let u,v € Nul A and ¢ € R.

‘Rﬁ\
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Remark. If 7 : R" — R™ is linear with 7'(z) = Az then

NulA = {x € R" : T'(z) = 0}.

—’The column space is a subspace of R™ where m is the number of rows of A.

—a The null space is a subspace of R” where n is the number of columns of A.

A subspace can be completely determined by a finite amount of data.

This data will be called
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Definition. Let H be a subspace of R™. A set of vectors vy,v9,...,v, € H is a
basis for H if the vectors are linearly independent and their span is equal to H.

% The empty set @ is considered to be a basis for the zero subspace {0}.

1 0

0 1
Example. Remember the vectors ey, es, ..., e, € R" where e; = 0 , ey = 0

0 | | 0]

These form a basis for R"®. We call this the\standard basis of R".

Theorem. Every subspace H of R" has a basis of size at most n.
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How can we find a basis for Nul A?

Finding a basis for Nul A is more or less the same task as finding all solutions to
the homogeneous equation Az = 0.

So let’s first try to solve that equation.

If we row reduce the 3 x 6 matrix [ A0 }, we get
1)-2 0 -1 3

[A\O]Nlo 0@) 2 -2

0 0 0
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] — RREF([ A 0]).



fome solwriond of RREVIMZ =0

This tells us that and only if Qﬂo‘e'e‘ b‘\c vong i \edh!

of fres
Rw E {a:l —2x9 — x4+ 325 =0 or equivalently {xl = 2x9 + 14 — 35 Vﬂi‘

T3 + 21‘4 - 2?[35 =0 T3 = —21‘4 + 21’5.

By substituting these formulas, we deduce that x € Nul A if and only if

Ty [ 229 + 24 — 325 2 1 -3
) T9 1 0 0
A* =° % T = T3 = —2564 + 2:85 = X9 0 + x4 —2 + x5 2
Ty Ty 0 1 0
T5 T5 0 0 1

e}

—_

2 3
1 0
The vectors ol,| —-2], 2 are a basis for Nul A.
0 0
0 1




This example is important: the procedure just described works to construct a basis
of Nul A for any matrix A. The size of this basis will always be equal to the
number of free variables in the linear system Az = 0.

a_How to find a basis for Nul A is something you should learn and remember.
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Example. Let B =

This matrix is in reduced echelon form. How to find a basis for Col B?

éThe columns of B automatically span Col B, but might be linearly dependent.
—,The largest linearly independent subset of the columns of B will be a basis for Col B.



In our example, the pivot columns 1, 2 and 5 are linearly independent since each
has a row with a 1 where the others have Os.

These columns span columns 3 and 4, so a basis for Col B is

o O O
o O = O
o= O O

This example was special since the matrix B was already in reduced echelon form.
To find a basis of the column space of an arbitrary matrix, we use this observation:

Proposition. Let A be any matrix. The pivot columns of A form a basis for Col A.
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Example. The matrix 1 l 1 - \
-
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1 3 3 2 -9
-2 -2 2 -8 2
2 3 0 7 1
3 4 -1 11 =8

A:

is row equivalent to the matrix_B_in the previous example

1 3 -9
. -2 -2 2 . .
Columns 1, 2, 5have pivots, o 5 | N E 1 is a basis for Col A.
3 4 -8

Next time: we will show that if H is a subspace of R™ then all of its bases have
the same size. The common size of each basis is the dimension of H.






