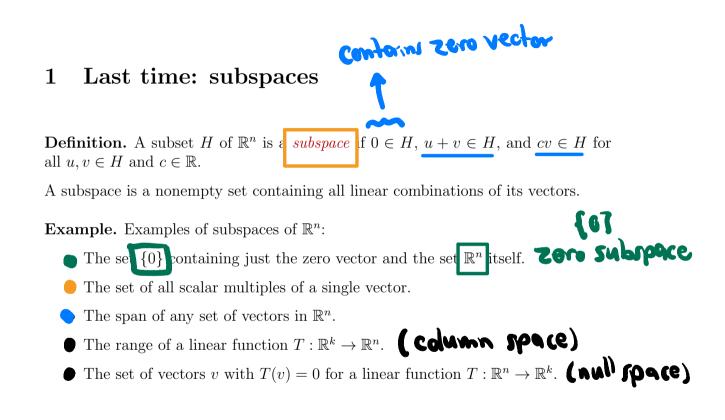
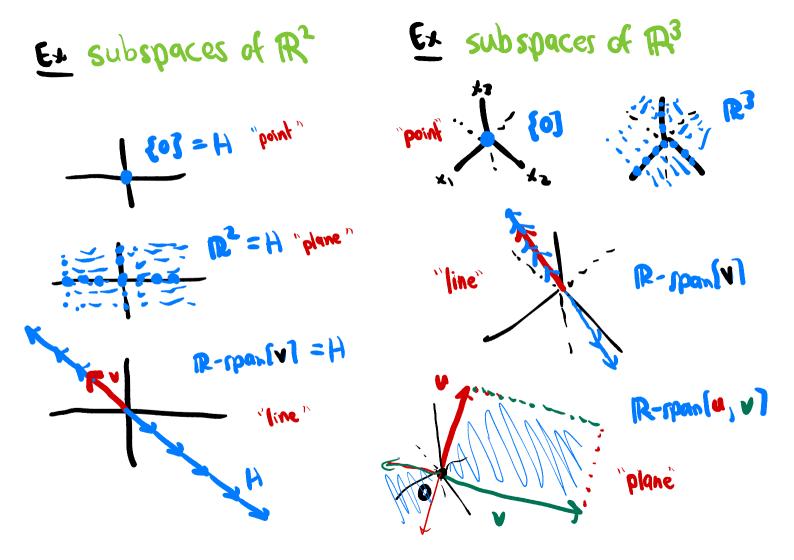
MATH 2121 - Lecture # 10

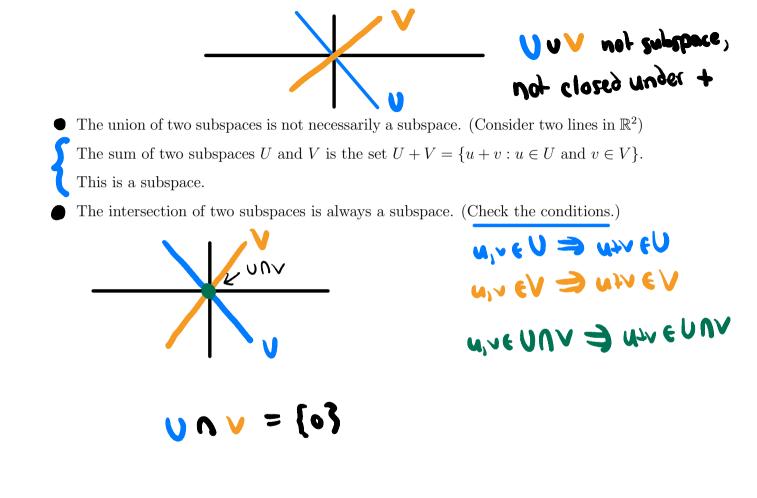
Outline today:

1) Review: subspace, cdumn space, null space, basis

(2) New things: dimension rank basis theorems







Main ways to construct and analyze subspaces ≥(span of columns of matrix A) ∈ R^{#rows of A} **Definition.** To any $m \times n$ matrix A there are two corresponding subspaces: **1.** The column space of A is the subspace $\operatorname{Col} A := \{Ax : x \in \mathbb{R}^n\}$ of \mathbb{R}^m . 2) The *null space* of A is the subspace Nul $A := \{x \in \mathbb{R}^n : Ax = 0\}$ of \mathbb{R}^n . It is not obvious from these definitions, but it will turn out that each subspace of \mathbb{R}^m occurs as the column space of some matrix. Likewise, each subspace of \mathbb{R}^n occurs as the null space of some matrix. • If A and B have same number of rows then $\operatorname{Col} \begin{bmatrix} A & B \end{bmatrix} = \operatorname{Col} A + \operatorname{Col} B$. • If A and B have same number of columns then Nul $\begin{vmatrix} A \\ B \end{vmatrix} = \operatorname{Nul} A \cap \operatorname{Nul} B$. $\begin{array}{l} \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to A \times = 0) \subseteq \mathbb{R}^{\texttt{t} columns of} \\ \textbf{(set of solutions \times to$ iff Ax=0 and Bx=0

Ex How to see subspaces of
$$\mathbb{R}^{2}$$
 as Col A or Nul A

$$O - \left(- 2 \cos subspace \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \right) = Col \left(\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right) = Nul \left[\begin{bmatrix} 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right]$$
since $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
is zero iff $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
is zero iff $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

$$\mathbb{R}^{2} = Col \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = Nul \begin{bmatrix} 8 & 0 \\ 0 & 0 \end{bmatrix}$$

$$= \mathbb{R} - span(e, e_{2}) = \mathbb{R}^{2}$$
is zero iff $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = Col \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
is zero iff $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = Col \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
is zero iff $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = Col \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

Definition. A basis of a subspace H of \mathbb{R}^n is a set of linearly independent vectors whose span is H.

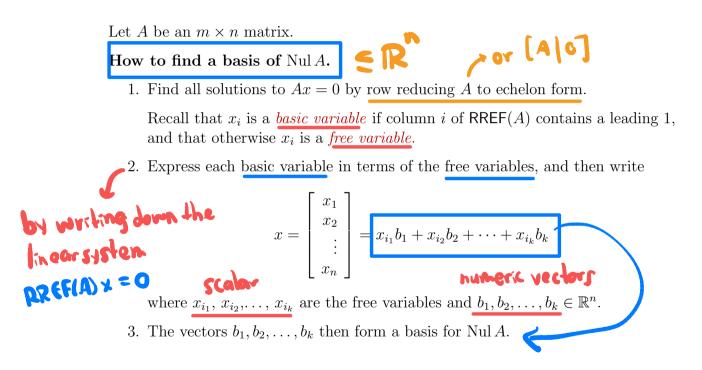
An important basis with its own notation: the *standard basis* of \mathbb{R}^n .

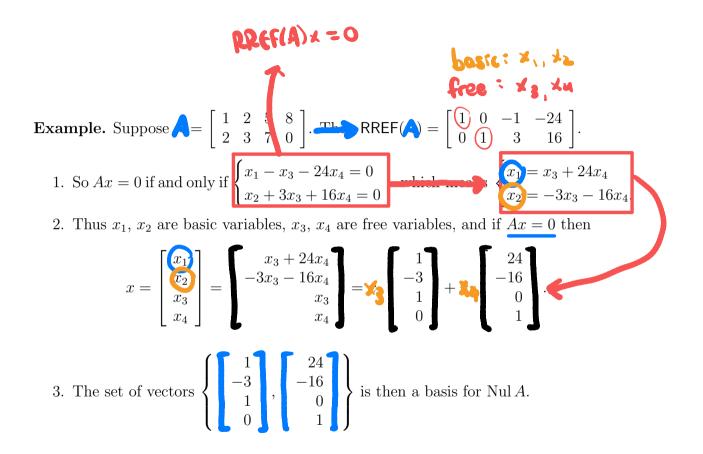
This consists of the vectors e_1, e_2, \ldots, e_n where e_i is the vector in \mathbb{R}^n with 1 in row i and 0 in all other rows.

Theorem. Every subspace H of \mathbb{R}^n has a basis of size at most n.

 $= \left[\begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \end{array} \right], e_2 = \left[\begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \end{array} \right], \cdots, e_n = \left[\begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \end{array} \right]$

Important algorithms to find bases





How to find a basis of $\operatorname{Col} A$.

(1) The pivot columns of A form a basis of $\operatorname{Col} A$.

This looks simpler than the previous algorithm, but still have to compute $\mathsf{RREF}(A)$.

Example. If
$$A = \begin{bmatrix} 1 & 2 & 5 & 8 \\ 2 & 3 & 7 & 0 \end{bmatrix}$$
 then columns 1, 2 have pivots so $\begin{cases} 1 & 2 & 3 \\ 2 & 3 & 7 & 0 \end{cases}$ is a basis for Col A .

This is not the only set of columns of A that forms a basis for $\operatorname{Col} A$, however.

Goal: understand why every basis for a given subspace has the same # of elements $x_1b_1 + x_2b_2 + \dots = V$ always has exactly Coordinate systems 2 Suppose H is a subspace of \mathbb{R}^n . Let b_1, b_2, \ldots, b_k be a basis of H. (if veH) **Theorem.** Let $v \in H$. There are unique coefficients $c_1, c_2, \ldots, c_k \in \mathbb{R}$ such that $c_1b_1 + c_2b_2 + \dots + c_kb_k = v.$ Let $\mathbf{b} = (b_1, b_2, \dots, b_k)$ be the list containing our basis vectors in some fixed order. For $v \in H$, let $[v]_{\mathcal{B}} = \begin{vmatrix} c_1 \\ c_2 \\ \vdots \end{vmatrix} \in \mathbb{R}^k$ be unique vector with $c_1b_1 + c_2b_2 + \dots + c_kv_k = v$.

Equivalently, $[v]_{\mathcal{B}}$ is unique solution to matrix equation $\begin{bmatrix} b_1 & b_2 & \cdots & b_k \end{bmatrix} x = v$. We call $[v]_{\mathcal{B}}$ the *coordinate vector of* v *in the basis* \mathcal{B} or just v *in the basis* \mathcal{B} .

$$\mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_1 \\ \mathbf{v}_1 \end{bmatrix} + \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_1 \end{bmatrix} + \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_1 \\ \mathbf{$$

Figure 1 Example. If $H = \mathbb{R}^n$ and $\mathcal{B} = (e_1, e_2, \dots, e_n)$ is the standard basis then $[v]_{\mathcal{B}} = v$.

Example. If
$$H = \mathbb{R}^n$$
 and $\mathcal{B} = (e_n, \dots, e_2, e_1)$ and $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ then $[v]_{\mathcal{B}} = \begin{bmatrix} v_n \\ \vdots \\ v_2 \\ v_1 \end{bmatrix}$.

If
$$B = (e_1, 2e_2, 3e_3, 4e_4, \dots, ne_n)$$

then $[v]_B = \begin{bmatrix} v_1 \\ v_2/2 \\ v_3/3 \\ \vdots \\ v_n/n \end{bmatrix}$ because $V = \begin{bmatrix} v_1 \\ v_1 \\ v_1 \end{bmatrix} = v_1e_1 + \frac{v_1}{7} \chi_{e_2}$
 $+ \frac{v_2}{7} \chi_{e_3} + \frac{v_3}{7} \chi_{e_3}$

$$\begin{bmatrix} b, b, b, b, \cdots, b_k \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix} = V$$

if
$$B = (b_1, b_2, ..., b_k)$$

Example. Let
$$b_1 = \begin{bmatrix} 3\\ 6\\ 2 \end{bmatrix}$$
 and $b_2 = \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} 3\\ 12\\ 7 \end{bmatrix}$. What is **Life**
need to solve
Then $\mathcal{B} = (b_1, b_2)$ is a basis for $H = \mathbb{R}$ -span $\{b_1, b_2\}$, which is a subspace of \mathbb{R}^3 .
The unique $x = \begin{bmatrix} x_1\\ x_2 \end{bmatrix} \in \mathbb{R}^2$ such that $\begin{bmatrix} 3 & -1\\ 6 & 0\\ 2 & 1 \end{bmatrix} x = \begin{bmatrix} 3\\ 12\\ 7 \end{bmatrix}$ is found by row
reduction:
 $\begin{bmatrix} 3 & -1\\ 6 & 0\\ 2 & 1 \end{bmatrix}^2 \sim \begin{bmatrix} 1 & 0\\ 3 & -1\\ 2 & 1 \end{bmatrix}^2 \cap \begin{bmatrix} 1 & 0\\ 0 & -1\\ 0 & 1 \end{bmatrix}^2 \cap \begin{bmatrix} 1 & 0\\ 0 & 1\\ 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix} \cap \begin{bmatrix} 2\\ 3\\ 0 \end{bmatrix}$.
The last matrix implies that $x_1 = 2$ and $x_2 = 3$ so $[v]_{\mathcal{B}} = \begin{bmatrix} 2\\ 3\\ 2 \end{bmatrix}$.

finding $v_1 + v_2 + v_3 + \dots + v_{n-1}$ this requires some computation, but checking is easy)

$$[v]_{\mathcal{B}} = \begin{bmatrix} v_1 \\ v_1 + v_2 \\ v_1 + v_2 + v_3 \\ v_1 + v_2 + v_3 + v_4 \\ \vdots \\ v_1 + v_2 + v_3 + \dots + v_{n-1} \end{bmatrix} \in \mathbb{R}^{n-1}.$$

then $v \in H = \mathbb{R}$ -span $\{b_1, b_2, \dots, b_{n-1}\}$ and

$$v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ -v_1 - v_2 - \dots - v_{n-1} \end{bmatrix}$$

Example. If $b_1 = e_1 - e_2$, $b_2 = e_2 - e_3$, $b_3 = e_3 - e_4$, ..., $b_{n-1} = e_{n-1} - e_n$ and

$$b_i = e_i - e_{i+1} (i = 1, 2, ..., n - 1)$$

[v] B has # rows = # elems of B

Theorem. Every basis of a subspace $H \subseteq \mathbb{R}^n$ has the same number of elements.

Proof. Suppose $\mathcal{B} = (b_1, b_2, \dots, b_k)$ and $\mathcal{B}' = (b'_1, b'_2, \dots, b'_l)$ are two bases of H. **goal: derive** Assume $k \neq l$. We might as well assume k < l; if k > l then switch \mathcal{B} and \mathcal{B}' . U Then $[b'_1]_{\mathcal{B}}, [b'_2]_{\mathcal{B}}, \ldots, [b'_l]_{\mathcal{B}}$ are l > k vectors in \mathbb{R}^k so are linearly dependent. This means there exist coefficients $c_1, c_2, \ldots, c_l \in \mathbb{R}$, not all zero, with \mathbf{O} $0 = c_1[b'_1]_{\mathcal{B}} + c_2[b'_2]_{\mathcal{B}} + \dots + c_l[b'_l]_{\mathcal{B}} = [c_1b'_1 + c_2b'_2 + \dots + c_lb'_l]_{\mathcal{B}}.$ Ins that $(a) \in \mathcal{AR} \quad \text{(a) function of } a$ This means that $c_1b'_1 + c_2b'_2 + \dots + c_lb'_l \stackrel{\text{def}}{=} \begin{bmatrix} b_1 & b_2 & \dots & b_k \end{bmatrix} \begin{bmatrix} c_1b'_1 + c_2b'_2 + \dots + c_lb'_l \end{bmatrix}_{\mathcal{B}} = 0.$ Since the coefficients c_i are not all zero, this contradicts the fact that b'_1, b'_2, \dots, b'_l are linearly independent. This means we cannot actually have $k \neq l$.

(2) if
$$M = [b, b, \dots b_{\ell}]$$
 then $M[x]_{B} = x \} \Rightarrow M([x]_{B} + [y]_{B}) = x + y$
 $M[y]_{B} = y$
 $by_{H} M[x + y]_{B} = x + y$

Comment: this argument tells w that if H has a basis with k elements and v, v, v, -, v, eH where 2 >k then these vectors must be linearly dependent

(we already observed this when $H = IP^n$, k = n)

3 Dimension

Let $\mathcal{B} = (b_1, b_2, \dots, b_k)$ be an ordered basis of a subspace H of \mathbb{R}^n .

The function $H \to \mathbb{R}^k$ with the formula $v \mapsto [v]_{\mathcal{B}}$ is linear and invertible.

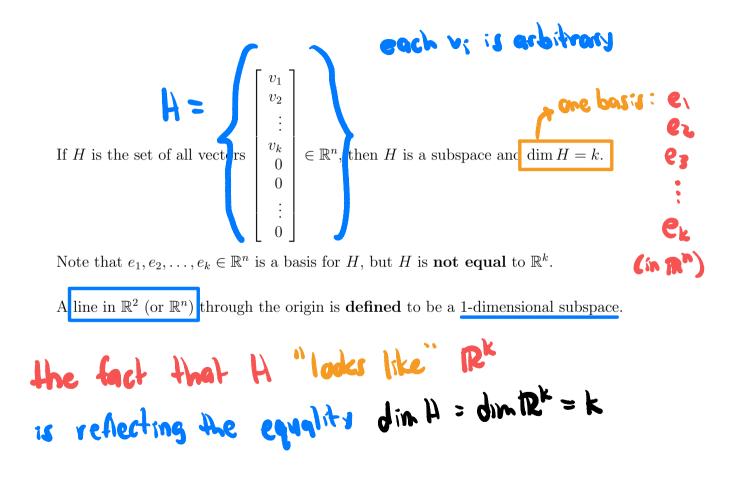
Thus H "looks the same as" \mathbb{R}^k . For this reason we say that H is *k*-dimensional.

Definition. The *dimension* of a subspace H is the number of vectors in any basis.

We denote the dimension of H by dim H. This number belongs to $\{0, 1, 2, 3, ...\}$.

The only way we can have dim H = 0 is if $H = \{0\}$ is the zero subspace.

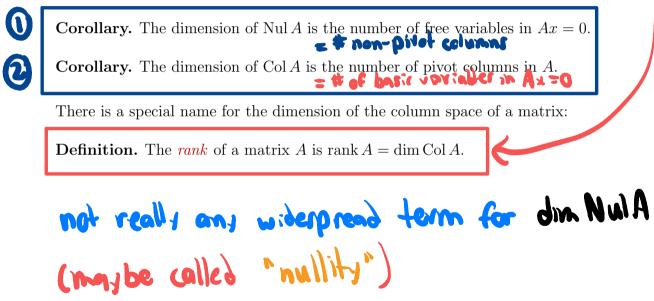
Example. We have dim $\mathbb{R}^n = n$ since the standard basis of \mathbb{R}^n has n elements.



Subspaces have dimensions, matrices have ranks

Let A be an $m \times n$ matrix.

The processes we gave to construct bases of $\operatorname{Nul} A$ and $\operatorname{Col} A$ imply that:



Putting everything together gives the following pair of important results.

Theorem (*Rank-nullity theorem*). If A is a matrix with n columns then

 $\operatorname{rank} A + \operatorname{dim} \operatorname{Nul} A = n.$

Proof. Number of free variables in Ax = 0 is the number non-pivot columns in A.

Therefore rank $A + \dim \operatorname{Nul} A$ is the total number of columns in A.

Theorem (*Basis theorem*). If H is a subspace of \mathbb{R}^n with dim H = p then

1. Any set of p linearly independent vectors in H is a basis for H.

2. Any set of p vectors in H whose span is H is a basis for H.

for proof see lecture

Corollary. If H is an n-dimensional subspace of \mathbb{R}^n then $H = \mathbb{R}^n$.

spanning set of size dim H is a basis any linearly independent set of size dim H is a basis

idea: Jim is correct way to measure size of a subspace c (sm) c

set containmont Symbols Recall that if U and V are two sets then we write " $U \subset V$ " or " $U \subseteq V$ " to mean that every element of U is also an element of V.

Both notations mean the same thing. If $U \subseteq V$ then it could be true that U = V.

On the other hand, writing " $U \subsetneq V$ " means " $U \subseteq V$ but $U \neq V$."

It holds that U = V if and only if we have both $U \subseteq V$ and $V \subseteq U$.

Corollary. If $U, V \subseteq \mathbb{R}^n$ are subspaces with $U \subsetneq V$ then

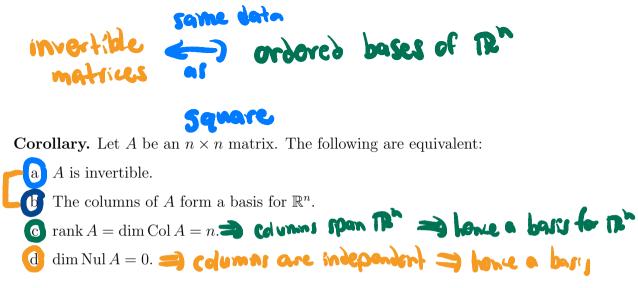
 $\dim U < \dim V \le n.$

Proof. If $j = \dim V \leq \dim U = k$ and u_1, u_2, \ldots, u_k is a basis for U, then u_1, u_2, \ldots, u_j would be linearly independent and therefore a basis for V.

П

v => din U < din V

But then $V \subseteq U$ which would imply U = V if also $U \subseteq V$.



Proof. We have already seen that (a) and (b) are equivalent.

- (c) holds if and only if the columns of A span \mathbb{R}^n which is equivalent to (a).
- (d) holds iff columns of A are linearly independent which is equivalent to (a). \Box