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1 Last time: subspaces ‘
AR

Definition. A subset H of R" is & subspace \f 0 € H, u+v € H, and cv € H for
all u,v € H and c € R.

A subspace is a nonempty set containing all linear combinations of its vectors.

Example. Examples of subspaces of R™: (“‘
@ The se ontaining just the zero vector and the setself. Tore S“uwel
The set of all scalar multiples of a single vector.

@ The span of any set of vectors in R".
@ The range of a linear function 7' : R¥ — R™. ( Cd“““ w. (-e)

@ The set of vectors v with T'(v) = 0 for a linear function 7' : R® — R*. (ﬁ“\\ fpﬂ‘e)
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@ The union of two subspaces is not necessarily a subspace. (Consider two lines in R?)

The sum of two subspaces U and V is theset U+ V ={u+v:ue U and v € V}.
This is a subspace.

@ The intersection of two subspaces is always a subspace. (Check the conditions.)
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Maid Wajs o caitruct and analvze subfpaces
*l‘wo 0" A
(Span & cdumnl ot moke A < ’

Definition. To any m x n matrix A there are two corresponding subspaces:
The column space of A is the subspacg Col A § {Ax : x € R"} of R™.
2/ The null space of A is the subspace/Nul A += {z € R" : Az = 0} of R".

It is not obvious from these definitions, but it will turn out that each subspace of R™
occurs as the column space of some matrix. Likewise, each subspace of R™ occurs
as the null space of some matrix.

® If A and B have same number of rows then Col [ A B } = Col A + Col B.

If A and B have same number of columns then Nul [ g } = Nul AN Nul B.
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Definition. of a subspace H of R" is a set of linearly independent vectors
whose span is H.

An important basis with its own notation: the standard basis of R™.

This consists of the vectors ey, eq, ..., e, where ¢; is the vector in R” with 1 in row
¢ and 0 in all other rows.

Theorem. Every subspace H of R” has a basis of size at most n.
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Important u\gocs‘f\\ mi 1o £ind bages

Let A be an m X n matrix. N
FOW to find a basis of Nul A. 5 m /' oY [A \ Q]

1. Find all solutions to Az = 0 by row reducing A to echelon form.

Recall that x; is a basic variable if column ¢ of RREF(A) contains a leading 1,

and that otherwise x; is a free variable.

[2. Express each basic variable in terms of the free variables, and then write

by Wrcking devn e R N B e
kinaor systen K
¢ » =0 SCa\r ! numerc veclovs

w where z;,, ©;,,..., x;, are the free variables and by, 0o, ..., b, € R".
3. The vectors by, b, ..., b, then form a basis for Nul A.

k




(AH+ =0
) Losie: %2\, %

cfeg D “’ A
Example. SupposeA: [ ; g ] .alkdly RREF (A) = {Q 0 _1 —2 }

— 29— 242, =0 - 24
1. So Az = 0if and only if le T3 T4 . = x3 + 2424
] To + 3x3 + 1624 =0 = —3z5 — 1624

2. Thus x1, x9 are basic variables, x3, x4 are free variables, and if Ax = 0 then

% 25 + 241, 1 24
B N ses—16m | _3 16
T T3 - T3 _13 1 +“ 0

1

Ty Ty 0

1
-3 —16 . .
3. The set of vectors N E [ O] is then a basis for Nul A.
0






How to find a basis of Col A.
o The pivot columns of A form a basis of Col A.
This looks simpler than the previous algorithm, but still have to compute RREF(A).

@ X RREF(A) - (%.?\ ',i.]

> 8 } then columns 1, 2 have pivots so

{H1H)

This is not the only set of columns of A that forms a basis for Col A, however.

1

Example. If A = { 5

is a basis for Col A. §R
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2 Coordinate systems
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Suppose H is a subspace of R". Let by, bs,...,bx be a basis of H. one

Clbl +Cgb2+ +Ckbk = .

selwHon

Theorem. Let v € H. There are unique coefficients ¢y, cs, ..., cx € R such that (‘ W
36 veR)

Let B: (b1, b, ..., bx) be the list containing our basis vectors in some fixed order.
(&1
C2

Forv € H, le} [v]p = . | € R* lhe unique vector with ¢1by + coby + - - - + crvp, = .
Ck

Equivalently, [v]z is unique solution to matrix equation [ by by -+ by ] T =w.

We call [v] the coordinate vector of v in the basis B or just v in the basis B.
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* Example. If H =R™ and B = (ey, ea,...,e,) is the standard basis then [v]|z = v.

(1 Un,
Vg

* Example. If H =R" and B = (e,, .. ., eg,e1) and v = | then [v]g =

1f 8=(2, 2e 305 ven,o M) \
\
Ahen ‘.V“B = ::.u beanse ¥V = {‘g\,v\e\x‘%&;
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Example. Let b = [
2

|
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Then B = (b1, by) is a basis for H = R-span{b;, bo}, which is a subspace of R?.

3
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] s.found by row

3
The unique = = { 1 ] € R? such thdt [ 6
) 2
reduction:
3 -1 3 1 0] 2 1
6 0|12 ~|3 =1|13|~1|O
2 11 7 2 117 0

The last matrix implies that 1 = 2 and x5 = 3 s

01 2
-1 (-3
11 3
0 [v]p =
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bi = e‘- e\'\'\ (.\ =\ \1) -, h"\\

Example. If by =e; —eg, by =€y — €3, b3 = e3 — ey, ...

then v € H = R-span{by, by, . ..

[v]s =
[

» ’U1+’U2+U3+"'+’Un71
£inding - -

vy TeGwives

Vg
Un—1
| —V1— V2= = Up-1 |
b1} and
U1
(1 + (%)

V1 + Vg + U3
V1 + Vg + U3 + Uy

U1

s bnfl =€p—1— €n and

e R*!
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Theorem. Every basis of a subspace H C R” has the same number of elements.

o nktadidon

Assume k # [. We might as well assume k < [; if k£ > [ then switch B and B'.

0 [Proof. Suppose B = (b1, ba, ..., bx) and B’ = (b], b}, ..., b)) are two bases of H.k "Q\: RN

Then [V)]s, [by]s, - -, [bj]s are [ > k vectors|in R¥| so are linearly dependent.

@ This means there exist coefficients ¢, ¢, ..., ¢ € R, not all zero, with

0= c1[bl]s + calbyls + - + alb)]s = [c1b] + c2by + - - - + /by 5.
This means that t‘ @ Q) ["" e LN EAR ag ‘“G‘“
» of «
@ ciby +eably £ ab) = [ by by o by ] [eaby + ol + --~+clbl]3:0
Since the coefficients ¢; are not all zero, this contradicts tge ?act that b’ NN
are linearly independent. This means we cannot actually have k # [. O

i€ Wb -be) en MU= XT3 M(Lagiblp) = x4y
@ l‘ { M [7]8 =Y b "(’-*‘I]B = x4y
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3 | Dimension

Let B = (by,bs,...,b;) be an ordered basis of a subspace H of R".
The function H — R* with the formula v — [v]g is linear and invertible.

Thus H “looks the same as” R*. For this reason we say that H is k-dimensional.

Definition. The dimension of a subspace H is the number of vectors in any basis.

We denote the dimension of H by dim H. This number belongs to {0,1,2,3,...}.

e The only way we can haveldim H = 0 is if H = {0} [is the zero subspace.

—a Example. We have dim R" = n since the standard basis of R" has n elements.
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If H is the set of all vect@rs US € R" fthen H is a subspace and dim H = k. e,
0 :
0] €
Note that e, e, ..., er, € R" is a basis for H, but H is not equal to R*. ‘g“ m")

Alline in R? (or R") Ithrough the origin is defined to be a 1-dimensional subspace.
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SWospaces hase dimentiony matrices have ranks

Let A be an m X n matrix.

The processes we gave to construct bases of Nul A and Col A imply that:

Corollary. The dimension of Nul A is the number of free variables in Az = 0.

= ¥ non-Pilet ¢olumng

Corollary. The dimension of Col A is the number of pivot ¢olumns in A.
= % of bas'¢ vv‘\&' ™ R:I. <0

There is a special name for the dimension of the column space of a matrix:

Definition. The rank of a matrix A is rank A = dim Col A.
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Putting everything together gives the following pair of important results.

Theorem (Rank-nullity theorem). If A is a matrix with n columns then

rank A 4+ dim Nul A = n.

w1 Proof. Number of free variables in Az = 0 is the number non-pivot columns in A.

—, Therefore rank A 4+ dim Nul A is the total number of columns in A. O
Theorem (Basis theorem). If H is a subspace of R” with dim H = p then COf Of 00(
1. Any set of p linearly independent vectors in H is a basis for H. ‘ez ud\uz
2. Any set of p vectors in H whose span is H is a basis for H.
noles

* Corollary. If H is an n-dimensional subspace of R" then H = R".
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Recall that if U and V are two sets then we write “U C V7 or “ U C V” to mean
sd‘ that every element of U is also an element of V.
) Both notations mean the same thing. If U C V then it could be true that U = V.
m . On the other hand, writing “U C V” means “U C V but U # V.” $
It holds that U = V if and only if we have both U CV and V C U.

Corollary. If U,V C R" are subspaces with U C V' then

dimU <dimV <n.

Proof. If j = dimV < dimU = k and uy, us, . .., u is a basis for U, then uy, us, . .., u;
would be linearly independent and therefore a basis for V.

But then V C U which would imply U =V if also U C V.

O L= 3\mU<6m\v
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Corollary. Let A be an n x n matrix. The following are equivalent:
@ A is invertible.

(H§ The columns of A form a basis for R". " -
@rankAzdimColA:n.a Co unwnl mm %m. Wﬂ“' 1 2
@ dimNul A = 0. =) columis Ore %w&p'»)n-\ D vt o s [

Proof. We have already seen that (a) and (b) are equivalent.
(c) holds if and only if the columns of A span R™ which is equivalent to (a).
(d) holds iff columns of A are linearly independent which is equivalent to (a). [






