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1 Last time: determinants

Let n be a positive integer.

Theorem. det is the unique function { n x n matrices } — R such that

1
0 det I,, = 1 where I,, = is the n x n identity matrix.
1

@ Switching two columns reverses the sign of the determinant.

@ det A is linear as a function of a single column A if all other columns are fixed.

> alkilineoe ™

For 1 x 1 and 2 x 2 matrices, Wehavedet[a}:aanddet[i 2] = ad — bc.
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The diagonal (positions) of an n x n matrix are the positions (1, 1), (2,2), ..., (n,n).
The diagonal entries of a matrix are the entries in these positions.

A matrix A is upper triangular if A;; = 0 whenever ¢ > j.

A matrix A is lower triangular if A;; = 0 whenever ¢ < j.

A triangular matriz is a square matrix that is either upper or lower triangular.

A diagonal matriz is a matrix that is both upper and lower triangular.

Theorem. If A is triangular then det A is the product of the diagonal entries of A.

Theorem. A square matrix A is invertible if and only if det A # 0.

Theorem. If A and B are n X n matrices then

det(AB) = (det A)(det B) \and det(AT) = det A.
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Algorithm to compute det A for n x n matrix A.

1. Start by setting denom = 1.
2. Row reduce A to an echelon form F, while doing the following:

(a) When you switch two rows, multiply denom by —1.

(b) When you rescale a row by a nonzero factor A, multiply denom by .

_ detE J the product of the diagonal entries of E
Thenj det A = denom |~ denom :

(€ s tiorqulor mavris)

Theorem (One more method). Consider an n x n matrix A.

Let] A;j|be entry in row 4, column j. Forn| A4 by deleting row i and column j.

Then|det A = Ay det AGY — Ay det AY?Y + Ajgdet ADY — oo — (—1)" Ay, det AL

w':e\. Aok ‘;\:c‘.: = q(eivﬂn)“\ﬂ(é'\ "cﬂ)
= A +c(oh-09)






2 Interpreting the determinant geometrically

Let A be an n x n matrix. The determinant has a physical interpretation:

Proposition. The number | det A| is the volume of the n-dimensional parallelogram

PA)={Av:veR"with0<vy; <lforalli=12,..., n}.
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Suppose T : R™ — R" is linear with standard matrix A. \m‘ V‘\ ') ") 1

Corollary. If S is any subset of R" with finite volume then

volume of T(S) = |det(A)] x (volume of ).
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3 Vector spaces

This course focuses on R™ and its subspaces.

These objects are examples |>f (real) vector spaces

There is also a notion of a complex vector space where our scalars can be complex
numbers from C rather than just R. Essentially all of the theory is the same, so for
now we stick to real vector spaces which are more closely aligned with applications.
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The general definition of a vector space is given as follows: ‘ Sub')( ('\ "\'0 m“\

Definition. A vector space is a nonempty set V' with two operations called vector Cﬁéﬂ(@i’)

addition and scalar multiplication satisfying several conditions.

We refer to the elements of V' adg vectors.

The vector addition operation for V must be a rule that takes two input vectors
u,v € V and produces an output vector u + v € V such that

u+v=v+u.

(a)
(b) (u+v)4+w=u+ (v+w).
)

(¢) There exists a uniquq zero vector 0 € Vwith 0 +v = for allv € V.
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The scalar multiplication operation for V' must be a rule that takes a scalar input
c € R And an input vectorl veV Fnd produces an output vectosuch that

(a) If c = —1 then v + (— v—Oé"»\JO\‘M IG‘QVEC‘\'WM
c&M (b) clu+v) = cu+ cv. pfev "\“

(¢) (c+d)v=cv+dv for ¢,d € R. 6‘(‘\"&\'\\“&\1

(

)
)
d) c(dv) = (ed)v for ¢,d € R.
(e) If ¢ =1 then 1lv = v.

Notation: If v € V then we define —v = (—=1)v and v — v = u + (—v).

L’. W=\ é_:f W+ (2)V
=\ k‘:‘ (‘\)'V
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@ { Example. R" and any subspace of R™ are vector spaces, with the usual operations

of vector addition and scalar multiplication.

& anolver Gample: (no- o subspoce of )

@ { Example. The set R™*" of m x n matrices is a vector space. Its zero vector is the

zero m X n matrix. 0
whq\' i§ TCo Veﬁ\«"' 0 = [00 \(mu 2Wie m\m&\
{ Pird example: 60--0

Example. The set of linear functions f : R™ — R™ is a vector space. Its zero vector
is the function f with the formula f(z) = 0 for all z € R™. "
)
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Example. The set of positive real numbers Rt = {x € R : z > 0} is a vector space,
but not for the usual addition and multiplication operations.

Instead, define a new version of addition & by = @y = zy for z,y € RT.

Then define a new version of multiplication ® by ¢ ® x = 2¢ for c € R and = € RT.

The zero vector for this vector space (R*, @, ®) is the number 1.

new oddtim’

We also have &z = 1/x and z 0y = z/y.

X ®Yy = x-\\vm{ *

10@6 = \2 @xz-\Qx =X..\

@mw SO\ o e cOx = ¥ 104 = = X

206 = 61-'-3(






(‘u o

fpace

It is rarely necessary to check the axioms of a vector space in detail, and there is
not much need to memorize the abstract definition. If we have a set with operations
that look like vector addition and scalar multiplication for R™, then we usually
have a vector space. Moreover, it’s typically easy to identify every vector space we
encounter as a special case of a few general constructions like the following:

Example. Let X be any set. Let Functions(X,R) to be the set of functions
f: X —=R.

Given f, g € Functions(X,R) define f + g to be the function with the formula
(f+9)(x) = f(z) +g(x) forzelX
Given ¢ € R and f € Functions(X, R), define c¢f to be the function with the formula
(cf)(x) = cf(x) for x € X.

The set Functions(X,R) is a vector space relative to these operations.

Zero vector in Functions(X, R) is function with formula f(z) =0 for all z € X.

-




A= (\\1)3.).--) "]

* The vector space R" “is the same as” Functions({1,2,3,...,n},R).
, More generally, if V' is any vector space then the set of functions

Functions(X, V) ={f: X -V}

is a vector space for similar definitions of vector addition and scalar multiplication.
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As an example of how one can use the axioms to prove properties of a general vector
space, consider the following identities which are obvious for subspaces of R".

Proposition. If V' is a vector space then Ov =0 and cO =0forallc€ Randv € V.

Proof. We have 0v = (0 + 0)v = 0v 4 Ov so

0=0v—0v=(0v+0v)—0v=0v+ (0v—0v)=0v+0=0v.

Similarly, c0 = ¢(0 4 0) = ¢0 + ¢0 so
0=c0—c0=(c0+c0) —cO0=cO+ (c0—c0)=c0+ 0= c0.
[

We will not focus very much in this course on the art of coming up with these sorts
of algebraic derivations. Mostly, we can just rely on our intuition from subspaces of
R™ when working with more general spaces.






4 Subspaces, bases, and dimension

Notions of subspaces, bases, and dimension for vector spaces are the same as for R”.

Definition. Al subspace of a vector space V' is a subset H containing the zero vector

Sﬂm of V', such that if u,v € H and ¢ € R then u+v € H and cv € H.
u“ If H C V is a subspace then H is itself a vector space with the same operations of

scalar multiplication and vector addition.

af
for nAW

Subrpoces & {“m =D n~ Y g N\»M o« R
o« BV (oo oer) et (o) rim o)

Ran

E . { a\\ -‘nt‘\‘)“\c’ ‘\ﬂ\} W NoT o s“\;"“a of b
] &l

vy 93) = [95) = driongun

Example. V is a subspace of itself and {0} C V' is a subspace.



Example. R? is technically not a subspace of R? since R? is not a subset of R3.

If you want a subspace of R3 that “looks like” R2, three candidates are

x T 0
y|l:z,yeR, 0| :xz,yeR}, and r |:z,yeR
0 Y Y

There is nothing intrinsic that makes one of these more natural than the rest.

‘O " Example. Let X be any set. Let Y C X be a subset.
M\
Define H as the subset of Functions(X,R) consists of the functions f : X — R with

”W f(y)=0for all y € Y. Then H is a subspace.

Example. The set of all functions Functions(R", R™) is a vector space since R™ is
a vector space. The subset of linear functions f : R®™ — R™ is a subspace.







Let V' be a vector space.

Definition. A linear combination of vy, vs,..., v, € V is a vector of the form

C1U1 + CoU2 + -+ CrLUL

for some scalars ¢, ¢, ..., € R.

A linear combination of an infinite set is a linear combination of some finite subset.
A linear combination by definition only involves finitely many vectors.
Definition. The span of a set of vectors is the set of all linear combinations that can

be formed from the vectors. It is important to note that each such linear combination
can only involve finitely many vectors.

The span of a set of vectors in V' is a subspace of V. new
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Example. Let V' = Functions(R, R). The span of the infinite set of functions

w: Lz, a2 - eV
is the subspace ofi polynomial functions] = (;‘\A° \‘“‘m~ d IWQA[

Each polynomial function is a linear combination of a finite number of monomials

n n—1
CnT —+ Cp 1T + -+ Cx+ .

An infinite sum like 1 + 2 + 22 + ... is not a polynomial.
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Definition. A finite set of vectors vy, vs,..., v, € V is linearly independent if it is

impossible to express

for some ¢y, ca, ..

0 = ciu1 + cug + - - - + g,

., € Rexcept when ¢ =cp=---=¢;, =0.

An infinite set is linearly independent if every finite subset is linearly independent.

Definition. A

basis

of a vector space V is a subset of linearly independent

vectors whose span i1s V.

Saying that by, by, b3, . ..

is a basis for V' is the same thing as saying that each v € V

can be expressed as a uniquely linear combination of basis elements.






Theorem. Let V' be a vector space.

1. V has at least one basis.

2. Every basis of V' has the same size.

3. If Ais a subset of linearly independent vectors in V' then V' has a basis B with

ACB.

4. If C'is a subset of vectors in V' whose span is V' then V has a basis B with

BccC.






Definition. As for subspaces of R", we define the dimension jof a vector space V
to be the common number of elements in any of its bases.

Denote the dimension of V' by dim V.

Corollary. If H C V is a subspace then dim H < dim V.
Moreover, if H C V is a subspace with dim H = dim V' then H = V.



Example. If X is a finite set then dim Functions(X,R) = | X]| is the size of X.
A basis is given by the functions J, : X — R for y € X, defined by the formulas

1 ifx=
dy(x) = 1 T for x € X.
0 ifz#y






Suppose U and V' are vector spaces.

Definition. A function f: U — V is linear if

flu+v) = f(u)+ f(v) and  f(cv) = cf(v) for all c € R and u,v € U.

Define range(f) = {f(x) : x € U} and kernel(f) = {z € U : f(z) = 0}.

Proposition. If f: U — V is linear then range(f) and kernel(f) are subspaces.

These subspaces are generalizations of the column space and null space of a matrix.

Proposition. If U, V,WW are vector spaces and f : V — W and g : U — V are
linear functions then fog:U — V — W is linear, where f o g(z) = f(g(z)).






