
2121- Lecture#13

* get graded midterms in tutorials

* Next round of offline/online HW posted

due next week

Outline : i a little more about det

② abstract rector spaces



1 Last time: determinants

Let n be a positive integer.

Theorem. det is the unique function { n⇥ n matrices } ! R such that

(1) det In = 1 where In =

2

64
1

. . .

1

3

75 is the n⇥ n identity matrix.

(2) Switching two columns reverses the sign of the determinant.

(3) detA is linear as a function of a single column A if all other columns are fixed.

For 1⇥ 1 and 2⇥ 2 matrices, we have det
⇥
a
⇤
= a and det


a b

c d

�
= ad� bc.

OS S "alternating"
O

"multilinear"



The diagonal (positions) of an n⇥n matrix are the positions (1, 1), (2, 2), . . . , (n, n).

The diagonal entries of a matrix are the entries in these positions.

A matrix A is upper triangular if Aij = 0 whenever i > j.

A matrix A is lower triangular if Aij = 0 whenever i < j.

A triangular matrix is a square matrix that is either upper or lower triangular.

A diagonal matrix is a matrix that is both upper and lower triangular.

Theorem. If A is triangular then detA is the product of the diagonal entries of A.

Theorem. A square matrix A is invertible if and only if detA 6= 0.

Theorem. If A and B are n⇥ n matrices then

det(AB) = (detA)(detB) and det(A
T
) = detA.

Bat



Algorithm to compute detA for n⇥ n matrix A.

1. Start by setting denom = 1.

2. Row reduce A to an echelon form E, while doing the following:

(a) When you switch two rows, multiply denom by �1.

(b) When you rescale a row by a nonzero factor �, multiply denom by �.

Then detA =
detE
denom =

the product of the diagonal entries of E
denom .

Theorem (One more method). Consider an n⇥ n matrix A.

Let Aij be entry in row i, column j. Form A
(i,j)

by deleting row i and column j.

Then detA = A11 detA
(1,1) � A12 detA

(1,2)
+ A13 detA

(1,3) � · · ·� (�1)
n
A1n detA

(1,n)

-Via
RREf

S
(E is triangular matrix)
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2 Interpreting the determinant geometrically

Let A be an n⇥ n matrix. The determinant has a physical interpretation:

Proposition. The number | detA| is the volume of the n-dimensional parallelogram

P (A) = {Av : v 2 Rn
with 0  vi  1 for all i = 1, 2, . . . , n} .

gabs val of detA) = volume of a

regien of space

P(A) & Cd(A)
associated to A w

when n=2 and A=(r ,w] then PLA)=
v,WERz



when n =2,

Ri = ad Ro-bigtangle
Rz = ad

T =Tz = EbdmTy=Tu = Eac
- area

(a+b)(c+d)

1
-ab +b

thisis
so lad-bel

area of P(A) = Ro-Ri-R2- (T+T2)
- (Tattu)

=(at b)(c+d) - 2ad - bd -ac = - ad +bc = /detA)



Suppose T : Rn ! Rn
is linear with standard matrix A.

Corollary. If S is any subset of Rn
with finite volume then

volume of T (S) = | det(A)|⇥ (volume of S).

we already saw this result when S =Grettlor
↑
has volume1

&
you take any region of finite volume

Ste then the new region

↑(st
* GArIves] st also has finite volume,

given by Idetal
· volls)



Suppose n =2 . Why does def A =0 if A not invertible?

Reason : in this case both columns of A must
be

on same line (linearly dependent) so

degeneration: the parallelogram PLA) is degenerate
-

with zero volume this is a parallelogram

L with area Zero↳ r
↳

A = [rw] Er



What is physical interpretation of sign of detA?

Suppose youhave
two rectors

M
detA < O detACO

Let A be a 2x2
matrix two options for Au , Av

Take any v ,ufth



3 Vector spaces

This course focuses on Rn
and its subspaces.

These objects are examples of (real) vector spaces .

There is also a notion of a complex vector space where our scalars can be complex

numbers from C rather than just R. Essentially all of the theory is the same, so for

now we stick to real vector spaces which are more closely aligned with applications.

-> generalization/abstraction
~ of our notion of subspaces ofHe



The general definition of a vector space is given as follows:

Definition. A vector space is a nonempty set V with two operations called vector
addition and scalar multiplication satisfying several conditions.

We refer to the elements of V as vectors .

The vector addition operation for V must be a rule that takes two input vectors

u, v 2 V and produces an output vector u+ v 2 V such that

(a) u+ v = v + u.

(b) (u+ v) + w = u+ (v + w).

(c) There exists a unique zero vector 0 2 V with 0 + v = v for all v 2 V .

&
involves 3 things :CasetVofwhatwewillcallea

e

③ a way of doing scalar multiplication

(subjectto several
conditions)

requiredS commutative
conditions associative

there is a zero rector



The scalar multiplication operation for V must be a rule that takes a scalar input

c 2 R and an input vector v 2 V and produces an output vector cv 2 V such that

(a) If c = �1 then v + (�1)v = 0.

(b) c(u+ v) = cu+ cv.

(c) (c+ d)v = cv + dv for c, d 2 R.

(d) c(dv) = (cd)v for c, d 2 R.

(e) If c = 1 then 1v = v.

Notation: If v 2 V then we define �v = (�1)v and u� v = u+ (�v).

write scalar multiplication as Cv or c .v
(CetveV)

mareaans - this O is the zero vector fromS & distributivity
prev slide

4
/U-Vdu





Example. Rn
and any subspace of Rn

are vector spaces, with the usual operations

of vector addition and scalar multiplication.

Example. The set Rm⇥n
of m⇥ n matrices is a vector space. Its zero vector is the

zero m⇥ n matrix.

Example. The set of linear functions f : Rn ! Rm
is a vector space. Its zero vector

is the function f with the formula f(x) = 0 for all x 2 Rn
.

* most important example of vector spaces :

① & -

another example: (not a subspace ofI")
⑪ i

what is zero rector? 0 = [00 (men zeromatic
third example :

②[
what is zero vector? O = (the

functionR- pe
with formula xit(i)

Claim
:&and O are different vectorspaces , but are somehow

idea: taking stamband matrix is an invertible map
"the same"

between2 and& compatible w/ + and



Example. The set of positive real numbers R+
= {x 2 R : x > 0} is a vector space,

but not for the usual addition and multiplication operations.

Instead, define a new version of addition � by x� y = xy for x, y 2 R+
.

Then define a new version of multiplication � by c� x = x
c
for c 2 R and x 2 R+

.

The zero vector for this vector space (R+
,�,�) is the number 1.

We also have  x = 1/x and x y = x/y.

Less familiar example
:" Set of rectors = ( ***)
~

*

Q
new addition: Dy

= X times y = Xy
206 = 12

Ex=10x =x

③ new scalar multi cOX = X 10x =x = x

206 = j = 36





It is rarely necessary to check the axioms of a vector space in detail, and there is

not much need to memorize the abstract definition. If we have a set with operations

that look like vector addition and scalar multiplication for Rn
, then we usually

have a vector space. Moreover, it’s typically easy to identify every vector space we

encounter as a special case of a few general constructions like the following:

Example. Let X be any set. Let Functions(X,R) to be the set of functions

f : X ! R.

Given f, g 2 Functions(X,R) define f + g to be the function with the formula

(f + g)(x) = f(x) + g(x) for x 2 X.

Given c 2 R and f 2 Functions(X,R), define cf to be the function with the formula

(cf)(x) = cf(x) for x 2 X.

The set Functions(X,R) is a vector space relative to these operations.

Zero vector in Functions(X,R) is function with formula f(x) = 0 for all x 2 X.

a) 3painteaspace

and
scalar

- mult

operations



The vector space Rn
“is the same as” Functions({1, 2, 3, . . . , n},R).

More generally, if V is any vector space then the set of functions

Functions(X, V ) = {f : X ! V }

is a vector space for similar definitions of vector addition and scalar multiplication.

X= [1 ,2,3....,n]

[i
an element of RV is a

list of numbers = [i]
a function f : [1 .

4
-n)+R is also

encoded

as a list of numbers : (i)
if we write functions f :<112--in)+R as column

rectors in

this way, then fig andcof correspond tocurusual rector ups





As an example of how one can use the axioms to prove properties of a general vector

space, consider the following identities which are obvious for subspaces of Rn
.

Proposition. If V is a vector space then 0v = 0 and c0 = 0 for all c 2 R and v 2 V .

Proof. We have 0v = (0 + 0)v = 0v + 0v so

0 = 0v � 0v = (0v + 0v)� 0v = 0v + (0v � 0v) = 0v + 0 = 0v.

Similarly, c0 = c(0 + 0) = c0 + c0 so

0 = c0� c0 = (c0 + c0)� c0 = c0 + (c0� c0) = c0 + 0 = c0.

We will not focus very much in this course on the art of coming up with these sorts

of algebraic derivations. Mostly, we can just rely on our intuition from subspaces of

Rn
when working with more general spaces.

any scalar times zero
vector = zero vetta

② Scalar Oth times any vector = zero rector&
I
[





4 Subspaces, bases, and dimension

Notions of subspaces, bases, and dimension for vector spaces are the same as for Rn
.

Definition. A subspace of a vector space V is a subset H containing the zero vector

of V , such that if u, v 2 H and c 2 R then u+ v 2 H and cv 2 H.

If H ⇢ V is a subspace then H is itself a vector space with the same operations of

scalar multiplication and vector addition.

Example. V is a subspace of itself and {0} ⇢ V is a subspace.

samea
as

for

subspaces
E Suppertman] is subspaceoofy v Cupper or lower

Call newmatrices
↓

Ex . Calltangular nxn] is Not a subspace ofa
why : 1867+(i) = [i !) = not triangular



Example. R2
is technically not a subspace of R3

since R2
is not a subset of R3

.

If you want a subspace of R3
that “looks like” R2

, three candidates are

8
<

:

2

4
x

y

0

3

5 : x, y 2 R

9
=

; ,

8
<

:

2

4
x

0

y

3

5 : x, y 2 R

9
=

; , and

8
<

:

2

4
0

x

y

3

5 : x, y 2 R

9
=

; .

There is nothing intrinsic that makes one of these more natural than the rest.

Example. Let X be any set. Let Y ⇢ X be a subset.

Define H as the subset of Functions(X,R) consists of the functions f : X ! R with

f(y) = 0 for all y 2 Y . Then H is a subspace.

Example. The set of all functions Functions(Rn
,Rm

) is a vector space since Rm
is

a vector space. The subset of linear functions f : Rn ! Rm
is a subspace.

Screedschecking





Let V be a vector space.

Definition. A linear combination of v1, v2, . . . , vk 2 V is a vector of the form

c1v1 + c2v2 + · · ·+ ckvk

for some scalars c1, c2, . . . , ck 2 R.

A linear combination of an infinite set is a linear combination of some finite subset.

A linear combination by definition only involves finitely many vectors.

Definition. The span of a set of vectors is the set of all linear combinations that can

be formed from the vectors. It is important to note that each such linear combination

can only involve finitely many vectors.

The span of a set of vectors in V is a subspace of V .

Same

def S EV

as

inA

Note: R = A-spander ,er, - ,en)pan[R]
& old



Example. Let V = Functions(R,R). The span of the infinite set of functions

1, x, x
2
, x

3
, · · · 2 V

is the subspace of polynomial functions .

Each polynomial function is a linear combination of a finite number of monomials

cnx
n
+ cn�1x

n�1
+ · · ·+ c1x+ c0.

An infinite sum like 1 + x+ x
2
+ . . . is not a polynomial.

realvalued functions

monomials :

=> finite (in.comb. of monomials

Hetet--it not a polynomial
not

exactly

vigorous





Definition. A finite set of vectors v1, v2, . . . , vk 2 V is linearly independent if it is

impossible to express

0 = c1v1 + c2v2 + · · ·+ ckvk

for some c1, c2, . . . , ck 2 R except when c1 = c2 = · · · = ck = 0.

An infinite set is linearly independent if every finite subset is linearly independent.

Definition. A basis of a vector space V is a subset of linearly independent
vectors whose span is V .

Saying that b1, b2, b3, . . . is a basis for V is the same thing as saying that each v 2 V

can be expressed as a uniquely linear combination of basis elements.

S





Theorem. Let V be a vector space.

1. V has at least one basis.

2. Every basis of V has the same size.

3. If A is a subset of linearly independent vectors in V then V has a basis B with

A ⇢ B.

4. If C is a subset of vectors in V whose span is V then V has a basis B with

B ⇢ C.

-





Definition. As for subspaces of Rn
, we define the dimension of a vector space V

to be the common number of elements in any of its bases.

Denote the dimension of V by dimV .

Corollary. If H ⇢ V is a subspace then dimH  dimV .

Moreover, if H ⇢ V is a subspace with dimH = dimV then H = V .



Example. If X is a finite set then dim Functions(X,R) = |X| is the size of X.

A basis is given by the functions �y : X ! R for y 2 X, defined by the formulas

�y(x) =

(
1 if x = y

0 if x 6= y
for x 2 X.





Suppose U and V are vector spaces.

Definition. A function f : U ! V is linear if

f(u+ v) = f(u) + f(v) and f(cv) = cf(v) for all c 2 R and u, v 2 U .

Define range(f) = {f(x) : x 2 U} and kernel(f) = {x 2 U : f(x) = 0}.

Proposition. If f : U ! V is linear then range(f) and kernel(f) are subspaces.

These subspaces are generalizations of the column space and null space of a matrix.

Proposition. If U, V,W are vector spaces and f : V ! W and g : U ! V are

linear functions then f � g : U ! V ! W is linear, where f � g(x) = f(g(x)).




