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(abstract)

1 Last time: vector spaces

A (real) wector space Vis a set_containing a_zero vector, denoted 0, with vector
addition and scalar multiplication operations that let us produce new vectorg u+v
V and V from given elements u,v € V and ¢ € R.

Several conditions must be satisfied so that these operations behave exactly like
vector addition and scalar multiplication for R™. Most importantly, we require that

l.u+v=v+uwand (u+v)+w=u+(v+w).
2. v — v = 0 where we define u — v =u + (—1)w.
3. v+0=v
4. cv=vifc=1
There are a few other more conditions to give the full definition (see the notes).

By convention, we refer to elements of vector spaces as vectors.
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Example. All subspace of R™ are vector spaces, with the usual zero vector and
vector operations.

Example. The set of m x n matrices is a vector space, with the usual addition and
scalar multiplication operations.

The zero vector in this vector space is the m X n zero matrix.
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Common vector spaces are subspaces of R” or subspaces of the following:

Proposition. Let X be a set and let V' be a vector space. (e'gi) v - m>
Then the set Functions(X, V') of all functions f : X — V is a vector space with

f + g = ( the function that maps = — f(x) + g(z) for z € X ), “\'ﬂ“g
cf = ( the function that maps x +— c¢- f(z) for z € X ), ‘

0 = ( the function that maps z+— 0 €V for z € X ), W\'iw

for f,g € Functions(X, V) and ¢ € R.

urefw ko Bk drrough why

B o< s

(o

ﬁl\ \\—" FN\%N( (\\q)“)ﬂ)m)



\ots of vows, mogd\) “W\M ConCopVs
re R o swbspaces of [R°

Definition. The definitions of a] subspacelof a vector space and ol Zinear tmnszor—
mations between vector spaces a the ones we saw for subspaces o :

o A subset H CV is g subspacelif (v i any vu‘r "‘M) Q‘W

Wi

0eH and u+wve Hforallu,v e H and cv € H for all c € R.

¢ Vsl

o veQior

e A function f: U — V i linear|if (U)V b‘“‘ Vw “)qa) SPoe

hagensing in\) happenes in V
P

f(ﬁv) = f(u) + f(v) for all w,v € U and f(cv) = cf(v) for all c € R.

Proposition. If U, V,W are vector spaces and f : V — W and g : U — V are
linear then fog:U — W is also linear, where f o g(x) = f(g(z)) for z € U.

Example. If U and V' are vector spaces then let Lin(U, V') be the set of linear
functions f: U — V. Then Lin(U, V) is a subspace of Functions(U, V).
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Let V be a vector space. The definitions of linear combinations, span and linear
independence for vectors in V' are the same as for vectors in R".

Remember that we can only evaluate the linear combination civ; + cove + ... if it
is a finite sum, or if there are finitely many nonzero scalars ¢; # 0.

Example. The subspace of polynomials in Functions(R, R) is thelspan of 1,z, 2% 23, .. ..

But e””z1+x+%x+%x2+ix3+~~+%m”+... is not in this subspace. L
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Definition. Al basis bf a vector space V' is a subset of linearly independent vectors
whose span is V.

Saying by, by, bs, ... is a basis for V' is the same as saying that for eaclj v € V [Jthere
a unique coefficients x;, w9, w3, - - - € R, all but finitely many of which are zero,
such tllat v = x1by + xoby + x3bs + .. ..

Theorem. Let V' be a vector space. Then V' has at least one basis, and every basis
of V' has the same number of elements (but this could be infinite).

Definition. The dz’mensionlof a vector space V' is the number dim V' of elements in
any of its bases.

Example. If X is a finite set then dim Functions(X,R) = | X]|.
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2 More pn dimension linearr funchiond V2R
A

If V' is a finite-dimensional vector space then |dim Lin(V,R) = dim V'|.

To see this, suppose by, bs,...,b, is a basis for V. M h‘“
A basis for Lin(V,R) is given by the linear functions ¢y, ¢o, ..., ¢, : V — R with

Gi(x101 + 22y + ... xyby) = 74 for x1,x9,..., 2, € R.

The unique way to express any linear f : V — R as a combination of these is

f=Fb)ér + F(ba)a + -+ F(ba) . ‘| T
) ] R
i’ L , € (-1

When V' = R"™, we can think of Lin(R™,R) as the vector space of 1 X n matrices.

If by = e, by = €9, ..., b, = e, is the standard basis, then ¢; = ¢ .
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Definition. Suppose U and V' are vector spaces and|f : U — V is a linear function,

Define range(f) = {f(z):x € U} C V\nd kernel(f) ={z € U: f(z) =0} CU.

These subsBaces generalize the column space and null space of a matrix.
)

We have a version of the rank-nullity theorem for arbitrary vector spaces:

Theorem (Rank-Nullity Theorem). If dim U < oo then

dimrange(f) + dim kernel(f) = dim U.

This specializes to our earlier statement about matrices when U = R" and V' = R™.

For a self-contained proof, see the lecture notes.
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3 Eigenvectors and eigenvalues

Let A be a square n X n matrix.

Definition. An eigenvector bf A is a nonzero vector v € R™ such that

\—— 5] for & scalar A ¢

for a number A € R. (X is the Greek letter “lambda.”)

The number A is called the|eigenvaluejof A for the eigenvector v. mu ‘\_M“ v *0
{ Why require nonzero? Because if v = 0 then Av = Av = 0 for all numbers A € R.

The number 0 is allowed to be an eigenvalue of A, however.
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Example. Given A and v, can check whether v is an eigenvector by computing Av.

1 6 6 1 6 6 —24
IfA—[5 Q]andv—[_5‘thenAv—{5 2}[_5}—{ 20}——41}.

Therefore v is an eigenvector of A w i :
.N]
N P >
Av=] e howe, V i/ O

eigonuctior of A
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Example. What are the eigenvectors of the matrix A =

o O O O
o O O =
o O = O
o= O O

If v € R* were an eigenvector with eigenvalue A then

U1 %) U1

v2 | s :x Uy ' 0 ;Avu
U3 Uy U3 Vo = AV
Vg 0 Uy \l: - \‘f

The last equation implies that 0 = Avy and vy = Avs and v3 = Avy and vy = Avy. So

Vt:\\

Av =

o O OO
o O O
o O = O
o = O O

0= Mg = A3 = Ny = Moy,

If A # 0 then this would mean that v; = vy = v3 = vy = 0, but \ber that v
should be nonzero. Therefore the only possible eigenvalue of A isl/\ =0
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The eigenvectors of A =

Chett A

0100
8 8 (1) (1) with eigenvalue 0 are
0000
x
0
v=1 where © # 0.
0
A L
c | - 3
c ] =G le
0 o
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“X is an eigenvalue of A”fmeans: |'there is some 0 # v € R™ such that Av = \v.” \
)
Recall that I,, denotes the n x n identity matrix. We abbreviate by setting [ ~ \\

Proposition. A € R is an eigenvalue of A if and only if A — AI is not invertible.

Proof. Az = Az has a nonzero solution z € R™ if and only if (A — Al)z = 0 has a
nonzero solution, which occurs if and only if A — A is not invertible. O

(A-\l)i- = Ax-212 = Ax=)\
A=

A—7I:{é g]—[g 3]:[_2 _g}w[} :HNH _H:RREF(A—U).

As RREF(A —T7I) # I, the matrix A— 71 is not invertible so 7 is an eigenvalue of A.

1 6

5 2] then

Example. If A = [

in (ot | Yhe epenGiod {v A Wi egorvoiee A
are P& Dae fwnzero dlemos of Nul (A-AT)






Corollary. A number A € R is an eigenvalue of A if and only if det(A — AI) = 0.
Proof. Remember that A — I is not invertible if and only if det(A — AI) =0. O

Another way of defining an eigenvector: the eigenvectors of A with eigenvalue \ are
precisely the nonzero elements of the null space Nul(A — AI).

Since we know how to construct a basis for the null space of any matrix, we also
know how to find all eigenvectors of a matrix for any given eigenvalue.
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Example. In the previous examplef RREF(A — 71) =

0 0

S

Ax = Tz if and

only if (A —7I)x = 0 if and only if z = { ;1 J where 77 — 29
2

. . . )
system, x5 is a free variable, and we can rewrite x as x = -
2

This means [ 11 -‘ is a basis for Nul(A — 71).

0. In this linear

- 1]

L d

So every eigenvector of A with eigenvalue 7 has the form [ Z }

for some a € R.
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N\A\(A')]b = {*(mﬂ\ Ax-..\{]

One calls thiiset of all v € R™ with Av = Av the eigenspace of A for \. We also call
this the e of A. This is just the null space of A — AI.

A number is an eigenvalue of A if and only if the corresponding eigenspace is nonzero
(that is, contains a nonzero vector).
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4 —1 6
Example. Suppose we were told that A = [ 2 16 ] has 2 as an eigenvalue.

2 -1 8 .‘-._1

To find a basis for the 2-eigenspace of A, we row reduce

2 —1 6 2 —1 ~1/
2 -1 6 0 0

a1
Thus Az = 2z if and only if x = [ To ] where z; — %Jfg + 3z3 = 0, meaning

I3
1/2 -3
11, 0 | is basis for 2-eigenspace.

11y — 313 1/2 -3
xTr = ) = X2 1 +Z3 0 ~

\a
all e.tgemec\w o~ A witn qusn\ A=2 haee fom a[, ‘+\,‘ 0
wits a$oovb3o

O OO
o O
O O N
O O W

] — RREF(A — 2I).
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Recall that a matrix i W its nonzero entries all appear on or above the
main diagonal, or all app®al on 0™below the main diagonal.

Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries.

Proof. If A has diagonal entries dy, ds, ..., d, then A— \I is triangular with diagonal
entries dy — X\, do — A\, ..., d, — \, so

) det(A = AT) = (dy = \)(ds = A) -+~ (dy — \)

which is zero if and only if A € {dy,ds, ..., d,}. O

6 —8
Example. The eigenvalues of the matrix @ 6 | are 3, 0, and 2.
0 0







