(2) Eigenvalues + eigenvectors

(Review + more on abstract vector spaces

Outflue !

* Note this week's off line + online HW

MATH 2121 - Lecture # 14

"concrete" vector space 47 IR" and its subspaces

(abstract)

1 Last time: vector spaces

A *(real) vector space* V is a set containing a *zero vector*, denoted 0, with *vector addition* and *scalar multiplication* operations that let us produce new vectors $u+v \in V$ and $cv \in V$ from given elements $u, v \in V$ and $c \in \mathbb{R}$.

Several conditions must be satisfied so that these operations behave exactly like vector addition and scalar multiplication for \mathbb{R}^n . Most importantly, we require that

1.
$$u + v = v + u$$
 and $(u + v) + w = u + (v + w)$.

2. v - v = 0 where we define u - v = u + (-1)v.

3.
$$v + 0 = v$$

4. cv = v if c = 1.

There are a few other more conditions to give the full definition (see the notes).

By convention, we refer to elements of vector spaces as *vectors*.

Example. All subspace of \mathbb{R}^n are vector spaces, with the usual zero vector and vector operations.

Example. The set of $m \times n$ matrices is a vector space, with the usual addition and scalar multiplication operations.

The zero vector in this vector space is the $m \times n$ zero matrix.

leasy new example

Source of mom Constructions of vector spaces Common vector spaces are subspaces of \mathbb{R}^n or subspaces of the following: Proposition. Let X be a set and let V be a vector space. (e.g., V = R) Then the set Functions(X, V) of all functions $f: X \to V$ is a vector space with f + g = (the function that maps $x \mapsto f(x) + g(x)$ for $x \in X$), cf = (the function that maps $x \mapsto c \cdot f(x)$ for $x \in X$), 0 = (the function that maps $x \mapsto 0 \in V$ for $x \in X$),

for $f, g \in \mathsf{Functions}(X, V)$ and $c \in \mathbb{R}$.

useful to think through why

$$R^{*} = Functions(F_{1,2,3,...,n7}, R)$$

 $[\stackrel{NV}{k}_{n}] \leftarrow f$

lots of vocab, mostly repeating concepts related to subspaces of [R"

Definition. The definitions of a *subspace* of a vector space and o *linear transformations* between vector spaces are just like the ones we saw for subspaces of \mathbb{R}^n :

A subset H ⊆ V is a subspace if (V is any vector space)
0 ∈ H and u + v ∈ H for all u, v ∈ H and cv ∈ H for all c ∈ ℝ.
A function f : U → V is linear if (V, V both vector space)

f(u+v) = f(u) + f(v) for all $u, v \in U$ and f(cv) = cf(v) for all $c \in \mathbb{R}$.

Proposition. If U, V, W are vector spaces and $f : V \to W$ and $g : U \to V$ are linear then $f \circ g : U \to W$ is also linear, where $f \circ g(x) = f(g(x))$ for $x \in U$.

Example. If U and V are vector spaces then let Lin(U, V) be the set of linear functions $f: U \to V$. Then Lin(U, V) is a subspace of Functions(U, V).

versur U - V is that we no longer have a notion of I standard matrix (as there is no standard Lasis

key difference between linear functions R + P

vectors of form where $C_1, C_2, -_3, C_4 \in [\mathbb{R}, v_{1}, -_3, v_{k}]$

Let V be a vector space. The definitions of *linear combinations*, *span* and *linear independence* for vectors in V are the same as for vectors in \mathbb{R}^n .

Remember that we can only evaluate the linear combination $c_1v_1 + c_2v_2 + \ldots$ if it is a finite sum, or if there are finitely many nonzero scalars $c_i \neq 0$.

Example. The subspace of polynomials in Functions(\mathbb{R}, \mathbb{R}) is the span of $1, x, x^2, x^3, \ldots$. But $e^x = 1 + x + \frac{1}{2}x + \frac{1}{6}x^2 + \frac{1}{24}x^3 + \cdots + \frac{1}{n!}x^n + \ldots$ is not in this subspace.

refers to vectors $v_{11-3}v_{k} \in V$ which only produce zoro vector as a linear comb. $0 = c_1v_1 + c_2v_3 + \dots + C_k v_k$ if we have $c_1 = c_{12} = \dots = C_k = 0$ **Definition.** A basis of a vector space V is a subset of linearly independent vectors whose span is V.

Saying b_1, b_2, b_3, \ldots is a basis for V is the same as saying that for each $v \in V$, there a unique coefficients $x_1, x_2, x_3, \cdots \in \mathbb{R}$, all but finitely many of which are zero, such that $v = x_1b_1 + x_2b_2 + x_3b_3 + \ldots$ (consigner if basis is for $v \in V$, there

Theorem. Let V be a vector space. Then V has at least one basis, and every basis of V has the same number of elements (but this could be infinite).

Definition. The *dimension* of a vector space V is the number dim V of elements in any of its bases.

Example. If X is a finite set then dim $Functions(X, \mathbb{R}) = |X|$.

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = a \begin{bmatrix} 10 \\ 00 \end{bmatrix} + b \begin{bmatrix} 0 \\ 00 \end{bmatrix} + c \begin{bmatrix} 0e \\ 10 \end{bmatrix} + d \begin{bmatrix} 00 \\ 01 \end{bmatrix}$ $\begin{bmatrix} c & d \end{bmatrix} = a \begin{bmatrix} 10 \\ 00 \end{bmatrix} + b \begin{bmatrix} 00 \\ 01 \end{bmatrix} + c \begin{bmatrix} 10 \\ 02 \end{bmatrix} + d \begin{bmatrix} 00 \\ 01 \end{bmatrix}$ So it's clear that $\mathbb{R}^{2\times 2} = \mathbb{R}$ -span[E11, E12, E22, E22] also these matrices are linearly independent So only way to make the LAS = [00] is by $folding \quad q = b = c = 0 = 0$

2 More on dimension

If V is a finite-dimensional vector space then $\dim \operatorname{Lin}(V, \mathbb{R}) = \dim V$.

To see this, suppose b_1, b_2, \ldots, b_n is a basis for V. **August basis**

A basis for $\operatorname{Lin}(V, \mathbb{R})$ is given by the linear functions $\phi_1, \phi_2, \ldots, \phi_n : V \to \mathbb{R}$ with

 $\phi_i(x_1b_1 + x_2b_2 + \dots + x_nb_n) = x_i \quad \text{for } x_1, x_2, \dots, x_n \in \mathbb{R}.$

The unique way to express any linear $f:V\to \mathbb{R}$ as a combination of these is

$$f = f(b_1)\phi_1 + f(b_2)\phi_2 + \dots + f(b_n)\phi_n.$$

Vector space of Linear functions V->PR

When $V = \mathbb{R}^n$, we can think of $\operatorname{Lin}(\mathbb{R}^n, \mathbb{R})$ as the vector space of $1 \times n$ matrices. If $b_1 = e_1, b_2 = e_2, \ldots, b_n = e_n$ is the standard basis, then $\phi_i = e_i^{\top}$. We know $\operatorname{Lin}(\mathbb{R}^n, \mathbb{R}) = \mathbb{R}^n (1 \times n \operatorname{matrices})$ from prove example, this has basis $\{ E_1, E_2, \cdots, E_n \} = \{ e_1^{\top}, e_2^{\top} \}, \dots, e_n^{\top} \}$

Vector space generalizations of Col(A) and Nul(A)

Definition. Suppose U and V are vector spaces and $f: U \to V$ is a linear function. Define range $(f) = \{f(x) : x \in U\} \subseteq V$ and kernel $(f) = \{x \in U : f(x) = 0\} \subseteq U$. These subspaces generalize the column space and null space of a matrix.

We have a version of the rank-nullity theorem for arbitrary vector spaces:

Theorem (Rank-Nullity Theorem). If dim $U < \infty$ then $\dim \operatorname{range}(f) + \dim \operatorname{kernel}(f) = \dim U.$ This specializes to our earlier statement about matrices when $U = \mathbb{R}^n$ and $V = \mathbb{R}^m$. For a self-contained proof, see the lecture notes. if $U = \mathbb{R}^n$, $V = \mathbb{R}^n$, A = (standard matrix of f)dim range (f) + dim kornel (f) = dim U din Col(A) + din Nul(A) = n = # columns of A

Ex we have discussed a basis for TR^{3×3}. What about ($\chi^{T} = \chi$) there subspaces? A basis for 3×3 symmetric matrices: [[]]: 0, bc, d, f, f (B)] $(X^{T}=-X)$ A basis for 3×3 skew-symmetric matrices: $\left\{ \begin{array}{c} 0 - a - b \\ a & 0 - c \\ b & c & 0 \end{array} \right\}$

Ex what are eigenectors of A with eigenvalue
$$f = 0$$
?
there are the non-core vectors v with $Av = 0v = 0$
in other words: the non-zoro elements of Null A
Ex what are the eigenvectors of a rotation matrix $A = \begin{bmatrix} cago & -rino \\ rino & cago \end{bmatrix}$?
r cell that $Av = (v rotated cerv by 0 radians)$
so if 0 is not a multiple of TT then Av is NOT a same line of Vi
 A has no eigenvectors
But if $0 = 0$ then $A = \begin{bmatrix} 10 \\ 01 \end{bmatrix}$ and if $\theta = TI$ then $A = \begin{bmatrix} -10 \\ 0-1 \end{bmatrix}$ in the cerv

If $\lambda \neq 0$ then this would mean that $v_1 = v_2 = v_3 = v_4 = 0$, but remember that v should be nonzero. Therefore the only possible eigenvalue of A is $\lambda = 0$.

then to get an eigenvector: set $v_1 = 1$, $v_2 = v_3 = u_4 = 0$

" λ is an eigenvalue of A" means: "there is some $0 \neq v \in \mathbb{R}^n$ such that $Av = \lambda v$." Recall that I_n denotes the $n \times n$ identity matrix. We abbreviate by setting $I = I_n$.

Proposition. $\lambda \in \mathbb{R}$ is an eigenvalue of A if and only if $A - \lambda I$ is not invertible.

Proof. $Ax = \lambda x$ has a nonzero solution $x \in \mathbb{R}^n$ if and only if $(A - \lambda I)x = 0$ has a nonzero solution, which occurs if and only if $A - \lambda I$ is not invertible.

As $\mathsf{RREF}(A-7I) \neq I$, the matrix A-7I is not invertible so 7 is an eigenvalue of A.

Corollary. A number $\lambda \in \mathbb{R}$ is an eigenvalue of A if and only if $\det(A - \lambda I) = 0$.

Proof. Remember that $A - \lambda I$ is not invertible if and only if $\det(A - \lambda I) = 0$. \Box

Another way of defining an eigenvector: the eigenvectors of A with eigenvalue λ are precisely the nonzero elements of the null space Nul $(A - \lambda I)$.

Since we know how to construct a basis for the null space of any matrix, we also know how to find all eigenvectors of a matrix for any given eigenvalue.

$$A = \begin{bmatrix} x \\ 5 \\ z \end{bmatrix} A = 7$$

Example. In the previous example $RREF(A - 7I) = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ $Ax = 7x$ if and
only if $(A - 7I)x = 0$ if and only if $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $x_1 - x_2 = 0$. In this linear
system, x_2 is a free variable, and we can rewrite x as $x = \begin{bmatrix} x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
This means $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is a basis for Nul $(A - 7I)$.
So every eigenvector of A with eigenvalue 7 has the form $\begin{bmatrix} a \\ a \end{bmatrix}$ for some $a \in \mathbb{R}$.

$$A = 7x$$
 if $A = 7x$ if A

+ $Nu(A-JI) = \{x \in \mathbb{R}^n \mid A \neq Jx\}$

One calls the set of all $v \in \mathbb{R}^n$ with $Av = \lambda v$ the *eigenspace* of A for λ . We also call this the λ -eigenspace of A. This is just the null space of $A - \lambda I$.

A number is an eigenvalue of A if and only if the corresponding eigenspace is nonzero (that is, contains a nonzero vector).

Upgrade to provide 2.2 example: (Same technique)
Example. Suppose we were told that
$$A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$$
 has 2 as an eigenvalue.
 $A - 2I = \begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1/2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = RREF(A - 2I).$
Thus $Ax = 2x$ if and only if $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ where $x_1 - \frac{1}{2}x_2 + 3x_3 = 0$, meaning
 $x = \begin{bmatrix} \frac{1}{2}x_2 - 3x_3 \\ \frac{x_2}{x_3} \end{bmatrix} = x_2 \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \sim \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$ is basis for 2-eigenspace.

all eigenvectors for A with eigenl J=2 have form a [] + b [] with a to or b to

Recall that a matrix is *triangular* if its nonzero entries all appear on or above the main diagonal, or all appear on or below the main diagonal.

Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries.

Proof. If A has diagonal entries d_1, d_2, \ldots, d_n then $A - \lambda I$ is triangular with diagonal entries $d_1 - \lambda, d_2 - \lambda, \ldots, d_n - \lambda$, so

$$det(A - \lambda I) = (d_1 - \lambda)(d_2 - \lambda) \cdots (d_n - \lambda)$$

which is zero if and only if $\lambda \in \{d_1, d_2, \ldots, d_n\}$.

Example. The eigenvalues of the matrix $\begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$ are 3, 0, and 2.