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- intro to "eigenvalue decomposition"
of a matrix/"diagonalization"



1 Eigenvector and eigenvalues

Everywhere is this lecture, n is a positive integer and A is an n⇥ n matrix.

Let I denote the n⇥ n identity matrix. Let � be a number.

Definition. A vector v 2 Rn is an eigenvector for A with eigenvalue � if

v 6= 0 and Av = �v.

The set of all v 2 Rn with Av = �v is the �-eigenspace of A for �.

Note that this is equal to the nullspace of A� �I.
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a nonzero rector that , when multiplied by A,

gives a scalar multiple of itself



Warmup examples :

#f A = [0) is diagonal,hea

all elementary basis vectors , =(1) ,

es = []

are eigenvectors : notice Ae= are :

(this property holds for any diagonal matrix)



If A = [The

Af
so one eigenvector is v = ( ,)
(this has eigenvalue += 1 as Av = v)



Proposition. Let � be a number. The following are equivalent:

1. There exists an eigenvector v 2 Rn for A with eigenvalue �.

(Remember that eigenvectors must be nonzero.)

2. The matrix A� �I is not invertible.

3. det(A� �I) = 0.

4. The �-eigenspace for A contains a nonzero vector.

As usual, a matrix is triangular if it is upper-triangular or lower-triangular.

The characteristic polynomial of a square matrix A is det(A� xI).

Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries.
If these are d1, . . . , dn then characteristic polynomial of A is (d1 � x) · · · (dn � x).

Fact to remember
:aare matrix A is invertible

if andonly if Nul(A) = 0 if detA =0
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by the prop , t is an eigenvalue for A

precisely when x=t is a solution to det(A
-XI) =0



Ex Suppose A = [d5] (this is triangular
its eigenvalues are 1 and 2

what's an eigenvector
what's an eigenvector far eigenvalueD

far eigenvalue= 1. I this will be a nonzero elem

of mull space of

~ = [b] as lo)(d) = (b) A-25 : 1857-1827 = too)

one example: v = 197



The following is true for all square matrices, not just triangular ones.

Theorem. Suppose �1,�2, . . . ,�r are distinct eigenvalues for A.

Let v1, v2, . . . , vr 2 Rn be the corresponding eigenvectors, so that Avi = �ivi.

Then the vectors v1, v2, . . . vr are linearly independent.

A new result and useful principle :

"distinct" means thati t ,
Lifts--Liftr
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,
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etc

(so if it] then+iti)



The detailed proof is in the lecture notes.

Here is an intuitive reason to believe that

egenvectors with distinct eigenvalues are linearly independent

Suppose +. > (all
other eigenvalues) but we can express

det

0 = Civi + GV t . + CrVr =w

1000
1000d 1coco 10000

Then Aw = citiritcataratant
enterea

but also 1 = 1
l0008 =0 so must have =0

(then continue argument)
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then c +,000 1000+ +,10000 will
-

largest tem



Let x be a variable. The eigenvalues of A are precisely the solutions to the equation
det(A� xI) = 0 which we call the characteristic equation for A.

Example. The matrix

A =

2

664

5 �2 6 �1
0 3 �8 0
0 0 5 4
0 0 0 1

3

775

has characteristic polynomial det(A� xI) = (5� x)2(3� x)(1� x).

Since (5� x)2 divides det(A� xI) but (5� x)3 does not divide det(A� xI), we say
that 5 is an eigenvalue of A with algebraic multiplicity 2.

The other eigenvalues 1 and 3 have algebraic multiplicity 1.

The algebraic multiplicity of an eigenvalue � for A is the unique integer m � 1 such
that (�� x)m divides det(A� xI) but (�� x)m+1 does not divide det(A� xI).

To find eigenvalues :

try to factor det (A-x()

a more useful geometric multiplicity of t

is dim (A-I) which turns out to be saleiplicit





We consider the following example in more depth.

Example. Consider the matrix

A =

2

4
1 5 4
0 2 0
0 0 3

3

5 .

A is triangular, so det(A�xI) = (1�x)(2�x)(3�x) and A’s eigenvalues are 1, 2, 3.

Each eigenvalue in this example has algebraic multiplicity 1.

We compute the corresponding eigenspaces next.
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1-eigenspace. Eigenvectors of A w/eigenvalue 1 are nonzero elements of Nul(A�I).

A�I =

2

4
0 5 4

1 0
2

3

5 ⇠

2

4
0 1 0

5 4
2

3

5 ⇠

2

4
0 1 0

0 4
2

3

5 ⇠

2

4
0 1 0

0 1
0

3

5 = RREF(A�I).

This shows that x 2 Nul(A� I) if and only if x =

2

4
x1

x2

x3

3

5 =

2

4
x1

0
0

3

5 = x1

2

4
1
0
0

3

5.

So

2

4
1
0
0

3

5 is a basis for Nul(A� I).

Thus all eigenvectors of A with eigenvalue 1 are nonzero scalar multiples of

2

4
1
0
0

3

5.
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2-eigenspace. Eigenvectors of A w/eigenval. 2 are nonzero elements of Nul(A�2I).

A� 2I =

2

4
�1 5 4

0 0
1

3

5 ⇠

2

4
1 �5 0

0 1
0

3

5 = RREF(A� 2I).

This shows that x 2 Nul(A� 2I) if and only if x =

2

4
x1

x2

x3

3

5 =

2

4
5x2

x2

0

3

5 = x2

2

4
5
1
0

3

5.

So

2

4
5
1
0

3

5 is a basis for Nul(A� 2I).

All eigenvectors of A with eigenvalue 2 are nonzero scalar multiples of

2

4
5
1
0

3

5.

-
Xi - Sxz =0
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3-eigenspace. Eigenvectors of A w/eigenval. 3 are nonzero elements of Nul(A�3I).

A� 3I =

2

4
�2 5 4

�1 0
0 0 0

3

5 ⇠

2

4
�2 0 4

1 0
0

3

5 ⇠

2

4
1 0 �2

1 0
0

3

5 = RREF(A� 3I).

This shows that x 2 Nul(A� 3I) if and only if x =

2

4
x1

x2

x3

3

5 =

2

4
2x3

0
x3

3

5 = x3

2

4
2
0
1

3

5.

So

2

4
2
0
1

3

5 is a basis for Nul(A� 3I).

All eigenvectors of A with eigenvalue 3 are nonzero scalar multiples of

2

4
2
0
1

3

5.

-
-
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Since the eigenvalues 1, 2, 3, are distinct, the eigenvectors

2

4
1
0
0

3

5,

2

4
5
1
0

3

5,

2

4
2
0
1

3

5 are

linearly independent.

Consider the invertible and diagonal matrices

P =

2

4
1 5 2
0 1 0
0 0 1

3

5 and D =

2

4
1 0 0
0 2 0
0 0 3

3

5

It turns out that A = PDP�1. How can we check this without multiplication?

nvw

= diag(1 ,2,)

we define P = [n ~ w]

P is invertible because its columns are
lin. independent

(and the matrix is square



Let u =

2

4
1
0
0

3

5, v =

2

4
5
1
0

3

5, and w =

2

4
2
0
1

3

5 be the columns of P =

2

4
1 5 2
0 1 0
0 0 1

3

5.

Also let e1 =

2

4
1
0
0

3

5, e2 =

2

4
0
1
0

3

5, and e3 =

2

4
0
0
1

3

5 .

Then Pe1 = u, Pe2 = v, and Pe3 = w so P�1u = e1, P
�1v = e2, and P�1w = e3 .

But for D =

2

4
1 0 0
0 2 0
0 0 3

3

5 we have De1 = e1 and De2 = 2e2 and De3 = 3e3.

So PDP�1u = u and PDP�1v = 2v and PDP�1w = 3w.

At the same time Au = u and Av = 2v and Aw = 3w.

Since u, v, w are a basis for R3, we must have A = PDP�1.

Recall : Pei = (ith column of 4) e. = p"(pe) = P(u) = Pin
similarly

, e2= por ,
es = Por

uv W

* * Y -

E
checking that pop" andA multiplied with u,r,w

give same result.



Remark If A is any non matrix and

we can find an
invertible matrix P = (v r-r)

(v: ERY)
and a diagonal matrix 0 = /"...]
such that A =POP" = call this an eigenvector

decomposition ofA

then D +it--Ir are the eigenvalues of A

② each vi is an eigenvector for A because

Avi = POPvi = PDei = Pei-tipetiVi
mu

-ei as Pei =Vi



One application of this decomposition: a simple formula for powers An of A.

Define A0 = I, A1 = A, A2 = AA, A3 = AAA, and so on.

Lemma. For any integer n � 0 we have An = (PDP�1)n = PDnP�1.

Proof. Do some small examples and convince yourself that the pattern continues:

A2 = AA = PDP�1PDP�1 = PDIDP�1 = PD2P�1

A3 = A2A = PD2P�1PDP�1 = PD2IDP�1 = PD3P�1

A4 = A3A = PD3P�1PDP�1 = PD3IDP�1 = PD4P�1

...

and so on.

If you can compute A
= POP"(Odiagonal

the
( &

I

Also : (dOYN dY fo,



Lemma. For any integer n � 0 we have

Dn =

2

4
1n 0 0
0 2n 0
0 0 3n

3

5 =

2

4
1 0 0
0 2n 0
0 0 3n

3

5 .

Proof. To multiply diagonal matrices we just multiply the entries in the correspond-
ing diagonal positions:

2

6664

x1

x2

. . .
xk

3

7775

2

6664

y1
y2

. . .
yk

3

7775
=

2

6664

x1y1
x2y2

. . .
xkyk

3

7775
.

So to evaluate Dn = DD · · ·D, just raise each diagonal entry to the nth power.

S



By usual algorithm can compute P�1 =

2

4
1 5 2
0 1 0
0 0 1

3

5
�1

=

2

4
1 �5 �2

1 0
1

3

5.

Putting everything together gives the identity

An = PDnP�1 =

2

4
1 5 2
0 1 0
0 0 1

3

5

2

4
1 0 0
0 2n 0
0 0 3n

3

5

2

4
1 �5 �2

1 0
1

3

5

=

2

4
1 5 · 2n 2 · 3n
0 2n 0
0 0 3n

3

5

2

4
1 �5 �2

1 0
1

3

5

=

2

4
1 5(2n � 1) 2(3n � 1)
0 2n 0
0 0 3n

3

5 .

Recall : A = (o) =PO
80

-completely
explicit
formula for Al

for any integer >o





2 Similar matrices

Definition. Two n ⇥ n matrices X and Y are similar if there exists an invertible
n⇥ n matrix P with X = PY P�1.

In this case it also holds that Y = P�1PY P�1P = P�1XP .

If X and Y are similar, then we say “X is similar to Y ” and “Y is similar to X.”

Above we showed that A =

2

4
1 5 4
0 2 0
0 0 3

3

5 and D =

2

4
1 0 0
0 2 0
0 0 3

3

5 are similar matrices.

There is a special name for this kind of similarity: diagonalizability .

Definition. A square matrix X is diagonalizable if X is similar to a diagonal matrix

X = PYp
+

~

(fandP with A =POP")





Proposition. An n⇥ n matrix A is always similar to itself.

(This means that similarity is a reflexive relation on square matrices.)

Proof. Since I = I�1 we have A = PAP�1 for P = I.

Proposition. Suppose A,B,C are n⇥ n matrices.

Assume A and B are similar. Assume B and C are also similar.

Then A and C are similar.

(This means that similarity is a transitive relation on square matrices.)

Proof. If A = PBP�1 and B = QCQ�1 then A = RCR�1 for R = PQ.

S

S
A = (Pa)c(pa) = paca"p

+

= PEP
-



Theorem. If A and B are similar n ⇥ n matrices then A and B have the same
characteristic polynomial and so they have the same eigenvalues.

(Similar matrices usually have di↵erent eigenvectors, however.)

Proof. Recall that det(XY ) = det(X) det(Y ). Assume A = PBP�1. Then

A� xI = PBP�1 � xPIP�1 = P (B � xI)P�1

and

det(A� xI) = det(P (B � xI)P�1) = det(P ) det(B � xI) det(P�1).

But
det(P ) det(P�1) = det(PP�1) = det(I) = 1,

so
det(A� xI) = det(B � xI).

* to
E

16

for similar matrices A and 8



Notice
,
however , that

if A = Pep
+

and Br = Iv then Aw-tw for wepr

P Aw = P8pYV) = PBIV
= PEV

= P+v

= + Pv =w

so similarmatrices A andI have different eigenvectors,
(though they are closely recated)


