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1 Eigenvector and eigenvalues

Everywhere is this lecture, n is a positive integer and A is an n X n matrix.

Let] I denote the n x n identity matrix.| Let}A be a number.

Definition. A vecto] v € R" s an eigenvector for A with eigenvalue X if QQ“N ’

The set of all v € R™ with Av = v

T

Note that this is equal to the nullspace of A — A1 e
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Proposition. Let A be a number. The following are equivalent:

1. [There exists an eigenvector v € R™ for A with eigenvalue .

(Remember that eigenvectors must be nonzero.)
The matrix A — Al is not invertible.
det(A — AI) = 0.

The A-eigenspace for A contains a nonzero vector. 9 N\A\(A‘ \13 *G

As usual, a matrix is|triangularjif it is upper-triangular or lower-triangular.

The characteristic polynomial of a square matrix A isjdet(A — z1).

Theorem. The eigenvalues of a triangular square matrix A are its diagonal entries.
If these are dy, ..., d, then characteristic polynomial of A is (dy — z] - (d, — Z)-
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The following is true for all square matrices, not just triangular ones.

Theorem. Suppose A\, Ag, ..., A, are distinct eigenvalues for A.

Let vi,v9,..., v, € R" be the corresponding eigenvectors, so thai Av; = \;v;

Then the vectors vy, v, ... v, are linearly independent.
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c. The eigenvalues of A are precisely the solutions to the equation

det(A—2I) =0y

‘hich we call the characteristic equation for A.

Example. The matrix

has characteristic
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polynomial det(A — zI) = (5 — 2)*(3 — z)(1 — x).

A=

O O O Ot

Since (5 — z)? divides det(A — xI) but (5 — z)® does not divide det(A — xI), we say
that 5 is an eigenvalue of A with algebraic multiplicity 2.

The other eigenvalues 1 and 3 have algebraic multiplicity 1.

The lalgebraic multz’plicitg] of an eigenvalue A for A is the unique integer m > 1 such

that (A — x)™ divides det(A — zI) but (A — z)™! does not divide det(A — xI).
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We consider the following example in more depth.

[é]/\

A is triangular, soldet( = nd A’s eigenvalues ar 2, 3.

Example. Consider the matrix

S N Ot
W O =~

Each eigenvalue in this example has algebralc multlphclty 1.

ENe compute the corresponding eigenspaces next.
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1-eigenspace. Eigenvectors of A w/eigenvalue 1 are nonzero elements of Nul(A—1).

05 4 010 010 010 v =0
1010}~ 54|~ 0 4|~ 0 1 8 =RREF(A—I)ey) %230
00 2 2 0 g =0

This shows that z € Nul(A — I) if and only if x = xz = 0 =1 0 )
T3 0 0
1
So | 0 | is a basis for Nul(A — I).
0
1
Thus all eigenvectors of A with eigenvalue 1 are nonzero scalar multiples of | 0
0
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2-eigenspace. Eigenvectors of A w/eigenval. 2 are nonzero elements of Nul(A—21).
~1 5 4 1 5 0 = $4 =0
A—2I = o 0 0 1 | = RREF(A —21).&> 43 =0
1 0 0 =0O
)
= T2 1 .
0

|

5%2
This shows that € Nul(A — 27) if and only if z = [ To ] = [ To ]
T3 0

5
So [ 1 } is a basis for Nul(A — 27).
0

5
All eigenvectors of A with eigenvalue 2 are nonzero scalar multiples of [ 1 ] )
0
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3-eigenspace. Eigenvectors of A w/eigenval. 3 are nonzero elements of Nul(A—31).
X\"-Ly? =0

-2 5 4 —2 0 4
A-3I=] © -1 0}~ — RREF(A —30).&> | % =°
0 00 ¢ =0

21‘3 2
This shows that € Nul(A — 37) if and only if = [ T2 ] = [ 0 ] =3 [ 0 ] .
T3 1

2
So [ 0 “ is a basis for Nul(A — 31).
1

2
All eigenvectors of A with eigenvalue 3 are nonzero scalar multiples of [ 0 ] .
1
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1
Since the eigenvalues 1, 2, 3, are distinct, the eigenvectors [ 0 ] ,

)

linearly independent.

Consider the invertible and diagonal matrices
P[(l)??)] and D[(1)38];6:“9(.\1)9)
001 00 3
It turns out tha] A = PDP~'] How can we check this without multiplication?
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RCLO\\ : P (\“‘ L‘\\Mm of P\ er: P'\(Qe\) - P-\‘u3 - P.\“
siﬁ:\“‘“, e =YV ey F\V
1 5 5
Let W= [ 0 ] ,V= [ 1 ] , andW= [ 0 :| be the columns of P = [

0 0 1
|
01.
1

1 0
Alsolete;= | 0 |,eo= 1|1 |, and ez =
0 0

* * * Then ’ Pe; = u, Pes = v, and Pes = wHP’lu =e, P lv=ey, and P'w =e3|.

O O =
O = Ot
— O N

1 00
But for D = [ 020 :| we have De; = e; and Dey = 2e5 and Des = 3es.
0 0 3

So PDP 'y =wu and PDP~'v = 2v and PDP'w = 3w.

At the same time Au = u and Av = 2v and Aw = 3w.

Since u, v, w are a basis for R3, we must haveIA = PDP!.

P0P aw A Ui
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One application of this decomposition:€ simple formula for powers A™ of A)
Define A =1, Al = A, A2 = AA, A3 = AAA, and so on.

Lemma. For any integer n > 0 we have A" = (PDP~')" = PD"P~!.

Proof. Do some small examples and convince yourself that the pattern continues:
A2 = AA=PDP'PDP~! = PDIDP! = PD?P~!
A3 = A2A=PD*P'PDP~' = PD?IDP~!' = PD3pP~!
At = A3A = PD3P'PDP~ ' = PD3IDP~! = PD*P~!

and so on. “
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Lemma. For any integer n > 0 we have

10 0 1 0 0
D" = 02" 0|=02" 0
0o 0 3" 0 0 3"

Proof. To multiply diagonal matrices we just multiply the entries in the correspond-
ing diagonal positions:

x U1 11
T2 Yo T2Y2

T Yk TrYk

So to evaluate D™ = DD --- D, just raise each diagonal entry to the nth power. [
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By usual algorithm can compute P~ =

Putting everything together gives the identity

[ 1 0 0 1 =5 —2
A" = PD"P~! = 02" 0 1 0
0o 0 3° 1

Ed i
0 1 0
0 3" 1
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2 Similar matrices K= PYP
w

Definition. Two n X n matrices X and Y ard similar |if there exists an invertible
n X n matrix P with X = PY P~ 1.

In this case it also holds that Y = P~'PY PP = P71XP.

If X and Y are similar, then we say “X is similar to Y” and “Y is similar to X.”

1
Above we showed that A= | 0 are similar matrices.

There is a special name for this kind of similarity: diagonalizability.

Definition. A square matrix X is | diagonalizable if X is similar to a diagonal matrix






Proposition. An n x n matrix A is always similar to itself.

(This means that similarity is a reflezive relation on square matrices.)

Proof. Since I = I~! we have A = PAP~! for P = 1.

Proposition. Suppose A, B, C' are n x n matrices.
Assume A and B are similar. Assume B and C are also similar.
Then A and C are similar.

(This means that similarity is a transitive relation on square matrices.)

Proof. If A= PBP~! and B = QCQ! then A= RCR™! for R = PQ.

A = (POCPQ) = Pace®
= 959'\



Theorem. If A and B are similar n X n matrices then A and B have the same
characteristic polynomial and so they have the same eigenvalues.

(Similar matrices usually have different eigenvectors, however.)

Proof. Recall that det(XY") = det(X)det(Y). Assume A = PBP~!. Then

A—zl = PBP™' —gPIP™" = P(B — 2I)P"
S Ny ——
and zA : T ‘ﬂdﬂ'
Q det(A — a1) = det(P(B — 2I)P~Y) = det(P) det(B — 1) det(P~Y).

But
de)/dD) det(fl) =det(PP!) = det(I) =1,

" det(A — xI) = det(B — z1). \
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