
MATH 2121 - Lecture#16

Outline:

- Similarity
,
diagonalization (review

- Application : formula for Fibonacci numbers

- viagonalization (for matrices with repeated eigenvalues



1 Last time: similar and diagonalizable matrices

Let n be a positive integer. Suppose A is an n⇥ n matrix, v 2 Rn, and � 2 R.

v an eigenvector for A with eigenvalue � if 0 6= v 2 Nul(A� �I), so Av = �v.

� is an eigenvalue of A if there exists some eigenvector with this eigenvalue.

The nullspace Nul(A� �I) is called the �-eigenspace of A.

The eigenvalues of A are the solutions to the polynomial equation det(A� xI) = 0.

Fact. Eigenvectors of A with all distinct eigenvalues are linearly independent.

Two n⇥ n matrices A and B are similar if A = PBP�1 for some matrix P .

Example. A =

2

4
1 2 3
4 5 6
7 8 9

3

5 is similar to

2

4
0 0 1
0 1 0
1 0 0

3

5A

2

4
0 0 1
0 1 0
1 0 0

3

5
�1

=

2

4
9 8 7
6 5 4
3 2 1

3

5 .

#
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Similar matrices have the same eigenvalues but usually di↵erent eigenvectors.

However, matrices may have the same eigenvalues but not be similar.

Example. The matrices

A =


2 0
0 2

�
and B =


2 1
0 2

�

both have only one eigenvalue given by the number 2.

But they are not similar: as A = 2I, for every invertible 2⇥ 2 matrix P we have

PAP�1 = 2PIP�1 = 2PP�1 = 2I = A 6= B.

Amatrix is diagonal if all of its nonzero entries appear in diagonal positions (1, 1), (2, 2), . . .

A matrix A is diagonalizable if it is similar to a diagonal matrix.

Every diagonal matrix is diagonalizable.

↓ Scalar matrix= a constant timesI

an S PAP" = APP" = A
T
as A is scalar

bothe
only

S
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x =2 ↳ a matric is similar
this shows A is

to itself similar only to itself



T'
."To diagonalize" a matrix A means

to find a diagonal matrix O and

an invertible matrix P
such that A = pop

Ex .

from HW : two diagonal matrices are similar

if their diagonal entries are rearrangements of

each other : 0%"2] and ['2 ,7 = In

You can use this to find an invertible
matrix P such that

A = POP" if you can diagonalize A-PrPi and E-POD



A matrix A is diagonalizable when A = PDP�1 for some D =

2

6664

�1

�2

. . .
�n

3

7775
.

• In this case the numbers �1,�2, . . . ,�n are the eigenvalues of A.

Why? The matrices A and D are similar.

• Also if P =
⇥
v1 v2 . . . vn

⇤
then Avi = �ivi for each i = 1, 2, . . . , n.

Why? We have Pei = vi so P�1vi = P�1Pei = Iei = ei.
We also have Dei = �iei.
This means that Avi = PDP�1vi = PDei = P (�iei) = �iPei = �ivi.

• The columns of P are a basis for Rn of eigenvectors of A.

Why? We just saw that the columns of P are eigenvectors.
They are a basis because P is invertible.

How to diagonalize, and what does
it
give us :

Oo
O

->

-
( (E) (columns form a basis)

Note: the erguals of a diagonal/triangular matrix
are its diagonal entries



We can summarize these observations as follows:

Theorem. An n ⇥ n matrix A is diagonalizable if and only if Rn has a basis
v1, v2, . . . , vn whose elements are all eigenvectors of A. In this case, if �i is the
eigenvalue such that Avi = �ivi, then A = PDP�1 for

P =
⇥
v1 v2 · · · vn

⇤
and D =

2

6664

�1

�2

. . .
�n

3

7775
.

z
I

Prev slide said : if you can write A
=POP"(0 diagonal

then diag entries of 8 give eiguals of A
and columns of P give eigrectors for A

This slide says: if you can findn linearly independent
engenvectors for A

,
then can find A = POP

+



Not every matrix is diagonalizable.

Example. The 2⇥ 2 matrix B =


2 1
0 2

�
has only one eigenvalue 2.

We saw above that B is not similar to


2 0
0 2

�
, so B is not diagonalizable.

Theorem. If A is n⇥ n with n distinct eigenvalues then A is diagonalizable.

Proof. Suppose A has n distinct eigenvalues.

Any choice of eigenvectors for A for these eigenvalues will be linearly independent.

Therefore A has n linearly independent eigenvectors.

These n linearly independent eigenvectors are a basis for Rn since dim(Rn) = n.

this is only diagonal
matrix w/ same size

- as 8 and sameeiguals

L

↳ (



Example. The matrix A =

2

4
5 �8 1
0 0 7
0 0 �2

3

5 is triangular so has eigenvalues 5, 0,�2.

These are distinct numbers, so A is diagonalizable.

Example. Not all diagonalizable n⇥ n matrices have n distinct eigenvalues.

The identity matrix I is diagonalizable, but only has one distinct eigenvalue.

*

F = [1 ....7both draganaa able
but only 1 eigenvalue
(t = 1)





2 Diagonalization and Fibonacci numbers

Diagonalization leads to an exact formula for the Fibonacci numbers .

The sequence fn of Fibonacci numbers starts as

f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13 . . .

For n � 2, the sequence is defined by fn = fn�2 + fn�1.

We have f10 = 55 and f100 = 354224848179261915075.

Define an = f2n and bn = f2n+1 for n � 0.

If n > 0 then an = f2n = f2n�2 + f2n�1 = an�1 + bn�1.

Similarly, if n > 0 then bn = f2n+1 = f2n�1 + f2n = bn�1 + an = an�1 + 2bn�1.

f- 0H = 1 , fa = ( =2, fu = 1+2
=3
, fj= 2+3 = )

↓ "linear recurrence"

fut = futfr

fath = fat futt&
= fn- + 2frIthe definitionof

fe

meansthatwecan
comae



an = (even indexed
Fibonacci numbers) = far

br = lodd
indexed Fibonacci numbers) = fanth

En = frutfuz = an = fant fan-atfunt

= any + ba-

bn = fant = fant fanaan e
= an + bn-

[an7() =
an +2



We can put these two equations together into one matrix equation:

an
bn

�
=


1 1
1 2

� 
an�1

bn�1

�
.

Since this holds for all n > 0, we have

an
bn

�
=


1 1
1 2

� 
an�1

bn�1

�
=


1 1
1 2

�2 
an�2

bn�2

�
=


1 1
1 2

�3 
an�3

bn�3

�
= · · · =


1 1
1 2

�n 
a0
b0

�
.

In other words,


an
bn

�
=


1 1
1 2

�n 
0
1

�
.

Thus if we could get an exact formula for the matrix


1 1
1 2

�n
then we could derive

a formula for an = f2n and bn = f2n+1, which would determine fn for all n.

One way to compute An for large values of n is to diagonalize A, as then can write

A = PDP�1 and An = PDnP�1.

(an -fin , Con-funti) (10) 1P?

S
5

[dor has simple formular



From this point on we let A =


1 1
1 2

�
.

To determine if A is diagonalizable, our first step is to compute its eigenvalues:

0 = det(A� xI) = det


1� x 1

1 2� x

�
= (1� x)(2� x)� 1 = x2 � 3x+ 1.

By the quadratic formula, the eigenvalues of A are

↵ =
3 +

p
5

2
and � =

3�
p
5

2
.

Since ↵� � =
p
5 6= 0, these eigenvalues are distinct so A is diagonalizable.

Our next step is to find bases for the ↵- and �-eigenspaces of A.

New goal : diagonality
Ste : ① factor det1#)

to 2 distinct eiguals
& and

O because A is 2x,
it will be

diagonalizable

① E just needto fink

nonzero vectors

vNul(A-c])

WeNuI(A-BE)

③ then A = Pop
+

for e = [vw]
0= (8)





Continue to let A =


1 1
1 2

�
along with ↵ = 3+

p
5

2 and � = 3�
p
5

2 .

If M is any square matrix and � is any number, then we have a standard algorithm
to compute a basis for Nul(M � �I).

Using this algorithm, one can show that the ↵- and �-eigenspaces of A (that is, the
null spaces of A� ↵I and A� �I) are both 1-dimensional with bases

v =


↵� 2

1

�
and w =


� � 2

1

�

These vectors satisfy Av = ↵v And Bw = �w.

The details of how you row reduce A � ↵I and A � �I to find these vectors are
shown in the lecture notes.

The computations are just a little more complicated than usual since ↵ and � are
numbers involving square roots rather than being integers or rational numbers.

⑧[
*

② &
*



just need to
simplify this

Summary : we
know that -

(i) = (5) = (in)"(i)
=plati

since (12) = pop" for 0
:10

p = (v) = (402)

where =3 and=



Since ↵ and � are distinct eigenvalues of the 2 ⇥ 2 matrix A, with eigenvectors v
and w, we know that A is diagonalizable and more specifically that A = PDP�1 for

P
def
=
⇥
v w

⇤
=


↵� 2 � � 2

1 1

�
and D

def
=


↵ 0
0 �

�
.

Since P is 2⇥ 2 with detP = (↵� 2)� (� � 2) = ↵� � =
p
5, we have

Dn =


↵n 0
0 �n

�
and P�1 =

1p
5


1 2� �

�1 ↵� 2

�
.

We therefore have


f2n
f2n+1

�
=


an
bn

�
= An


0
1

�

= PDnP�1


0
1

�

=
1p
5


↵� 2 � � 2

1 1

� 
↵n 0
0 �n

� 
1 2� �

�1 ↵� 2

� 
0
1

�
.

(a +3)(p = 3)

=

↳



After multiplying out this product and making various simplifications, one gets


f2n
f2n+1

�
= PDnP�1


0
1

�
=

1p
5


↵n � �n

(↵� 1)↵n � (� � 1)�n

�
.

We now make one more unexpected simplification: because

(↵� 1)2 =
⇣

1+
p
5

2

⌘2
= 1+2

p
5+5

4 = 3+
p
5

2 = ↵

and

(� � 1)2 =
⇣

1�
p
5

2

⌘2
= 1�2

p
5+5

4 = 3�
p
5

2 = �

we can rewrite the vector equation above as


f2n
f2n+1

�
=

1p
5


(↵� 1)2n � (� � 1)2n

(↵� 1)2n+1 � (� � 1)2n+1

�
.

This identity actually gives a single formula for fn for all n � 0:

fn = 1p
5
((↵� 1)n � (� � 1)n) .

surprising amaint of simplificationn.

(-1)2 =2

(B -1) = B

↑
makes sense as

&
L and B are

rewrite solutions of x" - 3x+ =0

7) (x -1) = X





Summarizing everything, we conclude that:

Theorem. For all integers n � 0 it holds that

fn =
1p
5

  
1 +

p
5

2

!n

�
 
1�

p
5

2

!n!
⇡ 0.447 (1.618n � (�0.618)n)

In fact, when n is large (like when n > 10), the term (�0.618)n ⇡ 0.

Thus, a good approximation for fn is the simple exponentiation function

fn ⇡ 0.447 · 1.618n .

&
a so a liens

B+=



En satisfies
General principle : a 2-term

if you have
a sequence So ↑ recurrence

defined by a k-term linear recurrence

Sn = 9oSnt G . Sn + Ga Sneztort
El Sett

where go
,
9
,--,
9-ER are constants

the you can write Jan) = (some
if you can diagonalize A , then you can get a formula for Su



3 Matrices with repeated eigenvalues

Suppose A is n⇥ n and diagonalizable.

Then there exists an invertible n⇥ n matrix P and a diagonal n⇥ n matrix D with

A = PDP�1.

If A has n distinct eigenvalues with corresponding eigenvectors v1, v2, . . . , vn, then
an easy way to construct such a matrix P is to just form P =

⇥
v1 v2 . . . vn

⇤
.

How do we find P if A does not have n distinct eigenvalues?



The multiplicity of � is the largest m � 0 such that (�� x)m divides det(A� xI).

Theorem. Let A be an n⇥n matrix with distinct eigenvalues �1,�2, . . . ,�p. Then:

(a) The dimension of Nul(A� �iI) is at most the multiplicity of �i.

(b) A is diagonalizable if and only if

dimNul(A� �1I) + dimNul(A� �2I) + · · ·+ dimNul(A� �pI) = n. (*)

(c) Suppose (*) holds and Bi is a basis for the �i-eigenspace.

The union B1 [ B2 [ · · · [ Bp is a basis for Rn consisting of eigenvectors of A.

If the elements of this union are the vectors v1, v2, . . . , vn then the matrix

P =
⇥
v1 v2 . . . vn

⇤

is invertible and the matrix D = P�1AP is diagonal, and A = PDP�1.

Theorem to remember : (pSn)

↑
O
-> sum of dim of eigspaces =

# columns
ofA

-
-

~

Lanan
,
man) : Art-pl 30 +/an) where Aviai

i





Example. Consider the lower-triangular matrix

A =

2

664

5 0 0 0
0 5 0 0
1 4 �3 0

�1 �2 0 �3

3

775 .

Its characteristic polynomial is det(A� xI) = (5� x)2(�3� x)2.

The eigenvalues of A are therefore 5 and �3, each with multiplicity 2. Since

A� 5I =

2

664

0 0 0 0
0 0 0 0
1 4 �8 0

�1 �2 0 �8

3

775 ⇠

2

664

1 0 8 16
0 1 �4 �4
0 0 0 0
0 0 0 0

3

775 = RREF(A� 5I)

has I eiguals :
&

5 and -3

I I

2 non-pivot cols

=> dim Nul(A-Si) =2



it follows that x 2 Nul(A� 5I) if and only if

x =

2

664

x1

x2

x3

x4

3

775 =

2

664

�8x3 � 16x4

4x3 + 4x4

x3

x4

3

775 = x3

2

664

�8
4
1
0

3

775+ x4

2

664

�16
4
0
1

3

775

so 2

664

�8
4
1
0

3

775 ,

2

664

�16
4
0
1

3

775 is a basis for Nul(A� 5I).

here is a basis



Since

A� (�3)I = A+ 3I =

2

664

8 0 0 0
0 8 0 0
1 4 0 0

�1 �2 0 0

3

775 ⇠

2

664

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

3

775 = RREF(A+ 3I)

it follows that x 2 Nul(A+ 3I) if and only if

x =

2

664

x1

x2

x3

x4

3

775 =

2

664

0
0
x3

x4

3

775 = x3

2

664

0
0
1
0

3

775+ x4

2

664

0
0
0
1

3

775

so 2

664

0
0
1
0

3

775 ,

2

664

0
0
0
1

3

775 is a basis for Nul(A+ 3I).

Inon-pivot cumns

=> dim Nul (A
+3 I) =2

here is a basis



Each eigenspace has dimension 2, and 2 + 2 = 4 = n.

Thus A is diagonalizable. In particular, if

P =

2

664

�8 �16 0 0
4 4 0 0
1 0 1 0
0 1 0 1

3

775 and D =

2

664

5 0 0 0
0 5 0 0
0 0 �3 0
0 0 0 �3

3

775

then A = PDP�1.

S
S
-3
-3

YY
basis for E3)-eigspace

basis for

S-eig space





4 A property of the Fibonacci sequence

The first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . If we
add up all the decimal numbers

0.0
0.01
0.001
0.0002
0.00003
0.000005
0.0000008
0.00000013
0.000000021
0.0000000034
0.00000000055
0.000000000089
...

then we get exactly 1/89 = 0.011235955056179 · · · .



More precisely:

1

89
=

1X

n=0

fn
10n+1

.

Proof. If x 6= 1 then
PN�1

n=0 xn = 1�xN

1�x since

(1� x)
N�1X

n=0

xn = (1 + x+ x2 + · · ·+ xN�1)� (x+ x2 + x3 + · · ·+ xN) = 1� xN .

If |x| < 1 so that xN ! 0 as N ! 1 then
P1

n=0 x
n = limN!1

PN
n=0 x

n = 1
1�x .



Now remember that
P1

n=0
fn

10n+1 = 1
10

p
5

P1
n=0

⇣⇣
1+

p
5

20

⌘n
�
⇣

1�
p
5

20

⌘n⌘
.

We have both |1+
p
5

20 | < 1 and |1�
p
5

20 | < 1 so

1X

n=0

⇣⇣
1+

p
5

20

⌘n
�
⇣

1�
p
5

20

⌘n⌘
=

1X

n=0

⇣
1+

p
5

20

⌘n
�

1X

n=0

⇣
1�

p
5

20

⌘n
=

1

1� 1+
p
5

20

� 1

1� 1�
p
5

20

.

The last expression can be simplified a lot:

1

1� 1+
p
5

20

� 1

1� 1�
p
5

20

=
20

19�
p
5
� 20

19 +
p
5
=

20(19 +
p
5)� 20(19�

p
5)

(19�
p
5)(19 +

p
5)

=
10
p
5

89
.

Substituting this above gives
1X

n=0

fn
10n+1

= 1
10

p
5

1X

n=0

⇣⇣
1+

p
5

20

⌘n
�
⇣

1�
p
5

20

⌘n⌘
= 1

10
p
5
10

p
5

89 =
1

89
.




