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1 Last time: properties of eigenvalues 122 ‘ A) = .',,.(AT)

Thf a square matrix A is the sum of its diagonal entries. de"' ( 4) - M.{ AT)

We denote this by tr(A). For 2 x 2 matrices we have tr ({ CCL d ]) =a+d.

Suppose A and B are n X n matrices. In general tr(AB) # tr(A)tr(B), but

tr(AB) = tr(BA)\ and | det(AB) = det(A) det(B) = det(B) det(A) = det(BA).

Let A be an n X n matrix and write I for the n x n identity matrix.

The fundamental theorem of algebra says there are numbers Ai, Ao, ..., A\, € C such

that det(A — 1) = (A — 2) (g — )+~ (Ay — ). = det)bhB)del(c)

Theorem. It holds that det(A) = A\jAg--- A\, and tr(A) = Ay + Ao+ -+ A,

P~
S dok(AC) = LHsK)
kA 4+ (ABC) # e (BA)
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The product of the eigenvalues of A,|repeated with multiplicity

of A, while the sum of the eigenvalues s the trace of A.

)\1 a b
For example if A = 0 Mo ¢ | then
0 0 X

is the determinant

det(A—zl) = (Mi—z)(Aa—z)(A3—x) and trAd = A\+Xe+A;3 and det A = A5,
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@ 4cA =3 W), (Sum of diog)

@ Ok(A~2T) = (A ~2) Q= (p=%)



Q5 we o \
i > A a A' hole fame
ded (W) = dek(W") O clorfhic W]y\\m.:c\

A few other properties of eigenvalues and eigenvectors worth noting:

Assume A is a square matrix.

roposition. A and AT have the same eigenvalues.

Proof. Since det(A — xl) = det((A —xl)") =det(AT —2I") =det(AT —xI). O

Proposition. A is invertible if and only if 0 is not one of its eigenvalues.

Proof. 0 is an eigenvalue of A if and only if det A = 0. O

Strongr: Giopppies o A a2 AT
e fame. dimengionf  ( €xoncte)
(s £0m rack(M) = tank (W)
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Proposition. Assume A is invertible.

Ther] A and A~! have the same eigenvectors,|but reciprocal eigenvalues.

Proof. If then v = A~ Av = A"\ = MA~w 0| A~y = Ao, O
- <\
il A=PDP

Corollary. If A is invertible and diagonalizable then A~! is diagonalizable. % A% _ P Ds\ <\

Proof. If A is invertible and diagonalizable, then R™ has a basis consisting of eigen-
vectors of A, but this basis is then also made up of eigenvectors of A= O

Corollary. If A is diagonalizable then A" is diagonalizable. “ v - [ \1,:\ Pen

-

Proof. Suppose A = PDP~! where D is diagonal. Let Q = (P~!)T = (PT)"L. o‘\ - A,

Then DT = D so AT = (PDP~Y)T = (P~ )TDTPT QDQ". 0 Q2
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In this lecture, we work with vectors in R™ and matrices that have all real entries. (';

Definition. The jnner product or|dot product bf two vectors ‘Ui\\ fane ﬂ‘m\
RIS o I ) e B S
N Wl = V5 mevzuv €R
b‘) o[ ﬂ] - 0 - g

in R” is the scalarju ® v = u vy + UgVs + - -+ + Uppf=u"v =v"u =v 0 u. ma‘ﬂa

For example, [ cg } . { _2 } = —ab+ ab =0 for any a,b € R. ﬁ‘“’ "
vevsvravla.dv, 20

Definition. The length!of a vector v € R"is |lv|| = o ev = /o7 + 03+ + 02

T
T T
Wy UV = (“T‘)T" U
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Essential properties of length and inner product.

Let u,v,w € R" a e R.

(a)luov:vou and (u+v)ew=uew+vew hn

"SI

(cv) e w = c(v @ w) ) while
Mu\\"\ﬁ‘*l\"‘% CanV
(€osy) @=(b) vev=vi+u3+-+e2>0and o] 2 0. e levgds of v by

@ vev =0 if and only if |jv|| = 0 if and only if v =0 € R™. ‘C\ W;“‘j “‘.
o T fevUfg oshe

(d) There is a general identity relating u @ v to the angle 6 between u and v: .‘ v

0 yevs \I\A\\\N\\ ) wev— [l o] cost. I_~ see. “w
This holds when u = 0 or v = 0 (as both sides are 0), although € is not defined. a

Chedh* ( W‘\’\ oW = (WY)W, "(\\z‘f“\"‘x\ A
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Nevll = ‘«(‘-ﬂ @"\ c(ve (c.v))

M
. = Je ((ev)+v)
), (2) wie (V)W = Cv-w) ()

= 4 ¢t (vev)
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The \distance, between two vectors u,v € R™ is the length of the difference ||u — v]|.

A unit vector is a vector u € R™ with |ju|| = 1. v
If v € R™ is any nonzero vector, then the unit vector in the direction of v is "
Iy AT
U= —0 ) o
N
[l p¢ -
-\
Note that for this u we have [[u] = [|70ll = [pglllvll = pyllvll = L.
1 1/2
E lU'tt'd't'f—l'— 1 | 1)/2
xample. 1t vector 1 direction or v = 1 1S U = W’U = 1/2
1 1/2
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Definition. Two vectors u,v € R" are orthogona®

When v and v are orthogonal we also say that “u is orthogonal to v.”’

éd" Proposition. Suppose u,v € R? are nonzero vectors that are orthogonal to each
other, so that we v = 0. Then u and v, drawn as arrows in the xy-plane, belong to
perpendicular lines through the origin.

m In other words, these vectors are perpendicular in the usual sense of planar geometry.
. . —b
@ If u,v € R? are orthogonal and 0 # u = Z } , then v is a scalar multiple { a } ,

which is the vector obtained by rotating u counterclockwise by 90 degrees.

Proof. This follows directly from the identity u ® v = ||u||||v|| cos @, which implies
m“\\ﬂ that u e v = 0 if and only if the angle 6 between u and v is £7. n
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3 Orthogonal complements

Let V C R" be a subspace. The orthogonal complement of V' is

VL:{weR”:vow:OforaHUEV}.

We pronounce “V+" as “vee perp.”

Proposition. If V C R” is a subspace then V+ C R is also a subspace.

‘k(k Proof. Since v e 0 = 0 for all v € R" it holds that 0 € V. So V= is nonempty.
l If z,y € V+ and ¢ € R then

ﬁ vecr=clver)=0 and ve(r+y)=ver+vey=0+0=0

Ifor all v € V 50 cx and z + y both belong to V+. Hence V7 is a subspace. O
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The operation (-)* relates the column space, null space, and transpose of a matrix:

Theorem. Suppose A is an m x n matrix.]| Then (Col A)* = Nul(A") C R™.

Proof. Write A = [ a; az ... anp ] where q; € R™. Let v € R™.
If v € (Col A)* then we must have v e a; = a, v = 0 for all i.
Conversely, if v e a; = a] v =0 for all i then
(cray + coag + -+ + cpa,) e v =c1(a; @) + ca(ag @ v) + -+ cp(a, ev) =0
—0 -0 =0

for any scalars ¢, ¢y, ...,c, € Rso v € (Col A)*.

Thus v € (Col A)* if and only if vea; = a; v = 0 for all 4. This holds iff ATv = 0. ? “. *
% s O .‘[ oo ‘\*‘
i€ A= ] T— o2
u —e T | 0D | e |
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Lemma. Let V C R” be a subspace. If w € VNV, then w = 0.

Proof. If w € V and w € V* then w e w = 0 so w = 0. O

Proposition. Let V' C R” be a subspace. If S C V and T' C V* are two sets of
linearly independent vectors, then S U T is also linearly independent.

See the lecture notes for a proof. Key idea: if you had a linear dependence among
the vectors in S U T, then some nonzero linear combination of vectors in S would
be equal to some nonzero linear combination of vectors in 7.

These equal linear combinations would give a nonzero vector in both V and V+.

But this is impossible since we just saw that V N V+ = {0}.



When S and T are bases for V and V*, the previous proposition tells us that SUT
is a set of linearly independent vectors in R” of size dim V + dim V*. Hence:

Corollary. If V C R" is a subspace ther dimV + dim V+ < n.

Next time we will see that the inequality < here is actually an equality =.






4 Orthogonal bases and orthogonal projections

The following proposition is called the Generalized Pythagorean theorem.

Proposition. Two vectors u,v € R" ar

orthogonal

f and only if

4 ol = [l + ol \

Proof. The proof is just a little algebra:
lu+vl* = (u+v) e (utv)

=ue(utv)+ve(u+v)
—ueutuevtveutveuv=|ul*+|v]*+2ueuv).

Then |lu + v||* = ||ul|* + ||v||? if and only if v e v = 0.

The equivalence of this proposition to the classical Pythagorean theorem boils down
to observation that orthogonal vectors in R? form the sides of a right triangle. [
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Vectors uy, us, . ..,u, € R™ are orthogonal if u; @ u; = 0 whenever 1 <i < j < p.
) ) ) Up J

An| orthogonal basisiof R™ is a basis in which any two vectors are orthogonal.

For example, the standard basis ey, es, ..., e, is an orthogonal basis for R".
Theorem. Suppose the vectors uy, ug, ..., u, € R" are orthogonal and all nonzero.

a—
Then uy,ug, ..., u, are linearly independent. ?
Proof. Suppose ciu; + coug + - - - 4 cpu, = 0 for some coefficients ¢y, ca,...,c, € R.
For each i =1,2,...,p, we then have

0= (c1ur +coug+- - - +cpup) ou; = c1(ur 0 u;) +coug 0u;) + - -+ cp(up0u;) = clluil* = (i‘“:"i}

since u; @ u; = 0 if i # j. But since u; is nonzero, ||u;||* # 0, so it must hold that
¢; = 0. As this applies to each index i, we deduce that c; =co=---=¢,=0. O
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Corollary. Any nonzero, orthogonal vectors are an orthogonal basis for the sub-

space they span. (@8 Daey @Q {‘\W b} ‘\\ﬁ')

-aCOrollary. Any n nonzero, orthogonal vectors in R™ are an orthogonal basis for R”.

Proposition. Suppose u;,us, ..., u, is an orthogonal basis for a subspace V' C R".
Let y € V. Then we can write y = cju; + coug + - - - + cpu, where

- Y e u; _yOUi

= = )
’ U; ® U; ||U2||2

Proof. A basis must span V', so y = ciui +cous+- - -+cpu, for some ¢, ¢, ..., ¢, € R.

Since y ® u; = ¢;(u; ® u;) for each i = 1,2,...,p, the result follows. O

uge® i [led proot
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Example. Suppose u; = | 1 | and uy = 2 | and uz = -2
1 1 7/2

You can check that these three vectors are orthogonal.
For example, u; @ ug = —3/2—-2+47/2 = 0.
The vectors are therefore linearly independent, so are an orthogonal basis for R3.

6
Fory=| 1| we have yeu; =11 and y e us = —12 and y ® u3 = —33.
8

We also have u; @ u; = 11 and us ® uy = 6 and ugz ® uz = 33/2.

Therefore y = u; — 2uy — 2us.






Let u € R™ be a nonzero vector. Suppose y € R" is any vector.

- ou
Definition. The orthogonal projection of y onto w is the vector |y = gt
ue
: ~ yeou
The component of y orthogonal to u is the vector |z =y —y =y — Uu.
ue

It always holds that y = iy + 2. As its name suggests, we have z @ u = 0 since
o

zou=1yeuy— veu=you—yeou=_>0.

ueu
Observation. y and z do not change if u is replaced by a nonzero scalar multiple:
if we change u to cu for some 0 # ¢ € R then all the factors of ¢ cancel:

yecu  clyeu)  yeu

= U = u=7y.
cu e cu 2(ueu) ueu Y

Let L = R-span{u}. Then y and z may also be called the orthogonal projection of
y onto L the component of y orthogonal to L. We will write | proj,(y) =y € L.







In R?, the distance from a point (z,y) to a line L = R-span{u} is the length

I e (5]

Example. To find the distance from the point (z,y) = (7,6) to the line L defined
by y = %:1:, note that L contains the vector u = [ ;l } . Let w = [ g } . Then

) 7 weuy _28+12 _40 8
PO\l 6| ) T weu" 1644 " 20" |4

so the distance is

E1--1e - v

6 4






