
MATH2121 - Lecture #19

Outline :

- Final properties of eigenvalues,
dragonalization

- Introduction to inner products
orthogonality
etc.



1 Last time: properties of eigenvalues

The trace of a square matrix A is the sum of its diagonal entries.

We denote this by tr(A). For 2⇥ 2 matrices we have tr

✓
a b
c d

�◆
= a+ d.

Suppose A and B are n⇥ n matrices. In general tr(AB) 6= tr(A)tr(B), but

tr(AB) = tr(BA) and det(AB) = det(A) det(B) = det(B) det(A) = det(BA).

Let A be an n⇥ n matrix and write I for the n⇥ n identity matrix.

The fundamental theorem of algebra says there are numbers �1,�2, . . . ,�n 2 C such

that det(A� xI) = (�1 � x)(�2 � x) · · · (�n � x).

Theorem. It holds that det(A) = �1�2 · · ·�n and tr(A) = �1 + �2 + · · ·+ �n.

tr((a2]) = a+ d vsdef1(2))= ad-ba
tr(A) = fr(AT)
det(A) = det(AT)

↳ -X
= det(A)det(8)det(c)

-1
-- det (ABC) = def1EAC)

tr(AE() = +r(B(A) = t(CAE)S# (ABC) #Fr(BAC)



The product of the eigenvalues of A, repeated with multiplicity, is the determinant

of A, while the sum of the eigenvalues is the trace of A.

For example if A =

2

4
�1 a b
0 �2 c
0 0 �3

3

5 then

det(A�xI) = (�1�x)(�2�x)(�3�x) and trA = �1+�2+�3 and detA = �1�2�3.

according to exponentgrepeat(4-x) in det(A-xi)

St
is apper-s

,
so :

① detA = + . Auto (product of drag)
& tra = f ,butty (sum of Giag)

③ det(A-xI) = (t -x)(+2- x)(+a-x)



Assume A is a square matrix.

A few other properties of eigenvalues and eigenvectors worth noting:

Proposition. A and A>
have the same eigenvalues.

Proof. Since det(A� xI) = det((A� xI)>) = det(A> � xI>) = det(A> � xI).

Proposition. A is invertible if and only if 0 is not one of its eigenvalues.

Proof. 0 is an eigenvalue of A if and only if detA = 0.

as we have

det(M) = defInT) =
A and At here same

&
characteristic polynomial

↳ = filaty--An

stronger : eigenspaces of A and AT

have same dimensions (Exercise

(follows from rank(M) = vank (MT)



Proposition. Assume A is invertible.

Then A and A�1
have the same eigenvectors, but reciprocal eigenvalues.

Proof. If Av = �v then v = A�1Av = A�1�v = �A�1v so A�1v = ��1v .

Corollary. If A is invertible and diagonalizable then A�1
is diagonalizable.

Proof. If A is invertible and diagonalizable, then Rn
has a basis consisting of eigen-

vectors of A, but this basis is then also made up of eigenvectors of A�1
.

Corollary. If A is diagonalizable then A>
is diagonalizable.

Proof. Suppose A = PDP�1
where D is diagonal. Let Q = (P�1

)
>
= (P>

)
�1
.

Then D>
= D so A>

= (PDP�1
)
>
= (P�1

)
>D>P>

= QDQ�1
.

if t is eigual for A

Other it is eigual forAt

⑤
-

if A=Pop
+

G EtherA =Po"p+

if 0 :(1) then
6 : =[-f

ww

= qa = ((p+yT)- (also drag)
= ((pT)")" = pT





2 Inner products and orthogonality

In this lecture, we work with vectors in Rn
and matrices that have all real entries.

Definition. The inner product or dot product of two vectors

u =

2

6664

u1

u2

...
un

3

7775
and v =

2

6664

v1
v2
...

vn

3

7775

in Rn
is the scalar u • v = u1v1 + u2v2 + · · ·+ unvn = u>v = v>u = v • u.

For example,


a
b

�
•

�b
a

�
= �ab+ ab = 0 for any a, b 2 R.

Definition. The length of a vector v 2 Rn
is kvk =

p
v • v =

p
v21 + v22 + · · ·+ v2n.

"dot product" : a way to get a scalar from& two vectors (which measuresangles
- - Synonym for"perpendicular"

h
(right

(withsame angle

[37·Cl : ac+bd S
size) &Inatrix

Y v
u .v =u R

(5) ·/7 = 0 ~

matrix
mult

v .v =ri+v +.otv0
-

Note : U .V = vou n.v =utv-(utt-viniT
41 = vTu =vou
both (x



Just defined length of-If to be
I=It...+0

This definition matches the physical nation of length
at least in 2 as dimensions by pythagoreemthi :

Notice : can# if v =0

only havellv11 =0



Essential properties of length and inner product.

Let u, v, w 2 Rn
and c 2 R.

(a) u • v = v • u and (u+ v) • w = u • w + v • w and (cv) • w = c(v • w), while

kcvk = |c|kvk.

(b) v • v = v21 + v22 + · · ·+ v2n � 0 and kvk � 0.

(c) v • v = 0 if and only if kvk = 0 if and only if v = 0 2 Rn
.

(d) There is a general identity relating u • v to the angle ✓ between u and v:

u • v = kukkvk cos ✓.

This holds when u = 0 or v = 0 (as both sides are 0), although ✓ is not defined.

(7 .[] = extbatez U ,
v
,
we cet

· is a symmetric
- bilinear operation

7 M

"Symmetric"
-> multiplying (and

(Easy) < rescales length of vby

&
Ic) possibly also

v reversingorientation
-

of v78 -u u - v= KullIvIlcod -> see HW
↳

check : (Utr) · W = (i)W, +(12th)mat-
=> ulwithana for + Tw,VaNato-

= u . w + Vow



who does 11 cull = I lull ?

llcullie(v - (c)
inor5

(1) , 13) use (cv)
-W = croz) vov

(2) use now :wou

-

-> IIIvI)



The distance between two vectors u, v 2 Rn
is the length of the di↵erence ku� vk.

A unit vector is a vector u 2 Rn
with kuk = 1.

If v 2 Rn
is any nonzero vector, then the unit vector in the direction of v is

u =
1

kvkv 2 Rn.

Note that for this u we have kuk = k 1
kvkvk = | 1

kvk |kvk =
1

kvkkvk = 1.

Example. Unit vector in direction of v =

2

664

1

1

1

1

3

775 is u =
1p

12+12+12+12
v =

2

664

1/2
1/2
1/2
1/2

3

775 .

matches physical def of distance (betweenthe endpoints
of u and VI

S picturei
+

VT
< lengthof this segment should be

the distance between n +v

is this sameas 1In-v11?

ur YES : crange segments have same
length,

are opposite sides of a parallelogram





Definition. Two vectors u, v 2 Rn
are orthogonal if u • v = 0.

When u and v are orthogonal we also say that “u is orthogonal to v.”’

Proposition. Suppose u, v 2 R2
are nonzero vectors that are orthogonal to each

other, so that u • v = 0. Then u and v, drawn as arrows in the xy-plane, belong to

perpendicular lines through the origin.

In other words, these vectors are perpendicular in the usual sense of planar geometry.

If u, v 2 R2
are orthogonal and 0 6= u =


a
b

�
, then v is a scalar multiple


�b
a

�
,

which is the vector obtained by rotating u counterclockwise by 90 degrees.

Proof. This follows directly from the identity u • v = kukkvk cos ✓, which implies

that u • v = 0 if and only if the angle ✓ between u and v is ±⇡
2 .

:↓thebelstoneatangel
②

does ↑
⑫
are

equent



I

Ifpicture of
orthogonal
rectors in
i
to be orthogonal to u,
must be on the greenline
ca scalar multiple of (3) (



3 Orthogonal complements

Let V ✓ Rn
be a subspace. The orthogonal complement of V is

V ?
= {w 2 Rn

: v • w = 0 for all v 2 V }.

We pronounce “V ?
” as “vee perp.”

Proposition. If V ✓ Rn
is a subspace then V ? ✓ Rn

is also a subspace.

Proof. Since v • 0 = 0 for all v 2 Rn
it holds that 0 2 V ?

. So V ?
is nonempty.

If x, y 2 V ?
and c 2 R then

v • cx = c(v • x) = 0 and v • (x+ y) = v • x+ v • y = 0 + 0 = 0

for all v 2 V so cx and x+ y both belong to V ?
. Hence V ?

is a subspace.

setof all vector

& that are orthogonal
to

all elements of V

e
itions



Ex suppose n
=2 always zero, no

matter v is

-

E+ [vct/fl(8)
= 0] = R2

(p)
+

be [vett) vow =0 for allweR)
= (181
-

if this holds them (taking w
=r)

suppose (597 = (8)
we get v.V =0 so v = (g)

(R-span([971)
+

dequetoot=o for all ce
LelireTine

& = R-span)(-bal)
(a line) is true for all: if it's truefor=

Ineach case : (vt) = V which will turn out to be always true



The operation (·)? relates the column space, null space, and transpose of a matrix:

Theorem. Suppose A is an m⇥ n matrix. Then (ColA)? = Nul(A>
) ✓ Rm

.

Proof. Write A =
⇥
a1 a2 . . . an

⇤
where ai 2 Rm

. Let v 2 Rm
.

If v 2 (ColA)? then we must have v • ai = a>i v = 0 for all i.

Conversely, if v • ai = a>i v = 0 for all i then

(c1a1 + c2a2 + · · ·+ cnan) • v = c1(a1 • v| {z }
=0

) + c2(a2 • v| {z }
=0

) + · · ·+ cn(an • v| {z }
=0

) = 0

for any scalars c1, c2, . . . , cn 2 R so v 2 (ColA)?.

Thus v 2 (ColA)? if and only if v•ai = a>i v = 0 for all i. This holds i↵ A>v = 0.

S
9,

X

if A =(a, 92 ... ] then:6
x = 0 [)x= (i)"
(x(Nul(AT)

=>aiox =0
foralli E) XiOrthogonal(



Consequence : how to find a
basis for V ?

O express V = ColA for some Matrix A

② find a basis for NulCAT) by usual
algorithm.

How to find A in Step O?

find a basis viiva , - , Vis for
V
,
set A = [rrer



Lemma. Let V ✓ Rn
be a subspace. If w 2 V \ V ?

then w = 0.

Proof. If w 2 V and w 2 V ?
then w • w = 0 so w = 0.

Proposition. Let V ✓ Rn
be a subspace. If S ✓ V and T ✓ V ?

are two sets of

linearly independent vectors, then S [ T is also linearly independent.

See the lecture notes for a proof. Key idea: if you had a linear dependence among

the vectors in S [ T , then some nonzero linear combination of vectors in S would

be equal to some nonzero linear combination of vectors in T .

These equal linear combinations would give a nonzero vector in both V and V ?
.

But this is impossible since we just saw that V \ V ?
= {0}.

only vector in both V and It is zero
vector

S



When S and T are bases for V and V ?
, the previous proposition tells us that S [T

is a set of linearly independent vectors in Rn
of size dimV + dimV ?

. Hence:

Corollary. If V ✓ Rn
is a subspace then dimV + dimV ?  n.

Next time we will see that the inequality  here is actually an equality =.

Z





4 Orthogonal bases and orthogonal projections

The following proposition is called the Generalized Pythagorean theorem.

Proposition. Two vectors u, v 2 Rn
are orthogonal if and only if

ku+ vk2 = kuk2 + kvk2.

Proof. The proof is just a little algebra:

ku+ vk2 = (u+ v) • (u+ v)

= u • (u+ v) + v • (u+ v)

= u • u+ u • v + v • u+ v • v = kuk2 + kvk2 + 2(u • v).

Then ku+ vk2 = kuk2 + kvk2 if and only if u • v = 0.

The equivalence of this proposition to the classical Pythagorean theorem boils down

to observation that orthogonal vectors in R2
form the sides of a right triangle.

discuson
next





Vectors u1, u2, . . . , up 2 Rn
are orthogonal if ui • uj = 0 whenever 1  i < j  p.

An orthogonal basis of Rn
is a basis in which any two vectors are orthogonal.

For example, the standard basis e1, e2, . . . , en is an orthogonal basis for Rn
.

Theorem. Suppose the vectors u1, u2, . . . , up 2 Rn
are orthogonal and all nonzero.

Then u1, u2, . . . , up are linearly independent.

Proof. Suppose c1u1 + c2u2 + · · ·+ cpup = 0 for some coe�cients c1, c2, . . . , cp 2 R.

For each i = 1, 2, . . . , p, we then have

0 = (c1u1+c2u2+ · · ·+cpup)•ui = c1(u1 •ui)+c2(u2 •ui)+ · · ·+cp(up •ui) = cikuik2

since uj • ui = 0 if i 6= j. But since ui is nonzero, kuik2 6= 0, so it must hold that

ci = 0. As this applies to each index i, we deduce that c1 = c2 = · · · = cp = 0.

Ex [] , 1,7,[ in list are

&
if all pairs

es er es arthogonal

-
-
=

↳ = ((ui -ui)

for arthogonal rectors,

can recover coefs in and linear comb.

by taking inner products





Corollary. Any nonzero, orthogonal vectors are an orthogonal basis for the sub-

space they span.

Corollary. Any n nonzero, orthogonal vectors in Rn
are an orthogonal basis for Rn

.

Proposition. Suppose u1, u2, . . . , up is an orthogonal basis for a subspace V ✓ Rn
.

Let y 2 V . Then we can write y = c1u1 + c2u2 + · · ·+ cpup where

ci =
y • ui

ui • ui
=

y • ui

kuik2
.

Proof. A basis must span V , so y = c1u1+c2u2+· · ·+cpup for some c1, c2, . . . , cp 2 R.

Since y • ui = ci(ui • ui) for each i = 1, 2, . . . , p, the result follows.

S (as they are independent by thm)

Iled
in per proof





Example. Suppose u1 =

2

4
3

1

1

3

5 and u2 =

2

4
�1

2

1

3

5 and u3 =

2

4
�1/2
�2

7/2

3

5.

You can check that these three vectors are orthogonal.

For example, u1 • u3 = �3/2� 2 + 7/2 = 0.

The vectors are therefore linearly independent, so are an orthogonal basis for R3
.

For y =

2

4
6

1

8

3

5 we have y • u1 = 11 and y • u2 = �12 and y • u3 = �33.

We also have u1 • u1 = 11 and u2 • u2 = 6 and u3 • u3 = 33/2.

Therefore y = u1 � 2u2 � 2u3.





Let u 2 Rn
be a nonzero vector. Suppose y 2 Rn

is any vector.

Definition. The orthogonal projection of y onto u is the vector by =
y • u
u • uu.

The component of y orthogonal to u is the vector z = y � by = y � y • u
u • uu.

It always holds that y = by + z. As its name suggests, we have z • u = 0 since

z • u = y • u� y • u
u • uu • u = y • u� y • u = 0.

Observation. by and z do not change if u is replaced by a nonzero scalar multiple:

if we change u to cu for some 0 6= c 2 R then all the factors of c cancel:

y • cu
cu • cucu =

c(y • u)
c2(u • u)cu =

y • u
u • uu = by.

Let L = R-span{u}. Then by and z may also be called the orthogonal projection of

y onto L the component of y orthogonal to L. We will write projL(y) = by 2 L.





In R2
, the distance from a point (x, y) to a line L = R-span{u} is the length

����


x
y

�
� projL

✓
x
y

�◆���� .

Example. To find the distance from the point (x, y) = (7, 6) to the line L defined

by y =
1
2x, note that L contains the vector u =


4

2

�
. Let w =


7

6

�
. Then

projL

✓
7

6

�◆
=

w • u
u • u u =

28 + 12

16 + 4
u =

40

20
u =


8

4

�

so the distance is

����


7

6

�
�


8

4

����� =

����


�1

2

����� =
p
1 + 4 =

p
5.




