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② Orthogonal projections
Orthonormal vectors

Gram-Schmidt process



1 Last time: inner products and orthogonality

The inner product or dot product of vectors u =

2

64
u1

...
un

3

75 and v =

2

64
v1
...

vn

3

75 in Rn
is

u • v = u1v1 + u2v2 + · · ·+ unvn = u>v = v>u = v • u 2 R.

The length of a vector v 2 Rn
is kvk =

p
v • v =

p
v21 + v22 + · · ·+ v2n.

A vector with length 1 is a unit vector . Note that kvk2 = v • v.

Two vectors u, v 2 Rn
are orthogonal if u • v = 0.

In R2
, two vectors are orthogonal if and only if they belong to perpendicular lines.

Pythagorean Theorem: u, v 2 Rn
are orthogonal i↵ ku+ vk2 = kuk2 + kvk2.
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The orthogonal complement of a subspace V ✓ Rn
is the subspace V ?

whose ele-

ments are the vectors w 2 Rn
such that w • v = 0 for all v 2 V .

The only vector that is in both V and V ?
is the zero vector, so V \ V ?

= {0} .

We have {0}? = Rn
and (Rn

)
?
= {0}.

If A is an m⇥ n matrix then (ColA)? = Nul(A>
) .

We also saw last time that dimV + dimV ?  n .

A list u1, u2, . . . , up 2 Rn
is orthogonal if ui • uj = 0 whenever 1  i < j  p.

Theorem. Any list of orthogonal nonzero vectors is linearly independent and so is

an orthogonal basis of the subspace it spans.

+=Swet)
now -0 for allwell

this is another subspace "Vperp"

E
(because v .V =0= v =0)

because we can
* -> find bases for Nullspaces,

* can also find a basis for
VI

S
↳ if you have a lin .comb- CVt .-+CKV
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by taking inner products



Another proof : suppose u , 12--uk are

nonzero and orthogonal
Then viouixo (as uito)

Uiouj =0
if it]

invertible

E if A = Cu. nao-un] then
diag.

ATA = [4: ·uj)isis & quidnoun8a15j5

&

Thus if Ax =0 then X = CATATATAx = CATALATO =Of



If u1, u2, . . . , up is an orthogonal basis for a subspace V ✓ Rn
and y 2 V , then

y = c1u2 + c2u2 + · · ·+ cpup where ci =
y • ui

ui • ui
2 R.

Usually, to determine the coe�cients that express a vector in a given basis, we have

to solve a linear system. For orthogonal bases, we can just compute inner products.

Example. The standard basis e1, e2, . . . , en for Rn
is orthogonal.

Therefore if y =

2

6664

y1
y2
...

yn

3

7775
then y = c1e1 + c2e2 + · · ·+ cnen where ci =

y•ei
ei•ei .

But ei • ei = 1 and y • ei = yi, so we just have ci = yi, meaning that

y = y1e1 + y2e2 + · · ·+ ynen.

[am---p(y] met ...it

& screen

Y = (7 = x() + +(7 + + (i) = x, ex+yestye





2 Orthogonal projection onto a line

Let L ✓ Rn
be a one-dimensional subspace.

Then L = R-span{u} for any nonzero vector u 2 L.

Let y 2 Rn
. The orthogonal projection of y onto L is the vector

projL(y) =
y • u
u • uu for any 0 6= u 2 L.

The value of projL(y) does not depend on the choice of the nonzero vector u.

The component of y orthogonal to L is the vector z = y � projL(y).

Proposition. The only vector by 2 L with y � by 2 L?
is by = projL(y).

The proof is some simple algebra: see the lecture notes.

projy
: R-> L Clinear)

if we replace
* dimL= 1

by on
the
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L= M-span(u) ,
yeR

, projy(t)=u
,
2 = y - projux)

what does this look like?

·vector in L that we cansubtract from y to get
something in Lt

,

and

this rector is projc(y)



How to draw proju(y) ?
Ex

proc(y)

2

n
↓
Y

L

Formula: proj((x) = Y for any OUL
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Example. If y =


7

6

�
and L = R-span

⇢
4

2

��
then

projL(y) =


7

6

�
•

4

2
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�
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�
=
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16 + 4
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�
=
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�
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In R2
, the distance from a point (x, y) to a line L = R-span{u} is the length

����


x
y

�
� projL

✓
x
y

�◆���� .

Example. To find the distance from the point (x, y) = (7, 6) to the line L defined

by y =
1
2x, note that L contains the vector u =


4

2

�
. Let w =


7

6

�
.

Then projL

✓
7

6

�◆
=

w•u
u•uu =

28+12
16+4 u =

40
20u =


8

4

�
so the distance is

����


7

6

�
�


8

4

����� =

����


�1

2

����� =
p
1 + 4 =

p
5.
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3 Orthonormal vectors

A set of vectors u1, u2, . . . , up is orthonormal if the vectors are orthogonal and each

vector is a unit vector. This means ui • uj = 0 when i 6= j and ui • ui = 1 for all i.

An orthonormal basis of a subspace is a basis that is orthonormal.

Convention: a square matrix with orthonormal columns is an orthogonal matrix .

It would make more sense to call such a matrix an “orthonormal matrix” but the

term “orthogonal matrix” is standard and widely used.

Example. The standard basis e1, e2, . . . , en is an orthonormal basis for Rn
.

Example.
1p
11
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1

1
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5, 1p
6
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5, and 1p
66
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�4

7

3

5 is an orthonormal basis for R3
.
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E Every rotation matrix

/COSSO) is athogenas
↓

Recall : (Coso)" + (sines =I meaning
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Theorem. Let U be an m⇥ n matrix.

The columns of U are orthonormal vectors if and only if U>U = In.

If U is square then its columns are orthonormal if and only if U>
= U�1

.

(In other words, a matrix U is orthogonal if and only if U is square and U>
= U�1

.)

Proof. Suppose U =
⇥
u1 u2 . . . un

⇤
where each ui 2 Rm

.

The entry in position (i, j) of U>U is then u>
i uj = ui • uj.

Therefore ui • ui = 1 and ui • uj = 0 for all i 6= j if and only if U>U = In.

Corollary. If U is an orthogonal matrix then det(U) 2 {�1, 1}.

Proof. We have det(U)
2
= det(U>

) det(U) = det(U>U) = det(I) = 1.

entry (ii) of UTU is (inner product
of columns : andj)

③
S
E

det(v) = deFUT)





Theorem. Let U be an m⇥ n matrix with orthonormal columns.

Suppose x, y 2 Rn
. Then:

1. kUxk = kxk.

2. (Ux) • (Uy) = x • y.

3. (Ux) • (Uy) = 0 if and only if x • y = 0.

Proof. First and third statements are special cases of second since

kUxk = kxk if and only if (Ux) • (Ux) = x • x.

The second statement holds since

(Ux) • (Uy) = x>U>Uy = x>Iy = x>y = x • y.

key idea:

~multiplying
by such a

matrix

preserves
inner products
lengths⑳
angles
distances

II

(uxT(y) = xTjxy)
(uTu =#)





4 Orthogonal projections onto subspaces

We have already seen that if y 2 Rn
and L ✓ Rn

is a 1-dimensional subspace then

y can be written uniquely as y = by + z where by 2 L and z 2 L?
.

This generalizes to arbitrary subspaces as follows:

Theorem. Let W ✓ Rn
be any subspace. Let y 2 Rn

.

Then there are unique vectors by 2 W and z 2 W?
such that y = by + z.

If u1, u2, . . . , up is an orthogonal basis for W then

by =
y • u1

u1 • u1
u1 +

y • u2

u2 • u2
u2 + · · ·+ y • up

up • up
up and z = y � by. (*)

It doesn’t matter which orthogonal basis is chosen for W ; formula gives same values.

Words :

↳
Formula ?

We will call" the arthogonal projection of y ontoW

denoted : projw(y)W



Picture of projuly): wo
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Definition. The vector by, defined relative to y and W by the formula (*) in the

preceding theorem, is the orthogonal projection of y onto W .

From now on we will write projW (y) = by to refer to this vector.

If If u1, u2, . . . , up is an orthogonal basis for W then

projW (y) =
y • u1

u1 • u1
u1 +

y • u2

u2 • u2
u2 + · · ·+ y • up

up • up
up.

If If u1, u2, . . . , up is an orthonormal basis for W then

projW (y) = (y • u1)u1 + (y • u2)u2 + · · ·+ (y • up)up.

&

-

Note: can convert any orthogonal basis VI "2
- - Up

&

to beorthonormal :itis





Corollary. If W ✓ Rn
is any subspace then dimW?

= n� dimW .

Proof. The preceding theorem shows that W and W?
together span Rn

.

Therefore the union of any basis for W with a basis for W?
also spans Rn

.

Hence dimW + dimW? � n.

But we showed last time that also dimW?
+ dimW  n.C

any y R can be written as

y = projw(y) + (y - prow(y)
un za

Ew Ewt



Gr Show that rank
(A) = rankSAT)

# rank (A)= dim CalSA") = (#cols of A) - dimeNullAT)

= #cos of A) - Sim Col(A)T

-> ( xofA) - Yn-dim (A)

= rank (A)



Properties of orthogonal projections onto a subspace W ✓ Rn
.

Fact. If y 2 W then projW (y) = y. If y 2 W?
then projW (y) = 0.

Proposition. If v 2 W and y 2 Rn
and v 6= projW (y) then ky�projW (y)k < ky�vk.

In words: the projection projW (y) is the vector in W that is closest to y.

Proof. Let by = projW (y). Then y � v = (y � by) + (by � v).

The first term in parentheses is in W?
while the second term is in W .

Therefore by the Pythagorean theorem

ky � vk2 = ky � byk2 + kby � vk2 > ky � byk2

since kby � vk > 0.

↳
2- ***

ent oh alt def.

1 =# so this is >O
-

&

I i





5 The Gram-Schmidt process

The Gram-Schmidt process is a list of formulas that turns an arbitrary basis for

some subspace of Rn
into an orthogonal basis of the same subspace.

This process gives a constructive proof of the following theorem:

Theorem. Let W ✓ Rn
be a nonzero subspace. Then W has an orthogonal basis.

(The zero subspace {0} has an orthogonal basis given by the empty set, but we

exclude this trivial case.)

To compute proju(y) , we need an orthogonal basis forW
How to find this ?S





Gram-Schmidt process. Suppose x1, x2, . . . , xp is any basis for W .

An orthogonal basis is given by the vectors v1, v2, . . . , vp defined inductively by:

v1 = x1.

v2 = x2 �
x2 • v1
v1 • v1

v1.

v3 = x3 �
x3 • v1
v1 • v1

v1 �
x3 • v2
v2 • v2

v2.

v4 = x4 �
x4 • v1
v1 • v1

v1 �
x4 • v2
v2 • v2

v2 �
x4 • v3
v3 • v3

v3.

...

vp = xp �
xp • v1
v1 • v1

v1 �
xp • v2
v2 • v2

v2 � · · ·� xp • vp�1

vp�1 • vp�1
vp�1.

= Xz - projicpar(n)(*)

orthog- I = Xy - proJR-span(vi)(n)
anal

basis => Xu= PVM-span Crivaun)(n)

for

W



More strongly, we can say the following.

Let Wi = R-span{v1, v2, . . . , vi} for each i = 1, 2, . . . , p.

Then Wi = R-span{x1, x2, . . . , xi}.

Also v1, v2, . . . , vi is an orthogonal basis for Wi and vi+1 = xi+1 � projWi
(xi+1).

Remark. To find an orthonormal basis for a subspace W :

• First find an orthogonal basis v1, v2, . . . , vp.

• Then replace each vector vi by ui =
1

kvikvi.

The vectors u1, u2, . . . , up will then be an orthonormal basis.

Sometimes this extended algorithm is also called the Gram-Schmidt process.

For homework problems that ask you to perform the Gram-Schmidt process, be sure

to use the first version which does not convert the outputs to unit vectors.





Example. Suppose x1 =

2

664

1

1

1

1

3

775 and x2 =

2

664

0

1

1

1

3

775 and x3 =

2

664

0

0

1

1

3

775.

These vectors are linearly independent and a basis for W = R-span{x1, x2, x3}.

To compute an orthogonal basis for W , we carry out the Gram-Schmit process:

• Set v1 = x1 =

2

664

1

1

1

1

3

775. Then v2 = x2� x2•v1
v1•v1 v1 =

2

664

0

1

1

1

3

775�
3
4

2

664

1

1

1

1

3

775 =

2

664

�3/4
1/4
1/4
1/4

3

775.

• Set v3 = x3� x3•v1
v1•v1 v1�

x3•v2
v2•v2 v2 =

2

664

0

0

1

1

3

775� 1
2

2

664

1

1

1

1

3

775� 2
3

2

664

�3/4
1/4
1/4
1/4

3

775 =

2

664

0

�2/3
1/3
1/3

3

775.

E



Then v1 =

2

664

1

1

1

1

3

775 , v2 =

2

664

�3/4
1/4
1/4
1/4

3

775 , v3 =

2

664

0

�2/3
1/3
1/3

3

775 are an orthogonal basis for W .

v .Va = 0
v

u
-Va =0

V2-V =0 V




