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1 Last time: inner products and orthogonality
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The Iv'nner product or dot product I>f vectors u = o | and v = o | inR™is
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The length of a vector v € R™ is ||v|| = Vo ev = \/v? + v + - + v2.

A vector with length 1 is a unit vector. Note that ||v]|? = v e v.

(v'v =)

Two vectors u,v € R™ are orthogonal if uwev = 0.

* In R2, two vectors are orthogonal if and only if they belong to perpendicular lines.

* Pythagorean Theorem: u,v € R" are orthogonal iff |Ju + v||? = |lu* + ||v|*.
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The Jorthogonal complement Iof a subspace V C R" is the subspace V+ whose ele-
ments are the vectors w € R" such that wewv =0 for all v € V.

The only vector that is in both V' and V* is the zero vector, so |V NV+ = {0}|.
(becouge Vevz=0 ad vy ':a)

becowp wo (e
¢ Tt Ais an m x n matrix then | (Col A)* = Nul(AT) H 6vo bases Foe Nu\\ fipoces,

* We also saw last time that |dimV 4+ dim V* < n|. m‘\ Q\S@ c“) 6 m b
vi

Ef.We have {0}+ = R" and (R")* = {0}.

A list uy, ug, ..., u, € R™ is orthogonal if u; @ u; = 0 whenever 1 <1i < j <p.

Theorem. Any list of orthogonal nonzero vectors is linearly independent and so is

an orthogonal basis of the subspace 1t spans.
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If uy,ug, ..., u, is an orthogonal basis for a subspace V' C R" andjy € V fthen
yeu;
y = ciug + coug + -+ -+ cpu,  whete ¢; = eR.
U; ® U;
(G 63 -cpcl®)

Usually, to determine the coefficients that express a vector in a given basis, we have
to solve allinear systeml For orthogonal bases, we can just compute inner products.

ple. The standard basis ey, es, ..., e, for R™ is orthogonal.
Y1
2
Therefore if y = | then y = cieq + coeg + - - - + cne, where ¢; = %
Yn

But e; e¢; =1 and y @ ¢; = y;, so we just have ¢; = y;, meaning that
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2 Orthogonal projection onto a line (L we .-q;\nc w

* Let L C R™ be a one-dimensional subspace. 6“” L = ‘ b 9 (A V "'\\Q“
Then| L = R-span{u} [for any nonzero vector u € L. ’ "
[V (Y
Let y € R™. The orthogonal projection of y onto L is the vector .¢ -
Y g pro) Y 1 ¢\' = ‘,‘1 (V')
q proj; (y) = yeu, for any 0 # u € L. ¢“°P‘
ueu

The value of proj, (y) does not depend on the choice of the nonzero vector w.

The component of y orthogonal to L is the vectoy z = y — proj, (y).

Proposition. The only VectorXE L with y —‘6 L+ is *: proj; (y).
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The proof is some simple algebra: see the lecture notes. “.‘d‘ . \l - ?fo‘) L‘.‘I\ ¢ L ?
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Example. If y = { 6 } and L = R—span{ [ ;l } } then
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In R?, th¢ distance from a point (z,y) to a line L = R-span{u}

I ] (5]
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Example. To find the distance from the point (z,y) = (7,6) to the line L defined
by y = %x, note that L contains the vector u = [ ;l Let w = [ g }
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orthonormal fif the vectors are orthogonal and each
when ¢ # j and u; e u; = 1 for all 7.

3 Orthonormal vectors

A set of vectors uy, ug, ..., u, i
vector is a unit vector. This méans «; ® 4; =

An orthonormal basis of a subspace is a basis that is orthonormal.

Convention: a square matrix with orthonormal columns is an orthogonal matriz.

It would make more sense to call such a matrix an “orthonormal matrix” but the
term “orthogonal matrix” is standard and widely used.

Example. The standard basis e, eq, ..., €, is an orthonormal basis for R".
3 -1 -1
Example. \/Lﬁ 11, \/ié 2 |, and J%Te —4 | is an orthonormal basis for R3.
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Theorem. Let U be an m X n matrix.

The columns of U are orthonormal vectors if and only if UTU = I,,.

If U is square then its columns are orthonormal if and only if UT = U~

(In other words, a matrizx U is orthogonal if and only if U is square and UT = U~1))

Proof. Suppose U = [ U U ... Uy ] where each u; € R™.
The entry in position (i,5) of U'U is then u) u; = u; ® u;.
Therefore u; @ u; = 1 and u; e u; = 0 for all i # j if and only if UTU = I,,. O

Corollary. If U is an orthogonal matrix then det(U) € {—1,1}.

Proof. We have det(U)? = det(U ") det(U) = det(UTU) = det(I) = 1. O

der (V) = eWUT)
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Theorem. Let U be an m X n matrix with orthonormal columns. "\U\\\P\]“y

Suppose z,y € R™. Then: h’ ‘*ﬁ\' )
1 (U] = ], R

(Uzx)e (Uy) =xoy. P‘ﬂ@‘w
3. (Ux)e (Uy) =0 if and only if z ey = 0. s
YN W
Proof. First and third statements are special cases of second since

|[Uz|| = ||z|]| if and only if (Uz)e (Uzx)=x ez.

The second statement holds since

(Uz)e (Uy) =2'UUy=a"ly=a"y=xey. ﬂ‘@u
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4 Orthogonal Projections onto subspaces

We have already seen that if y € R” and L C R” is a 1-dimensional subspace then
y can be written uniquely as y = § + z where y € L and z € L*.

This generalizes to arbitrary subspaces as follows:

Theorem. Let W C R" be any subspace. Let y € R™.

Then there are unique vectors j € W and z € W+ such that y =7 + 2.

It wy,ug, ..., u, 1s an orthogonal basis for W then

R o LY eu m
yzy 1u1+y 2u2+...+y pup and z=Yy—U. (*)

h Uup ® Uy Uo ® Uy Uy @ Up
&M o

It doesn’t matter which orthogonal basis is chosen for W; formula gives same values.
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Definition. The vector ¥, defined relative to y and W by the formula (*) in the
preceding theorem, is the orthogonal projection of y onto W.

to refer to this vector.

From now on we will write | projy, (y) =y

@ If uy, ug, ..., u, is an orthogonal basis for W then
. yeu Y e U yeu
projy (y) = Uy Uy + -+ + .
Uy ® Uy Uo ® Uy Up ® Up
B If ug,uo, ... ,Up is an orthonormal basis for W then

projy (y) = (y @ up)uy + (y @ ug)us + - -+ + (y ® up)uy.
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Corollary. If W C R is any subspace then dim W+ = n — dim W.

> The preceding theorem shows that W and W+ together span R".

Therefore the union of any basis for W with a basis for W+ also spans R".

Hence dim W + dim W+ > n.

But we showed last time that also dim W+ + dim W < n.
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Properties of orthogonal projections onto a subspace W C R™.
(y) = 0.

Proposition. If v € W and y € R™ and v # projy, (y) thetl lly—projw ()| < lly—v]|.
In words: |the projection projy, (y) is the vector in W that is closest to . " . ***

Fact If y € W then projy, (y) = y. JIf y € W+ then projy

i

W~ €W
Proof. Let y = projy (y). Theny —v = (y — ) + (g — v). a‘\' M'

The first term in parentheses is in W+ while the second term is in V.
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Therefore by the Pythagorean theorem

since ||y — v|| > 0.
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5 The Gram-Schmidt process

The Gram-Schmidt process is a list of formulas that turns an arbitrary basis for
some subspace of R™ into an orthogonal basis of the same subspace.

This process gives a constructive proof of the following theorem:

Theorem. Let W C R" be a nonzero subspace. Then W has an orthogonal basis.

(The zero subspace {0} has an orthogonal basis given by the empty set, but we
exclude this trivial case.)






Gram-Schmidt process. Supposle Z1, T2, ..., T, is any basis for W.

An orthogonal basis is given by the vectors vy, vy, ..., v, defined inductively by:

V1 = I1.

To ® U1

Vg = Ty —
V1 ® Uy

u = Ry = P“i l\l-sp»tv\\‘ %)

T3 ® Uy

orlroy_ |\, _. =°u,
o\

V1 ® Uy

2% 2 %y = PO Reppentni P

Ty ® Vo Ty ® Vg

R Ty ® Up
bosy w=
V1 ® Uy
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More strongly, we can say the following.
Let W; = R-span{vy, vg, ..., v;} for each i =1,2,...,p.
Then W; = R-span{z1, za, ..., 2;}.

Also vy, vy, ..., v; is an orthogonal basis for W; and v;11 = 2441 — projyy, (zit1)-

Remark. To find an orthonormal basis for a subspace W:

e First find an orthogonal basis vy, vg, ..., v,.

e Then replace each vector v; byl u; = ﬁvz

The vectors g, ug, ..., u, will then be an orthonormal basis.

Sometimes this extended algorithm is also called the Gram-Schmidt process.

For homework problems that ask you to perform the Gram-Schmidt process, be sure
to use the first version which does not convert the outputs to unit vectors.






These vectors are linearly independent and a basis fo X1, T, T3}

To compute an orthogonal basigforwerarry ont tie Gran= STt Protess:
1 [ 0 1] [ —3/4
1 To0V] _ 1 3 1 _ 1/4
o Sefur=w = | Thepv =m=3ho =1 =5 | = | 1
1 | 1 1] | 1/4]
0 1] —3/4 i 0]
_ 301 T300V9 _ 0 1 1 2 1/4 - —2/3
1 I 1/4 | | 1/3 ]
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Then vy = } , Ug = i?j
1
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] are an orthogonal basis for .






