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1 Last time: orthonormality, projections, bases

Orthogonal vectors g, us, ..., u, are orthonormal if each vector is a unit vector.

In other words, if v; @ u; =0 when ¢ # j and w; eu; =1 forall i =1,2,...,p.

If vy,...,v, are orthogonal + nonzero ther mvl, mvg, cee Hvl [Up are orthonormal.
p

Theorem. Let U be an m X n matrix.

* The columns of U are orthonormal vectors if and only if UTU = I,,.

If this happens then (Uz) e (Uy) = z ey for all x,y € R™.
If m =nthen U'U = I, means U~! = U and we say U is aIn orthogonal matrix.
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Example. The columns of U = | 0 0 | are orthonormal as U'U = [ (1) (1) ]
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{ Let W C R™ be any subspace. Recall that W+ = {w € R" : wev = 0 for all v € W}.

We showed last time thatl W N W+ = {0} hnd [dim W + dim W+ = n.

Theorem. Let y € R™.

Then there is a unique vector projy,(y) € W such that y — projy, (y) € W+. eq‘ J *0
We call projy, (y) the orthogonal projection of y onto W.

To compute projy, (y), find an orthogonal basis uy, us, .. ., u, for W; then

projy (y) = 3..12 uy + 5..1;2 Ug + -+ 3..127 Up. me)
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Properties of orthogonal projections

We have projyy, (y) = y if and only if y € W, and projy,(y) = 0 if and only if y € W+.

Recall ||v|| = /v? + 0% + -+ + 02.

Then ||y — projy (v)|| < |ly — v|| for all v € W with v # projy (y).
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Gram-Schmidt process.

Definq vy, v, . .., v, € W nductively by the following formulas:

0 V1 = I1.
To ® U1
Vg = T — V1.
V1 ® Uy
T3 ® Uy T3 ® Uy
V3 = T3 — v — Va.
V1 @V Vo ® V9
[ )
°
[ ]
T, ® U1 Ty ® Vo T, ® VU3 Ty ® Up_q
@ vy = Ty — 2 v — =2 vy — =2 V3 — e — ——P .
V1 ® Uy Vo ® Vo V3 ® U3z Up—1 ® Up_1
For each i, the vectors vy, vs,...,v; are an orthogonal basis for the subspace

R-span{zy, z3, ..., x;} = R-span{vy, vy, ... ,vi}gw; <

The full list of vectors vy, vs, ..., v, is an orthogonal basis for W.
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Example. Let|fW =Nul ([ 1 1 1 1 ])|={weR*: w4+ ws + w3+ wy = 0}.
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A basis for W is given byx\ = o M= | g ,x}: )
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V1 ® Uy

@ To ® U1
Vg = Ty — v =
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U_x_acgov){_xgomv_ 0 +g /21 | 1/3
P U1 &1 ' U2°U22_ 1 3 -1 1/3
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Thus 1 , 1/2 , 1/3 are an orthogonal basis for W. ck
0 -1 1/3
0 0 -1
1 1 1
* The rescaled vectors L _; , } are also an orthogonal basis for W.
0 0 -3
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2 Least-squares problems

Many linear systems Az = b that arise in applications are] overdetermined { meaning
they have more equations than variables, so the matrix A has more rows than
columns) and often inconsistent (meaning they have no exact solution z € R").

There may be no input vector z € R" such that Ax = b. When no exact solution is
available, the next best thing to provide is an input vector x € R" such that Az is
as “close” to the vector b € R™ as possible.
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There is more than one way to quantify how close two vectors are to each other.
One common method is to use the distance function we have already seen: define
the distance between vectors u,v € R" to be

lu—v| = (u—2v)®(u—0v)=/(uy —v1)%+ (g — v9)% + -+ + (up, — v,)2.

Two vectors are close if their distance in this sense is small. The distance function
| - || is called the Euclidean distance or L?-distance. In two and three dimensions,
this distance is the usual way that we measure distance between points in space.

Definition. If A is an m x n matrix and b € R™, then a least-squares_solution to
the linear system Az = b/ s a vector s € R" with [|[b— As|| < ||[b— Azx|| for all z € R™.

hSo a least-squares solution to Az = b is a vector s € R” that minimizes ||b — As||.

A vector that minimizes ||b — As|| will also minimize ||b — As||?, which is the sum of
the squares of the entries in the vector b — As. Hence “least-squares.”
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Least-squares problems (that is, problems requiring us to find a least-squares solu-
tion to some linear system) arise frequently in engineering and statistics.

Being able to solve such problems is an important application of the material covered
in this course. Goal today: describe the general solution to least-squares problems.

~Here are the key points:

@® If Ax = b is a consistent linear system then every least-squares solution
is also an exact solution.

There may be more than one least-squares solution to a given linear
system Az = b. ‘:"{\' \M e&ﬂc‘- "ol‘\—“w)

However, in contrast to exact solutions, there is always at least one least-
squares solution even if Ax = b is inconsistent. x

The last fact is not obvious from the definition of a least-squares solution.
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Solving least-squares problems in general.

Fix an m X n matrix A and a vector b € R™

A least-squares solution s € R™ to Ax = b is defined to be a vector such that
> |As — b|| is as small as possible.

__, If s € R™ then we necessarily havel As € Col A.
"’ As mentioned earlier, if v € Col A minimizes ||v—Db| thetl v = Projeg 4(b)| Therefore:

Lemma. The least-squares solutions to Az = b are precisely those s € R™ such that

As = PTOjcolA(b)-
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Using this lemma, we can prove something even more explicit: **

14
Theorem. The least-squares solutions to Ax = b are the exact solutions to |W\' !
AT Az = ATb. =¥ hov to slve

This new linear system is always consistent so its set of solutions is nonempty.

Proof. L b = projeo4(0) PP
* Since b—b € (Col A)t =Nul A", we have AT (b —/l;) —0and ATb= ATb.

- I S WY
Thus, if s € R satisfie As = b then ATAs = ATh = ATh. |ammmmip VW "““ Coft, $
o L§ - saukion e Axb

C Her xS fngws duet ¢
¥ alfo aw

nove T . N eracl
;:ul Alx- tl ~ [A A]} = M (:l‘:\'i\h
o

S(‘Alf& ATA* s .‘L




A'Ag -A™b =0
so AT(Ac-b)=O $o

T
Conversely,|if s € R" satisfies AT As = ATbJthen AT(As —b) =0 so A ) .L ¢ N\A\ A

As —be NulA" = (Col A)* e d
S u = (Co . ( ;((‘\AB

In this case, the uniqueness of orthogonal projections implies

M\\ As = projo, 4(b) = b,

fo b-As € (Gl Ay

This shows that the following are all the same:

Nl Meons S i &
LS -golutiom o Axsl,

the least-squares solutions to Ax = b

{the exact solutions to Az = b

exact solutions to AT Ax = ATb.
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We claimed that the linear system AT Az = ATb is always consistent.

Since b € Col A, by definition there must exist some s € R™ such that As = b,

Therefore AT Ax = ATb is consistent as it holds that

as Ase A an b-Age((olA)

ATAs = ATh = ATb. \D
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4 0 2
4 0 1 17 1 4 01 19
ATA = 0 2 [ ] and ATb= ] = [ ]
O 2 1 [ 11 ] O 2 1 1 11
The least-squared solutions are the exact solutions to AT Az = ATb. We have:
17 1 19 1 5|11 1 5) 11 1 5|11 1 0|1
15 17 1119 0 —84|—168 0 1| 2 0 1|2 |°

unique LS molulion
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Example. Try to solve Az = b for A = [ 0 2 ] and b
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In this case AT Az = ATb has a unique solutibn s = ! ] which is also the unique

2
least-squares solution to Ax = b. Note that As # b as

4 2 2
Jas—bl=| | 4]~ o H" 4 Hmm
3 11 -8

Geometrically, we interpret the least-squares solution as meaning that

4
As= | 4
3

is the point in the plane spanned by the columns of A in R? that is closest to b.






anigque &al @ Yo Ax=b fr all |, & A exidy

A linear system Ax = b has a unique solution for every b € R™ if and only if the
matrix A is invertible. The following theorem describes, analogously, when Ax = b
has a unique least-squares solution.

Theorem. Let A be an m x n matrix. The following are then equivalent:

@ Ax = b has a unique least-squares solution for each b € R™.

b) The columns of A are linearly independent$
) e jg‘u«\\o\x

(c) AT A is invertible.

When these properties hold, the unique least-squares solution to Ax = bis|s = (ATA)_lATb

which is the unique exact solution to A" Az = ATb.

Remark. The product (AT A)"1ATb is rarely computed for a large linear system.
It is more efficient to find s by solving the system A" Az = A"b via row reduction.
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Easy to compute a least-squares solution to Az = b if columns of A are orthogonal:

1 -6 1 \
1 -2 2
Example. Suppose A = and b = . AT A .
1 1 1
] s AR
The orthogonal projection of b onto Col A_is th?refOfe ] 6\%“\
~1 1 -1 —6 \1 \ ,m} )
2 1 2 2 ‘0 [ATA\AL] ya
1171 1*] 1 1 61 ™
1 — —
Projcol a(b) = 16 1 1 T 2 1T ; 7 i =2 1 +% ? eCLek
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1 1 1 -2 -2 7 1 7 ‘F"
11 1% 1
1 1 7] L 7]

We deduce that s = [ 1

2
/2 } is a least-squares solution to Az = b since As = projcg 4(b).






