
Lecture #21 - Math 2121

① Gram-Schmidt process , orthogonal pigi ,etc

2 Least-squares solutions to linear systems



1 Last time: orthonormality, projections, bases

Orthogonal vectors u1, u2, . . . , up are orthonormal if each vector is a unit vector.

In other words, if ui • uj = 0 when i 6= j and ui • ui = 1 for all i = 1, 2, . . . , p.

If v1, . . . , vp are orthogonal + nonzero then 1
kv1kv1,

1
kv2kv2, . . . ,

1
kvpkvp are orthonormal.

Theorem. Let U be an m⇥ n matrix.

The columns of U are orthonormal vectors if and only if U>U = In.

If this happens then (Ux) • (Uy) = x • y for all x, y 2 Rn.

If m = n then U>U = In means U�1 = U> and we say U is an orthogonal matrix.

Example. The columns of U =

2

4
1 0
0 0
0 1

3

5 are orthonormal as U>U =


1 0
0 1

�
.

orthogonal: nor = utv = 0
n-u = 1

> orthonormal : orthogonal + unit rectors [v .u=

E
*

E
2
Square
Matrix

u"=uT w/orthonormal
columns



LetW ✓ Rn be any subspace. Recall thatW? = {w 2 Rn : w•v = 0 for all v 2 W}.

We showed last time that W \W? = {0} and dimW + dimW? = n.

Theorem. Let y 2 Rn.

Then there is a unique vector projW (y) 2 W such that y � projW (y) 2 W?.

We call projW (y) the orthogonal projection of y onto W .

To compute projW (y), find an orthogonal basis u1, u2, . . . , up for W ; then

projW (y) =
y • u1

u1 • u1
u1 +

y • u2

u2 • u2
u2 + · · ·+ y • up

up • up
up.

i~ herei
easy to

Y compute

(if wehaveGo
proJules is in w

projw(y)

(ui-uj =0 , iti) an orthogbasisfor
w)

O the difference y-proju(x) -W
+

Note : if y &W then projw(x)=y , if your then product=o



Seometric defi

Mrarectorai i I

#
projw(x) = "Shadow of y cast on W"
black

= X - projw(y) +wVector



Properties of orthogonal projections

We have projW (y) = y if and only if y 2 W , and projW (y) = 0 if and only if y 2 W?.

Recall kvk =
p

v21 + v22 + · · ·+ v2n.

Then ky � projW (y)k < ky � vk for all v 2 W with v 6= projW (y).

*

(usual def of length)

& in words : projuly) is the rector
in w with minimum distance to y

the rector inW that is closest to y)

dist(y ,v) dely-r11 > ly-projut1)
= disk(x ,prow(y)

Crew) & if v = proju(y)





Gram-Schmidt process. Let W ✓ Rn with basis x1, x2, . . . , xp.

Define v1, v2, . . . , vp 2 W inductively by the following formulas:

v1 = x1.

v2 = x2 �
x2 • v1
v1 • v1

v1.

v3 = x3 �
x3 • v1
v1 • v1

v1 �
x3 • v2
v2 • v2

v2.

...

vp = xp �
xp • v1
v1 • v1

v1 �
xp • v2
v2 • v2

v2 �
xp • v3
v3 • v3

v3 � · · ·� xp • vp�1

vp�1 • vp�1
vp�1.

For each i, the vectors v1, v2, . . . , vi are an orthogonal basis for the subspace

R-span{x1, x2, . . . , xi} = R-span{v1, v2, . . . , vi}.

The full list of vectors v1, v2, . . . , vp is an orthogonal basis for W .

a sequence of formulas that

- converts a basis for w to an orthogonal basic

①
②
⑳

i
-Wi

why this works: Vitxin-proje(i)
*

itbeinhence will be arthogonal tov.- ,vi



Example. Let W = Nul
�⇥

1 1 1 1
⇤�

= {w 2 R4 : w1 + w2 + w3 + w4 = 0}.

A basis for W is given by x1 =

2

664

1
�1
0
0

3

775, x2 =

2

664

0
1

�1
0

3

775, x3 =

2

664

0
0
1

�1

3

775.

To find an orthogonal basis, we let v1 = x1.

v2 = x2 �
x2 • v1
v1 • v1

v1 =

2

664

0
1

�1
0

3

775+
1

2

2

664

1
�1
0
0

3

775 =

2

664

1/2
1/2
�1
0

3

775.

-WART
(not orthogonal)

Xi X2 Xy
X1 - xz=

① Xi - xy =0GS : d Xi- xy =

② 1)
Check : x24
=or



v3 = x3 �
x3 • v1
v1 • v1| {z }

=0

v1 �
x3 • v2
v2 • v2

v2 =

2

664

0
0
1

�1

3

775+
2

3

2

664

1/2
1/2
�1
0

3

775 =

2

664

1/3
1/3
1/3
�1

3

775 .

Thus

2

664

1
�1
0
0

3

775,

2

664

1/2
1/2
�1
0

3

775,

2

664

1/3
1/3
1/3
�1

3

775 are an orthogonal basis for W .

The rescaled vectors

2

664

1
�1
0
0

3

775,

2

664

1
1

�2
0

3

775,

2

664

1
1
1

�3

3

775 are also an orthogonal basis for W .

Xavi =XyX=0
③ f

* /

11
Vz
-> check!

*



2 Least-squares problems

Many linear systems Ax = b that arise in applications are overdetermined (meaning
they have more equations than variables, so the matrix A has more rows than
columns) and often inconsistent (meaning they have no exact solution x 2 Rn).

There may be no input vector x 2 Rn such that Ax = b. When no exact solution is
available, the next best thing to provide is an input vector x 2 Rn such that Ax is
as “close” to the vector b 2 Rm as possible.

more equations

& than variables

SC goal : findX such that Ax is close to b

least-squares - acertainkinanion(solution I to a linear system



What is a good definitia of an approximate

solution to Ax=b ? Cimprecise)

↓

-> a vector X that makes Ax as close to b
as possible

- more precisely, a vector X that makes
the distance llAx-b as small as possible

(from Axtob) Yprecises



There is more than one way to quantify how close two vectors are to each other.
One common method is to use the distance function we have already seen: define
the distance between vectors u, v 2 Rn to be

ku� vk =
p

(u� v) • (u� v) =
p

(u1 � v1)2 + (u2 � v2)2 + · · ·+ (un � vn)2.

Two vectors are close if their distance in this sense is small. The distance function
k · k is called the Euclidean distance or L2-distance. In two and three dimensions,
this distance is the usual way that we measure distance between points in space.

Definition. If A is an m ⇥ n matrix and b 2 Rm, then a least-squares solution to
the linear system Ax = b is a vector s 2 Rn with kb�Ask  kb�Axk for all x 2 Rn.

So a least-squares solution to Ax = b is a vector s 2 Rn that minimizes kb� Ask.

A vector that minimizes kb�Ask will also minimize kb�Ask2, which is the sum of
the squares of the entries in the vector b� As. Hence “least-squares.”

* M

4
llvll2 = Vitrant .. +un





Least-squares problems (that is, problems requiring us to find a least-squares solu-
tion to some linear system) arise frequently in engineering and statistics.

Being able to solve such problems is an important application of the material covered
in this course. Goal today: describe the general solution to least-squares problems.

Here are the key points:

• If Ax = b is a consistent linear system then every least-squares solution
is also an exact solution.

• There may be more than one least-squares solution to a given linear
system Ax = b.

• However, in contrast to exact solutions, there is always at least one least-
squares solution even if Ax = b is inconsistent.

The last fact is not obvious from the definition of a least-squares solution.

⑨

⑳
(just like exact solutions)

⑧

↓
and this
is east
to compute





Solving least-squares problems in general.

Fix an m⇥ n matrix A and a vector b 2 Rm

A least-squares solution s 2 Rn to Ax = b is defined to be a vector such that
kAs� bk is as small as possible.

If s 2 Rn then we necessarily have As 2 ColA.

As mentioned earlier, if v 2 ColA minimizes kv�bk then v = projColA(b). Therefore:

Lemma. The least-squares solutions to Ax = b are precisely those s 2 Rn such that

As = projColA(b).

Setup: Ax =b

-

->

->



when system is

Picture of a least-squares solution to Ax=b (inconsistent)

always because proco() fColA,
this
is

↳ we can find with Ax= projcdA(b)consistent
A Zion T
equa and any such is a LS solution

to Ax=b&&I Ax↑Ax↳Bac
no vector Ax is equal to b so

best we can do is find

X such that A = proJcdA(b) asthenAxis as doea



Using this lemma, we can prove something even more explicit:

Theorem. The least-squares solutions to Ax = b are the exact solutions to

A>Ax = A>b.

This new linear system is always consistent so its set of solutions is nonempty.

Proof. Let bb = projColA(b).

Since b�bb 2 (ColA)? = NulA>, we have A>(b�bb) = 0 and A>bb = A>b.

Thus, if s 2 Rn satisfies As = bb then A>As = A>bb = A>b.

**
-

important !

C-
-know

how to solve

is also an

-

-> in this case , it s is
a LS-solutionto Ax =b
thenthis shows that s

(1)()]x()
square ATAx =Ab



Conversely, if s 2 Rn satisfies A>As = A>b, then A>(As� b) = 0 so

As� b 2 NulA> = (ColA)?.

In this case, the uniqueness of orthogonal projections implies

As = projColA(b) = bb.

This shows that the following are all the same:
8
><

>:

the exact solutions to Ax = bb
the least-squares solutions to Ax = b

exact solutions to A>Ax = A>b.

We claimed that the linear system A>Ax = A>b is always consistent.

Since bb 2 ColA, by definition there must exist some s 2 Rn such that As = bb.

Therefore A>Ax = A>b is consistent as it holds that A>As = A>bb = A>b.

ATAs -ATb =0

so AT(As-b)=0 So
= As-beNulAT

⑳ S Alt
sob -As (A)

+

↳ this means s is a

LS-solution to Ax=b

I see picture

S
2

as AseColA and b-Ase(ColA)t , must have always true

that AT5 =Ab
As = projedA(b) by def of proj compre slide



Example. Try to solve Ax = b for A =

2

4
4 0
0 2
1 1

3

5 and b =

2

4
2
0
11

3

5. We compute

A>A =


4 0 1
0 2 1

�2

4
4 0
0 2
1 1

3

5 =


17 1
1 5

�
and A>b =


4 0 1
0 2 1

�2

4
2
0
11

3

5 =


19
11

�
.

The least-squared solutions are the exact solutions to A>Ax = A>b. We have:

17 1 19
1 5 11

�
⇠


1 5 11
17 1 19

�
⇠


1 5 11
0 �84 �168

�
⇠


1 5 11
0 1 2

�
⇠


1 0 1
0 1 2

�
.

approximate⑫&pivot inlast col,

S hencea
solution

[] 11

(AA(b] ↓
unique LS solution

x = (2)



In this case A>Ax = A>b has a unique solution s =


1
2

�
which is also the unique

least-squares solution to Ax = b. Note that As 6= b as

kAs� bk =

������

2

4
4
4
3

3

5�

2

4
2
0
11

3

5

������
=

������

2

4
2
4

�8

3

5

������
=

p
4 + 16 + 64 =

p
84.

Geometrically, we interpret the least-squares solution as meaning that

As =

2

4
4
4
3

3

5

is the point in the plane spanned by the columns of A in R3 that is closest to b.

(A(2)
= (4) + b = (2)



Picture :
b =12
↑

Ijor=ca

LS solution is 5 = (2)



A linear system Ax = b has a unique solution for every b 2 Rm if and only if the
matrix A is invertible. The following theorem describes, analogously, when Ax = b
has a unique least-squares solution.

Theorem. Let A be an m⇥ n matrix. The following are then equivalent:

(a) Ax = b has a unique least-squares solution for each b 2 Rm.

(b) The columns of A are linearly independent.

(c) A>A is invertible.

When these properties hold, the unique least-squares solution toAx = b is s = (A>A)�1A>b ,

which is the unique exact solution to A>Ax = A>b.

Remark. The product (A>A)�1A>b is rarely computed for a large linear system.
It is more e�cient to find s by solving the system A>Ax = A>b via row reduction.

unique exacto to Ax=b for allb) A
"exists

o equivalent

(ATA)A+b)





Easy to compute a least-squares solution to Ax = b if columns of A are orthogonal:

Example. Suppose A =

2

664

1 �6
1 �2
1 1
1 7

3

775 and b =

2

664

�1
2
1
6

3

775.

The orthogonal projection of b onto ColA is therefore

projColA(b) =

2

664

�1
2
1
6

3

775 •

2

664

1
1
1
1

3

775

2

664

1
1
1
1

3

775 •

2

664

1
1
1
1

3

775

2

664

1
1
1
1

3

775+

2

664

�1
2
1
6

3

775 •

2

664

�6
�2
1
7

3

775

2

664

�6
�2
1
7

3

775 •

2

664

�6
�2
1
7

3

775

2

664

�6
�2
1
7

3

775 = 2

2

664

1
1
1
1

3

775+
1

2

2

664

�6
�2
1
7

3

775 .

We deduce that s =


2

1/2

�
is a least-squares solution to Ax = b since As = projColA(b).

1AAx =ATb

↓
because ATA is
diagonal

So (ATA) ATb] is already
in

echela
fam




