MATH 2121 - Lecture #22 For webwork : use sout(x) instead of x o.s 1 POOT () Review of Least-Squarer solutions (new: line of best fit) (2) Symmetrices and their eigenvalues

1 Last time: least-squares problems Want to save Ax=0

Definition. If A is an $m \times n$ matrix and $b \in \mathbb{R}^m$ then $A^{\top}Ax = A^{\top}b$ is consistent. A solution to $A^{\top}Ax = A^{\top}b$ is called a *least-squares solution* to the equation Ax = b.

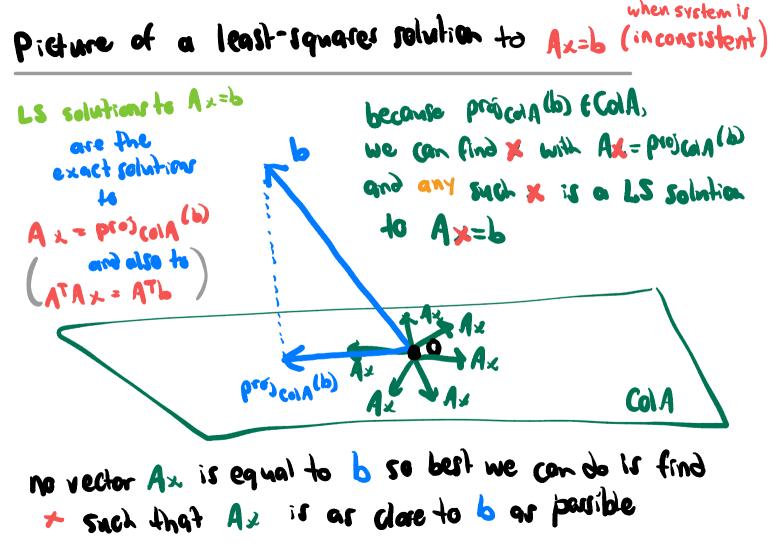
Let $||v|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} \ge 0$ for $v \in \mathbb{R}^n$. Recall ||v|| = 0 if and only if v = 0.

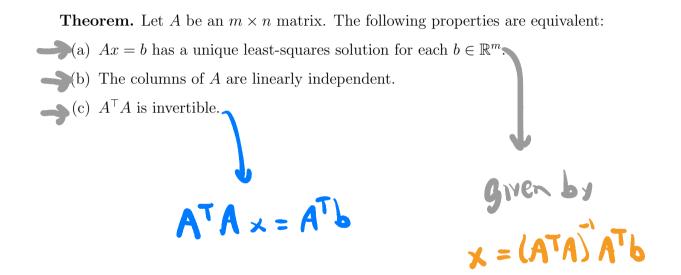
Fact. A vector $s \in \mathbb{R}^n$ is a least-squares solution to Ax = b if and only if

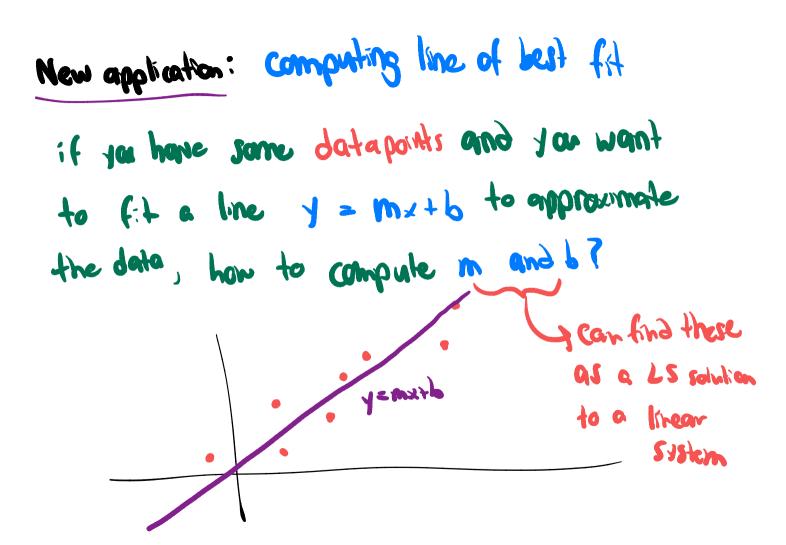
 $||b - As|| \le ||b - Ax|| \quad \text{for all } x.$

The linear system Ax = b is consistent if and only if ||b - Ax|| = 0 for some $x \in \mathbb{R}^n$. If Ax = b is consistent then all least-squares solutions s have ||b - As|| = 0 so As = b. If Ax = b is inconsistent, still at least one least-squares solution s, but ||b - As|| > 0.

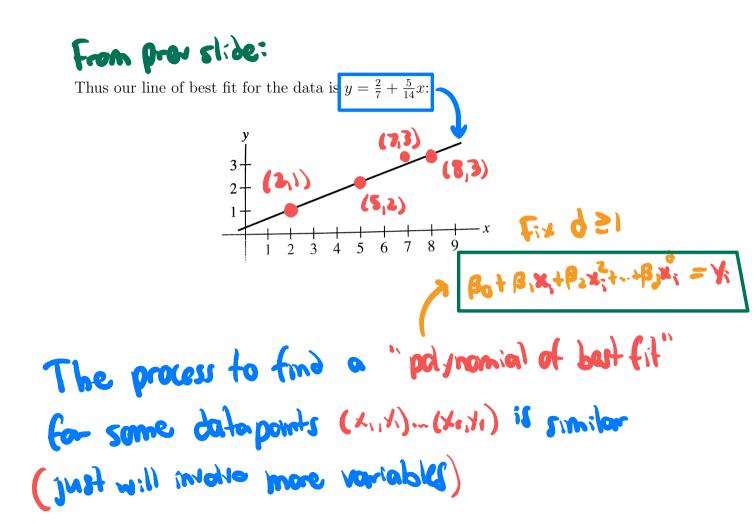
that minimizes the distance 116-Asli

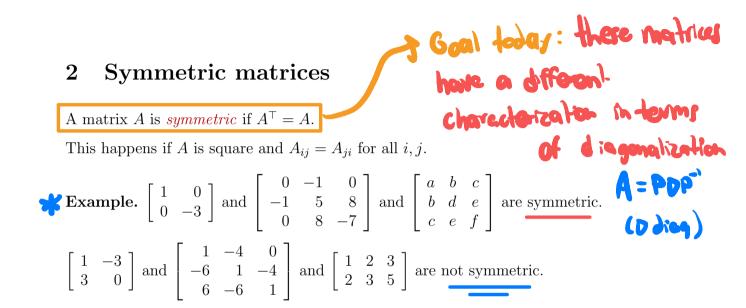






Want to find
$$B_{0}$$
, B_{1} such that
 $y = B_{0} + B_{1} \times is$ close to these pts
To be concrete, suppose we have four points $(2, 1), (5, 2), (7, 3), \text{ and } (8, 3)$ so that
() Form: $A = \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$. $A = \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 5 \\ 1 & 5 \end{bmatrix}$ $b = \begin{bmatrix} 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$
The least-squares solutions to $Ax = b$ are the exact solutions to $A^{T}Ax = A^{T}b$.
(2) $A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$ and $A^{T}b = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \\ 57 \end{bmatrix}$.
The matrix $A^{T}A$ is invertible. So a least-squares solution is
 $\begin{bmatrix} \beta_{0} \\ \beta_{1} \end{bmatrix} = (A^{T}A)^{-1}A^{T}b = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}^{-1} \begin{bmatrix} 9 \\ 57 \end{bmatrix} = \frac{1}{84} \begin{bmatrix} 142 & -22 \\ -22 & 4 \end{bmatrix} \begin{bmatrix} 9 \\ 57 \end{bmatrix} = \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix} = \begin{bmatrix} y \text{-invert} \\ \text{slope} \end{bmatrix}$
(3) Solve: $A^{T}A \times = A^{T}b \iff x = (A^{T}A)^{T}A^{T}b$





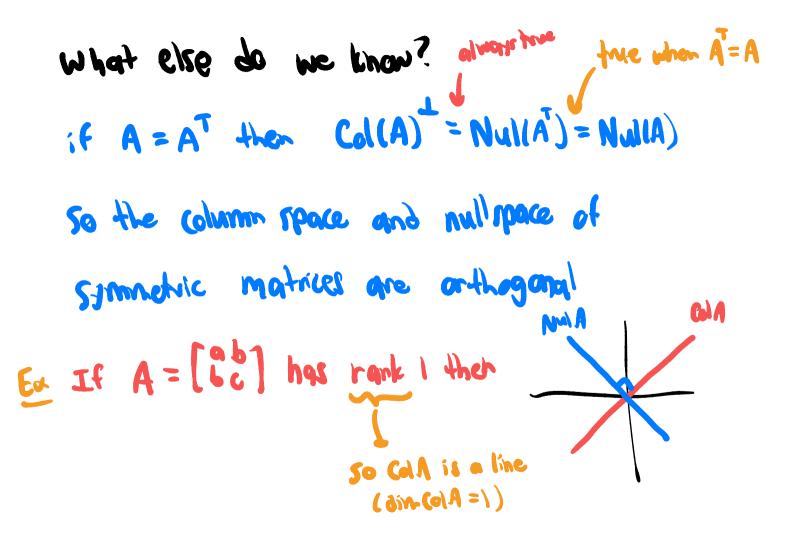
$$\begin{bmatrix} a \\ c \\ c \end{bmatrix}^{T} = \begin{bmatrix} a \\ b \\ b \\ d \end{bmatrix}$$

Proposition. If A is symmetric and $k \in \{1, 2, 3, ...\}$ then $\underline{A^k}$ is also symmetric. *Proof.* If $A = A^{\top}$ then $(A^k)^{\top} = (AA \cdots A)^{\top} = A^{\top} \cdots A^{\top} A^{\top} = (A^{\top})^k = A^k$. \Box

Proposition. If A is an invertible symmetric matrix then A^{-1} is also symmetric. *Proof.* This is because $(A^{-1})^{\top} = (A^{\top})^{-1}$.

* powers and inverses preserve (transpose) Symmetry

Fact If A is any matrix, not nec. square, then A^TA is symmetric: $(A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A$



Illustrate eigenvector/value properties of A = AT by example:

Recall how we can diagonalize a matrix.

Example. Let
$$A = \begin{bmatrix} 6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5 \end{bmatrix} = A^{\intercal}$$

all real eigenvalues

Then det(A - xI) = (8 - x)(6 - x)(3 - x) so the eigenvalues of A are 8, 6, and 3.

By constructing bases for the null spaces of A - 8I, A - 5I, and A - 3I, we find that the following are eigenvectors of A:

 $v_{1} = \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix} \text{ with eigenvalue 8. } v_{2} = \begin{bmatrix} -1\\ -1\\ 2 \end{bmatrix} \text{ with eigenvalue 6.}$ $v_{3} = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \text{ with eigenvalue 3. } \textbf{Observe} \quad \textbf{V}_{1} \vee \textbf{V}_{2} \vee \textbf{S} \text{ are Orthogonal.}$

These eigenvectors are actually an orthogonal basis for \mathbb{R}^3 .

Nontrivial to find, easy to check:
$$Av_2 = \begin{bmatrix} -6+2-2\\2-6-2\\1+1\\1+0 \end{bmatrix} = \begin{bmatrix} -6\\-6\\12\\12 \end{bmatrix} = 6v_2$$

Converting these vectors to unit vectors gives an orthonormal basis of eigenvectors

$$u_{1} = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}, \quad u_{2} = \begin{bmatrix} -1/\sqrt{6} \\ -1/\sqrt{6} \\ 2/\sqrt{6} \end{bmatrix}, \quad u_{3} = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}.$$
As usual we the interval $A = PDP^{-1}$ where

$$P = \begin{bmatrix} u_{1} & u_{2} & u_{3} \end{bmatrix} \text{ and } D = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$
Since the columns of P are orthonormal, we actually have $P^{\top} = P^{-1}$ so $A = PDP^{\top}$.
The special properties in this example turn out to hold for all symmetric matrices.
becomise U_{1} U_{2} U_{3} $T = P^{T} = \begin{bmatrix} 4\sqrt{3} \\ 4\sqrt{3} \end{bmatrix}$ P is only orthogonal properties.
becomise U_{1} U_{2} U_{3} $T = P^{T} = \begin{bmatrix} 4\sqrt{3} \\ 4\sqrt{3} \end{bmatrix}$ P is only orthogonal properties.
becomise U_{1} U_{2} U_{3} $T = P^{T} = \begin{bmatrix} 4\sqrt{3} \\ 4\sqrt{3} \end{bmatrix}$ P is only orthogonal properties.

In this example: A = A^T has all real eigenvalues and we can find an orthogonal matrix P (with p'= pT) such that A = PDP" = PDPT $\nabla = d \log(1, 1_2, \dots, 1_n)$ Will say: "A = AT is orthogonally diagonalizable"

if Av= Av then v.w=0 $A = A^T$ Aw 2 **4 4 W Theorem.** Suppose A is a symmetric matrix. Then any two eigenvectors from different eigenspaces of A are orthogonal. So if $A = A^{\top}$ is $n \times n$ and $u, v \in \mathbb{R}^n$ are such that Au = au Av = bv for numbers $a \neq b$, smnotry is used have then $u \bullet v = 0$. (But if u, v are eigenvectors of A with same eigenvalue then could have $u \bullet v \neq 0$.) *Proof.* Let u and v be eigenvectors of A with eigenvalues a and b, where $a \neq b$. Then $au \bullet v = Au \bullet v = (Au)^{\top}v = u^{\top}A^{\top}v = u^{\top}Av = u \bullet Av = u \bullet bv$. But $au \bullet v = a(u \bullet v)$ and $u \bullet bv = b(u \bullet v)$, so $a(u \bullet v) = b(u \bullet v)$, thus $(a-b)(u \bullet v) = 0$. Since $a - b \neq 0$, it follows that $u \bullet v = 0$. $u^{T}Av$ is both $\begin{cases} a(u \cdot v) \\ b(u \cdot v) \end{cases}$ if $a \neq b$, then these can only bt iged: be equal if u-v=0

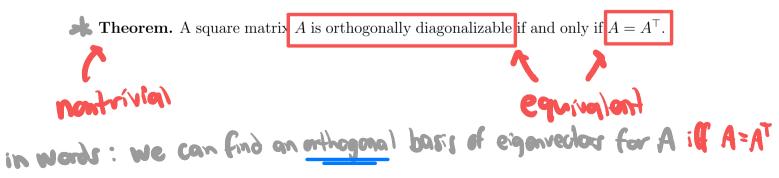
Recall that a matrix P is *orthogonal* if P is invertible and $P^{-1} = P^{\top}$.

Definition. A matrix A is *orthogonally diagonalizable* if there is an orthogonal matrix P and a diagonal matrix D such that $A = PDP^{-1} = PDP^{\top}$.

When A is orthogonally diagonalizable and $A = PDP^{-1} = PDP^{\top}$, the diagonal entries of D are the eigenvalues of A, and the columns of P are the corresponding eigenvectors; moreover, these eigenvectors form an orthonormal basis of \mathbb{R}^n .

In fact, it follows by the arguments in our earlier lectures about diagonalizable matrices that an $n \times n$ matrix A is orthogonally diagonalizable if and only if there is an orthonormal basis for \mathbb{R}^n consisting of eigenvectors for A.

Surprisingly, there is a much more direct characterization:



easy direction of This athographicable Symmetric

The complete proof of previous theorem is in lecture notes.

We will just note some key parts of the argument.

Proposition. If A is orthogonally diagonalizable then A is symmetric.

Proof. If X, Y, Z are $n \times n$ matrices then $(XYZ)^{\top} = Z^{\top}(XY)^{\top} = Z^{\top}Y^{\top}X^{\top}$. Suppose $A = PDP^{\top}$ where D is diagonal. Then $D = D^{\top}$ and $(P^{\top})^{\top} = P$, so $A^{\top} = (PDP^{\top})^{\top} = (P^{\top})^{\top}D^{\top}P^{\top} = PDP^{\top} = A$.

 $(\nabla^{\mathsf{T}} \mathsf{A} \nabla)^{\mathsf{T}} = \nabla^{\mathsf{T}} \mathsf{A}^{\mathsf{T}} (\nabla^{\mathsf{T}})^{\mathsf{T}}$ $= \nabla^{\mathsf{T}} \mathsf{A} \vee \mathcal{A}^{\mathsf{T}} \mathfrak{a} =$ 2 was a practice problem **Proposition.** Suppose A is a symmetric matrix with all real entries. Then all complex eigenvalues of A belong to \mathbb{R} . *Proof.* Suppose A is a symmetric $n \times n$ matrix with real entries, so that $A = A^{\top} = \overline{A}$. Let $v \in \mathbb{C}^n$. Consider $\overline{v}^\top A v$. For example, if $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ and $v = \begin{bmatrix} 1+i \\ 1-i \end{bmatrix}$ then $\overline{v}^{\top}Av = \begin{bmatrix} 1-i & 1+i \end{bmatrix} \begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1+i\\ 1-i \end{bmatrix} = \begin{bmatrix} 3+i & 3-i \end{bmatrix} \begin{bmatrix} 1+i\\ 1-i \end{bmatrix} = 4.$ The number $\overline{v}^{\top}Av$ always belongs to \mathbb{R} since $\overline{v}^{\top}Av = v^{\top}A\overline{v} = (\overline{v}^{\top}Av)^{\top} = \overline{v}^{\top}Av$. (The last equality holds since both sides are 1×1 matrices, i.e., calarity of $A = A^T$ Now suppose $v \in \mathbb{C}^n$ is an eigenvector for A with eigenvalue $\lambda \in \mathbb{C}$. Then $\overline{v}^{\top}Av = \overline{v}^{\top}(\lambda v) = \lambda(\overline{v}^{\top}v) \in \mathbb{R}$. But $\overline{v}^{\top}v \in \mathbb{R}$ so we must also have $\lambda \in \mathbb{R}$. By for B=I=BT

Thin If A = A^T then Can find P with P⁻ = P^T and D diagonal with A = PDP⁻

To orthogonally diagonalize an $n \times n$ symmetric matrix A, we just need to find an orthogonal basis of eigenvectors v_1, v_2, \ldots, v_n for \mathbb{R}^n .

Then $A = UDU^{\top}$ with $U = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}$ where $u_i = \frac{1}{\|v_i\|}v_i$ and D is the diagonal matrix of the corresponding eigenvalues.

If all eigenspaces of A are 1-dimensional, then any basis of eigenvectors will be orthogonal. If A has an eigenspace of dimension greater than one, then after finding a basis for this eigenspace, it may be necessary to apply the Gram-Schmidt process to convert this basis to one that is orthogonal.

can called the bases into one long list and do GS process (order deen. It matter if $A = A^T$ as eightspaces are orthogonal)

Or

when $A = A^T$, can either do GS process on each basis, then callect

(3) After finding basis for each Nul(A-JI)

First: () find eigenlif & for A = AT (2) compute for each Nul (A-1)

Corollary. If
$$A = UDU^{\top}$$
 where

$$U = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}$$
 has orthonormal columns and $D = \begin{bmatrix} \lambda_1 & \lambda_2 & \dots & \lambda_n \end{bmatrix}$
then $A = \lambda_1 u_1 u_1^{\top} + \lambda_2 u_2 u_2^{\top} + \dots + \lambda_n u_n u_n^{\top}$.
Each product $u_i u_i^{\top}$ is an $n \times n$ matrix of rank 1.
One calls this expression a spectral decomposition of A.
Plastice
patients

$$A = U \begin{bmatrix} 8G \\ 03 \end{bmatrix} U^{T}$$

Example. Let
$$A = \begin{bmatrix} 7 & 2 \\ 2 & 4 \end{bmatrix}$$
. A spectral decomposition of A is given by

$$A = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} & 8 & 0 \\ 1/\sqrt{5} & 2/\sqrt{5} & 0 & 3 \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \\ -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

$$= 8 \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix} + 3 \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$

$$= 8 \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix} + 3 \begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix} \begin{bmatrix} -1/\sqrt{5} & 2/\sqrt{5} \end{bmatrix}$$