
MATH 2121 - Lecture22
-

for webwork : use sart(x) instead of X0S

Today :

O Review of Least- Squares solutions

(new : line of best fit)

② symmetrices and their eigenvalues



1 Last time: least-squares problems

Definition. If A is an m⇥ n matrix and b 2 Rm
then A>Ax = A>b is consistent.

A solution to A>Ax = A>b is called a least-squares solution to the equation Ax = b.

Let kvk =
p

v21 + v22 + · · ·+ v2n � 0 for v 2 Rn
. Recall kvk = 0 if and only if v = 0.

Fact. A vector s 2 Rn
is a least-squares solution to Ax = b if and only if

kb� Ask  kb� Axk for all x.

The linear system Ax = b is consistent if and only if kb�Axk = 0 for some x 2 Rn
.

If Ax = b is consistent then all least-squares solutions s have kb�Ask = 0 so As = b.

If Ax = b is inconsistent, still at least one least-squares solution s, but kb�Ask > 0.

want to solve Ax=b

*

-↳
a LS solution to Ax =b is a vector setti
that minimizes the distance 11b-AsII



when system is

Picture of a least-squares solution to Ax=b (inconsistent)

Ls solutions to Ax
=b

because proco() fColA,

are the b we can find with Ax= projcdA(b)
exact solutions T
to

and any such is a LS Solution
(b)

Ax =ProJcoA to Ax=b
and also to

CATAx - ATb S I
↳r con

no vector Ax is equal to b so
best we can do is find

* such that At is as close to b as possible



Theorem. Let A be an m⇥ n matrix. The following properties are equivalent:

(a) Ax = b has a unique least-squares solution for each b 2 Rm
.

(b) The columns of A are linearly independent.

(c) A>A is invertible.

-

->

-

↓
↓
given by

ATAx = ATb
X = (ATA)ATb



application: computing line of
best fit

if you have some datapoints and you want

to fit a line y = mx +b to approximate

the data , how to compute mandb
q

&

↳can find these

as a LS solution

to a linear#i system



Example (Lines of best fit). Suppose we have n data points (a1, b1), (a2, b2), . . . , (an, bn).

Want to find �0, �1 2 R such that y = �0 + �1x is the line of best fit for this data.

If our points are all on the same line, then for some


�0

�1

�
2 R2

we would have

bi = �0 + �1ai for i = 1, 2, . . . , n,

meaning that x =


�0

�1

�
is an exact solution to the linear system Ax = b where

A =

2

6664

1 a1
1 a2
...

...
1 an

3

7775
and b =

2

6664

b1
b2
...

bn

3

7775
.

If the given points are not on the same line, then no exact solution to Ax = b exists,
and we should instead try to find a least-squares solution to the system.

· ·
8

y= Bo +B, x
⑨

9)
⑳

&

·

ycansolve-

calnear
systemas

J
(B) ==





To be concrete, suppose we have four points (2, 1), (5, 2), (7, 3), and (8, 3) so that

A =

2

664

1 2

1 5

1 7

1 8

3

775 and b =

2

664

1

2

3

3

3

775 .

The least-squares solutions to Ax = b are the exact solutions to A>Ax = A>b.

A>A =


1 1 1 1

2 5 7 8

�
2

664

1 2

1 5

1 7

1 8

3

775 =


4 22

22 142

�
and A>b =


1 1 1 1

2 5 7 8

�
2

664

1

2

3

3

3

775 =


9

57

�
.

The matrix A>A is invertible. So a least-squares solution is


�0

�1

�
= (A>A)�1A>b =


4 22

22 142

��1 
9

57

�
=

1

84


142 �22

�22 4

� 
9

57

�
=


2/7
5/14

�
.

want to find Bo , B ,
such that

y = BotBix is close to these pts
Y

① Form : A =[b
② 17 11

2x]

=Sy intereya

③ solve AAx-Abmex-A)Ab-j



Thus our line of best fit for the data is y =
2
7 +

5
14x:

From prev slide:

&
17.3

18
,
3

(2 S
,2)

Fix d3

&
Potp ,

x
,
+PzxY+-+=i

The process to find
a "polynomial of best fit"

for some datapoints (x..X) ... (Xr.fr) is similar

(just will involve more variables)



Question : what does our defn of line of best fit optimize?
J

what does "best" mean?

↓grea lives-vertical
distances

some

I from points
to line

-

line
the line of best fit minimizes this sum :

error
measurement -> E ,

(d) so
when this sum is small, the line is a good fit



2 Symmetric matrices

A matrix A is symmetric if A>
= A.

This happens if A is square and Aij = Aji for all i, j.

Example.


1 0

0 �3

�
and

2

4
0 �1 0

�1 5 8

0 8 �7

3

5 and

2

4
a b c
b d e
c e f

3

5 are symmetric.


1 �3

3 0

�
and

2

4
1 �4 0

�6 1 �4

6 �6 1

3

5 and


1 2 3

2 3 5

�
are not symmetric.

Goal today : these matrices

- have a different

characterization interms
of diagonalization

A=Pop-
*

(8 diag)

[abj





Proposition. If A is symmetric and k 2 {1, 2, 3, . . . } then Ak
is also symmetric.

Proof. If A = A>
then (Ak

)
>
= (AA · · ·A)> = A> · · ·A>A>

= (A>
)
k
= Ak

.

Proposition. If A is an invertible symmetric matrix then A�1
is also symmetric.

Proof. This is because (A�1
)
>
= (A>

)
�1
.

* powers and
inverses preserve (transpose)

Symmetry

fact If A is any matrix,
not nec, square,

-

then ATA is symmetric : (ATA)"= ATCAT) = ATA



What elso do we know? alwaystive true when A=A

-d ↓
if A = AT then Col(A) =NullA)= NullA)

So the column space and nullspace of

symmetric matrices are orthogonal

If A = 157 has rank I then-und
So CdA is a line

(aim(dA =1)



Recall how we can diagonalize a matrix.

Example. Let A =

2

4
6 �2 �1

�2 6 �1

�1 �1 5

3

5.

Then det(A� xI) = (8� x)(6� x)(3� x) so the eigenvalues of A are 8, 6, and 3.

By constructing bases for the null spaces of A � 8I, A � 5I, and A � 3I, we find

that the following are eigenvectors of A:

v1 =

2

4
�1

1

0

3

5 with eigenvalue 8. v2 =

2

4
�1

�1

2

3

5 with eigenvalue 6.

v3 =

2

4
1

1

1

3

5 with eigenvalue 3.

These eigenvectors are actually an orthogonal basis for R3
.

Illustrate eigenvector/value Properties of A =AT

by example:

=AT
all real eigenvalues

*

S *
observe vivnvs are Orthogonal

!

Conventrical
to find, easy to check

: Are =/



Converting these vectors to unit vectors gives an orthonormal basis of eigenvectors:

u1 =

2

4
�1/

p
2

1/
p
2

0

3

5 , u2 =

2

4
�1/

p
6

�1/
p
6

2/
p
6

3

5 , u3 =

2

4
1/
p
3

1/
p
3

1/
p
3

3

5 .

As usual we then have A = PDP�1
where

P =
⇥
u1 u2 u3

⇤
and D =

2

4
8 0 0

0 6 0

0 0 3

3

5 .

Since the columns of P are orthonormal, we actually have P>
= P�1

so A = PDP>
.

The special properties in this example turn out to hold for all symmetric matrices.

*

S =

↳
because u, un us are outhonormal-

D
*

= fu ,
nius)" = p =/Disaa



In this example : A- AT has all real eigenvalues
to zourtafR

and we can find anorthogonal matrix P

(with p"= PT)

such that A
= POP" = POPT

↑
= diag/titz--tr)

Will say : "A= At is orthogonally diagonalizable
"



Theorem. Suppose A is a symmetric matrix.

Then any two eigenvectors from di↵erent eigenspaces of A are orthogonal.

So if A = A>
is n⇥ n and u, v 2 Rn

are such that

Au = au Av = bv for numbers a 6= b,

then u • v = 0.

(But if u, v are eigenvectors of A with same eigenvalue then could have u•v 6= 0.)

Proof. Let u and v be eigenvectors of A with eigenvalues a and b, where a 6= b.

Then au • v = Au • v = (Au)>v = u>A>v = u>Av = u • Av = u • bv.

But au•v = a(u•v) and u•bv = b(u•v), so a(u•v) = b(u•v), thus (a�b)(u•v) = 0.

Since a� b 6= 0, it follows that u • v = 0.

if Av =#V then v.w=o

MA = AT Aw -Nu

# Fu

symmetry is used here

( ↓
a (u-v) & if atb ,

the

Midea: uFAv is both [b(u -r) < these can only

be equal if n.v =0





Recall that a matrix P is orthogonal if P is invertible and P�1
= P>

.

Definition. A matrix A is orthogonally diagonalizable if there is an orthogonal

matrix P and a diagonal matrix D such that A = PDP�1
= PDP>

.

When A is orthogonally diagonalizable and A = PDP�1
= PDP>

, the diagonal

entries of D are the eigenvalues of A, and the columns of P are the corresponding

eigenvectors; moreover, these eigenvectors form an orthonormal basis of Rn
.

In fact, it follows by the arguments in our earlier lectures about diagonalizable

matrices that an n⇥ n matrix A is orthogonally diagonalizable if and only
if there is an orthonormal basis for Rn consisting of eigenvectors for A.

Surprisingly, there is a much more direct characterization:

Theorem. A square matrix A is orthogonally diagonalizable if and only if A = A>
.

i
* & X
nontrivial equivalent

inwords : we can find an arthogonal basis of eigenvectors forA iff A=AT





The complete proof of previous theorem is in lecture notes.

We will just note some key parts of the argument.

Proposition. If A is orthogonally diagonalizable then A is symmetric.

Proof. If X, Y, Z are n⇥ n matrices then (XY Z)> = Z>
(XY )

>
= Z>Y >X>

.

Suppose A = PDP>
where D is diagonal. Then D = D>

and (P>
)
>
= P , so

A>
= (PDP>

)
>
= (P>

)
>D>P>

= PDP>
= A.

easy direction ofThy athogonally Symmetricdiagonalizable

&
=>

↳

d
=0 as O is dragonal



Proposition. Suppose A is a symmetric matrix with all real entries.

Then all complex eigenvalues of A belong to R.

Proof. Suppose A is a symmetric n⇥nmatrix with real entries, so that A = A>
= A.

Let v 2 Cn
. Consider v>Av. For example, if A =


1 2

2 1

�
and v =


1 + i
1� i

�
then

v>Av =
⇥
1� i 1 + i

⇤  1 2

2 1

� 
1 + i
1� i

�
=

⇥
3 + i 3� i

⇤  1 + i
1� i

�
= 4.

The number v>Av always belongs to R since v>Av = v>Av =
�
v>Av

�>
= v>Av.

(The last equality holds since both sides are 1⇥ 1 matrices, i.e., scalars.)

Now suppose v 2 Cn
is an eigenvector for A with eigenvalue � 2 C.

Then v>Av = v>(�v) = �(v>v) 2 R. But v>v 2 R so we must also have � 2 R.

&
was a practice problem A

=Avif A=AT

-S & holds as A =AT

Fire Br for B =I +ET





To orthogonally diagonalize an n⇥ n symmetric matrix A, we just need to find an

orthogonal basis of eigenvectors v1, v2, . . . , vn for Rn
.

Then A = UDU>
with U =

⇥
u1 u2 . . . un

⇤
where ui =

1
kvikvi and D is the

diagonal matrix of the corresponding eigenvalues.

If all eigenspaces of A are 1-dimensional, then any basis of eigenvectors will be

orthogonal. If A has an eigenspace of dimension greater than one, then after finding

a basis for this eigenspace, it may be necessary to apply the Gram-Schmidt
process to convert this basis to one that is orthogonal.

Th: If A
+A then can find p with p"

= PT and
-
-

O diagonal with A = PDP
How?!

1
can either

: find basis for -05 -+ takeunion
↓-erg space forall

eigspaces

or
: find bases for-take -> OS

unich
each eig space



First : O find eiguals t for A=AT & compute for each Nul(A-tF)

③ After finding basis for each Nul(A-tF)

When A = AT , can either do OS process

on each basis, then collect

e

can collect the bases into

one long list and do as process

lander doesn't matter if A=AT as

eigenspaces are othogonal)



Corollary. If A = UDU>
where

U =
⇥
u1 u2 . . . un

⇤
has orthonormal columns and D =

2

6664

�1

�2

. . .
�n

3

7775

then A = �1u1u>
1 + �2u2u>

2 + · · ·+ �nunu>
n .

Each product uiu>
i is an n⇥ n matrix of rank 1.

One calls this expression a spectral decomposition of A.

-an
orthogonal diagonalization

V = (u") = (T)" (EV" =vi)
-

- multiply out [u..
-unt0(n,.....]T

2
*

Practice
problem

rank M=

#

M =vwT



Example. Let A =


7 2

2 4

�
. A spectral decomposition of A is given by

A =


2/
p
5 �1/

p
5

1/
p
5 2/

p
5

� 
8 0

0 3

� 
2/
p
5 1/

p
5

�1/
p
5 2/

p
5

�

= 8


2/
p
5

1/
p
5

� ⇥
2/
p
5 1/

p
5
⇤
+ 3


�1/

p
5

2/
p
5

� ⇥
�1/

p
5 2/

p
5
⇤

=


32/5 16/5
16/5 8/5

�
+


3/5 �6/5

�6/5 12/5

�
.

1A = u(ut

y uT

Si




