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1 Last time: least-squares problems wgﬂ\\- \-a 2\ A;:B

Definition. If A is an m X n matrix and b € R™ thenI AT Az = ATblis consistent.

A solution to AT Az = A"b is called a least-squares solution to the equation Az = b.

Let ||v|| = \/v? + v+ -+ + 02 > 0 for v € R™. Recall |jv]| = 0 if and only if v = 0.
Fact. A vector s € R" is a least-squares solution to Az = b if and only if

|b — As|| < ||b — Az|| for all .

The linear system Az = b is consistent if and only if ||b — Az|| = 0 for some x € R™.
If Az = bis consistent then all least-squares solutions s have ||b— As|| = 0so As = b. 6-

If Az = b is inconsistent, still at least one least-squares solution s, but ||b— As|| > 0.
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Theorem. Let A be an m x n matrix. The following properties are equivalent:
«=(a) Az = b has a unique least-squares solution for each b € R™:
#b) The columns of A are linearly independent.
_’(c) AT A is invertible.
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Example (Lines of best fit). Suppose we have n data points (aq, by), (az,b2), .. ., (an, by).
Want to find| 5y, 81 € Risuch that y = £y + lelis the line of best fit for this data.

If our points are all on the same line, then for some { Bo ] € R? we would have

P
Can o0 L' b; =By + Bua; | for i =1,2,...,n, (g \‘Wﬂt‘eﬂ‘)

meaning that x = [ go J is an exact solution to the linear systehere
1

1 a; by
1 as by
A= ) ) and b= .
1 Qp, bn

If the given points are not on the same line, then no exact solution to Ax = b exists,
and we should instead try to find a least-squares solution to the system.
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To be concrete, suppose we have four points (2, 1), (5,2), (7,3), and (8, 3)/so that
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The least-squares solutions to Az = b are the exact solutions to AT Az = ATb.
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@ AA_{2578 [1 7] [22 142] andAb[2578}[
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The matrix A" A is invertible. So a least-squares solution is
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Thus our line of best fit for the data iy = % + Tix: x

1 ()
1: ......... X t'\j, 6 ?l

123456789

. P;*L'{%-*F)‘ai s Yi\
f Bot B XY

The, process o fwd o " palyromial of bast (b

for somo dnxapov&s (Ao (e de) 38 grmilorr
(3\4\3} Wl NGNS ore, Wr‘a\a\lﬂ



Quashon: Wt Joos oas dekn 0 L of et € optimize?
J

ling = Varka)

i dirtames
frow pors

B {0 lie

o
e He Wne 0f |bept A | miniwzes thi§ Sum:
or p ]
met?:W* - z,(vd‘x 20

when 4hs sum 15 small, the line is o good €it



2 Symmetric matrices hoie @ é«.‘”‘\
A matrix A is symmetric if AT = A. (,hfgg\’-‘lq\b f“‘u“‘l’

This happens if A is square and A;; = A;; for all 7, j. d ‘ ;‘m\iunﬂ\
<
1 0 oL A= PoP
*Example. [ 0 —3 } and | —1 5 8 | and
08 =7 (D diey)
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=3 and | —6 1 —4 | and 123 are not symmetric.
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Proposition. If A is symmetric and k € {1,2,3,...} then A* is also symmetric.

Proof. If A= AT then (A*)T = (AA---A)T = AT ... ATAT = (AT)F = A¥, 0

Proposition. If A is an invertible symmetric matrix then A=! is also symmetric.

Proof. This is because (A1) T = (A7)~ O
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Recall how we can diagonalize a matrix.

6 -2 —1] 4
Example. LetjlA=| =2 6 -1 =A
-1 —1 5)

all reo) eigenaluwes

* Then det(A — xI) = (8 — 2)(6 — x)(3 — ) so the eigenvalues of A are 8, 6, and 3.
By constructing bases for the null spaces of A — 81, A — 5[, and A — 31, we find
that the following are eigenvectors of A:
[ —1 -1
v = 1 | with eigenvalue 8. vy = | —1 | with eigenvalue 6.
0 2 \
[ 1 N V2 Va Qie Q'MM\ .
vg= | 1 ] with eigenvalue 3. ohsvw Vi Vo 3
1

These eigenvectors are actually an orthogonal basis for R3.
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Converting these vectors to unit vectors gives ar] orthonormal basis of eigenvectors *

—1/v2 ~1/v6 1/v/3
Uy = 1/\/5 5 Ug = —1/\/6 5 Uz = 1/\/§
0

2/v/6 1/v3
where
8 0 0
and D=1]10 6 0
0 0 3

Since the columns of P are orthonormal, we actually have P = P~'so A = PDPT.

The special properties in this example turn out to hold for all symmetric matrices.
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Then any two eigenvectors from different eigenspaces of A are orthogonal.

Theorem. Suppose A is a symmetric matrix.

Soif A= A" isn x n and u,v € R" are such that

Au=au Av =0bv for numbers a # b,

Symnoiey is used hove

(But if u, v are eigenvectors of A with samg eigenvalue then could have uewv # 0.)

then v e v = 0.

Proof. Let u and v be eigenvectors of A with eigenvalues a and b, where a # b.
Then auev = Auev = (Au) ' v=u"ATv=u"Av =ue Av =u e bv.
But auev = a(uev) and uebv = b(uev), so a(uev) = b(uev), thus (a—b)(uev) = 0.

Since a — b # 0, it follows that v e v = 0.
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Recall that a matrix P is orthogonal if P is invertible and P~' = PT.

Definition. A matrix A is orthogonally diagonalizable if there is an orthogonal
matrix P and a diagonal matrix D such that A = PDP~! = PDPT.

When A is orthogonally diagonalizable and A = PDP~! = PDPT, the diagonal
entries of D are the eigenvalues of A, and the columns of P are the corresponding
eigenvectors; moreover, these eigenvectors form an orthonormal basis of R™.

In fact, it follows by the arguments in our earlier lectures about diagonalizable
matrices that an n x n matrix A is orthogonally diagonalizable if and only
if there is an orthonormal basis for R"” consisting of eigenvectors for A.

Surprisingly, there is a much more direct characterization:

* Theorem. A square matri)l A is orthogonally diagonalizablelif and only iffA = AT.
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The complete proof of previous theorem is in lecture notes.

We will just note some key parts of the argument.

Proposition. If A is orthogonally diagonalizable then A is symmetric.

Proof. 1t XY, Z are n x n matrices then (XY 2)" =Z"(XY)" =ZTYTX".

Suppose

A=PDPT

where D is diagonal. Then D = DT and (P")" = P, so

‘_) AT =(PDP" =(P"'D'"PT = PDP" = A,

l 0

=P
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Proposition. Suppose A is a symmetric matrix with all real entries.

Then all complex eigenvalues of A belong to R.

Proof. Suppose A is a symmetric nxn matrix with real entries, so that A = AT = A.

21

v Av=[1—i 1+¢}B ?Hif”:[sﬂ 3—@]{”?]:

| Consider 7" Av. For example, if A = { L2 } and v = [

The number 7' Av always belongs to R |since 7' Av = v ATa= (ETAU)T =7 Av.

(The last equality holds since both sides are 1 x 1 matrices, i.e&ctloa‘éj “ A - AT

Now suppose v € C" is an eigenvector for A with eigenvalue \ € C.

Then 7' Av =" (\v) = A(®'v) € R. But 7'v € R so we must also have A € R. [
-
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To orthogonally diagonalize an n x n symmetric matrix A, we just need to find an
orthogonal basis of eigenvectors vy, vs, ..., v, for R™.

Then A = UDU" with U = [w; ug ... wu, | where u; = mvi and D is the
diagonal matrix of the corresponding eigenvalues.

If all eigenspaces of A are 1-dimensional, then any basis of eigenvectors will be
orthogonal. If A has an eigenspace of dimension greater than one. then after findin

a basis for this eigenspace, it may be necessary to apply the Gram-Schmidt
process to convert this basis to one that is orthogonal.
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Corollary. If A =UDU" where
A1
Ao
U= [ U Us ... Uy ] has orthonormal columns and D =
An
_ T T T \_§ \. \|
then|A = Mujuy + dousuy + -+ + Ayunu, . é— a\ y OW [u\ .-\A..] V‘“\*\l.\

I a4 Each product wyu; is an n x n matrix of rank 1.

One calls this expression a| spectral decomposition of A
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T2 } A spectral decomposmlon of A is given by

Example. Let A = { 9 4
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