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① Review : Symmetric matrices

arthogonal matrices

② New : singular values decompositions



1 Last time: symmetric matrices

A matrix A is symmetric if A> = A.

This happens if and only if A is square and Aij = Aji for all i, j.

Example.


1 2
2 3

�
is symmetric but


1 2
3 2

�
is not.

A matrix U is orthogonal if U is invertible and U�1 = U>.

This happens precisely when U is square with orthonormal columns.

An n⇥n matrix A is orthogonally diagonalizable if there is an orthogonal matrix U
and a diagonal matrix D such that A = UDU�1 = UDU>.

In this case, columns of U are an orthonormal basis for Rn consisting of eigenvectors
for A, and eigenvalues of these eigenvectors are the diagonal entries of D.
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The following summarizes the main results from last time:

Theorem.

(1) A square matrix is orthogonally diagonalizable if and only if it is symmetric.

(2) Eigenvectors with di↵erent eigenvalues for a symmetric matrix are orthogonal.

(3) All (complex) eigenvalues of a symmetric matrix A are real. The characteristic
polynomial of A has all real roots and can be completely factored as

det(A� xI) = (�1 � x)(�2 � x) · · · (�n � x)

for some (not necessarily distinct) real numbers �1,�2, . . . ,�n 2 R.

A = VOUT =VOU" A +AT
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Example. Suppose A =


a b
b a

�
for some a, b 2 R.

How does the preceding theorem apply to this generic 2-by-2 matrix? Since

det(A� xI) = det


a� x b

b a� x

�
= (a� x)2 � b2 = (a� b� x)(a+ b� x),

the eigenvalues of A are a� b and a+ b.

The vector


1

�1

�
is an eigenvector for A with eigenvalue a� b.

The vector


1
1

�
is an eigenvector for A with eigenvalue a+ b.

These eigenvectors are orthogonal, as predicted by the theorem. We can convert
them to unit vectors by multiplying each vector by the reciprocal of its length.
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This gives the orthonormal eigenvectors

1p
2


1

�1

�
and 1p

2


1
1

�

which form an orthonormal basis for R2. So

a b
b a

�
= A = UDU�1 = UDU>

where U = 1p
2


1 1

�1 1

�
and D =


a� b 0

0 a+ b

�
.

Note : v =(fa
(x,y)=(

,
i)

~ (1000, sinG)
unit rectors:

Check: [a] =(b) in
A = u . 0 . u





2 Singular value decomposition

Today, we’ll prove the existence of singular value decompositions , which give a sort
of approximate orthogonal diagonalization for any matrix, not just symmetric ones.

Let A be an m⇥ n matrix.

Then A>A is a symmetric n⇥ n matrix, since (A>A)> = A>(A>)> = A>A.

It follows from our results last time that A>A has all real eigenvalues.

A stronger statement holds.
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#dea of an SVO for a matrix A
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The sto for a matrix instead encodes how

the matrix transforms the unit circle (ar n-dimsphere
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Lemma. All eigenvalues of A>A are nonnegative real numbers. In fact, if � is an
eigenvalue of A>A and v 2 Rn is a unit vector with A>Av = �v, then � = kAvk2.

Proof. If v 2 Rn has kvk = 1 and A>Av = �v then

0  kAvk2 = (Av)•(Av) = (Av)>(Av) = v>A>Av = v>(�v) = �(v>v) = �kvk2 = �.

The preceding lemma allows us to make the following definition.

Definition. Let �1 � �2 � · · · � �n � 0 be the eigenvalues of A>A arranged in
decreasing order. Define �i =

p
�i for i = 1, 2, . . . , n.

The numbers �1 � �2 � · · · � �n � 0 are the singular values of A.

The singular values of a matrix A are the squares roots of the eigenvalues of
A>A, which are guaranteed to be nonnegative (so have well-defined square roots).
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Example. Suppose A =


4 11 14
8 7 �2

�
. Then A>A =

2

4
80 100 40
100 170 140
40 140 200

3

5.

This matrix A>A has characteristic polynomial

det(A>A� xI) = (360� x)(90� x)x

so the eigenvalues of A>A are �1 = 360, �2 = 90, and �3 = 0.

The singular values of A are �1 =
p
360 = 6

p
10 > �2 =

p
90 = 3

p
10 > �3 = 0.

3 eds 3x3

1111
↳

Note 2 nonzero singularvalues
Q=o4o Also rank A=2





A sequel to the lemma above, about the eigenvectors of A>A:

Suppose v1, v2, . . . , vn is an orthonormal basis of Rn composed of eigenvectors of
A>A. Assume that if �i 2 R is eigenvalue of vi then �1 � �2 � · · · � �n.

Theorem. Suppose A has r nonzero singular values.

Then Av1, Av2, . . . , Avr is an orthogonal basis for the column space of A.

Consequently rankA = r.

Proof. Choose indices i 6= j. Then vi • vj = 0 so also vi • �jvj = 0. Then

(Avi)
>Avj = v>i A

>Avj = v>i (�jvj) = vi • �jvj = 0.

This shows that Av1, Av2, . . . , Avr are orthogonal vectors in ColA.

Since kAvik =
p
�i > 0, these vectors are nonzero, so are linearly independent.

Pankonzersingular
aa

consisting of eigenvectors of ATA

2
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are orthog. radius rectors for unit n-dim sphere
that become

radius rectors of corresponding n-dim ellipse when
multiplied by A



To see that these vectors span the column space of A, suppose y 2 ColA.

Then y = Ax for some vector x 2 Rn, which we can write as

x = c1v1 + c2v2 + · · ·+ cnvn

for some c1, c2, . . . , cn 2 R.

If i > r then Avi = 0 since kAvik =
p
�i = 0. Therefore

y = Ax = c1Av1+c2Av2+· · ·+crAvr+cr+1Avr+1 + · · ·+ cnAvn| {z }
=0

= c1Av1+c2Av2+· · ·+crAvr.

We conclude that Av1, Av2, . . . , Avr is a basis for ColA.

Corollary. For any matrix A: rankA = number of nonzero singular values of A.

Fact from earlier: Il Avill =Mi
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Theorem (Existence of SVDs). Let A be an m⇥ n matrix with rank r.

Suppose �1 � �2 � · · · � �r are the nonzero singular values of A.

Then we can write A = U⌃V > where

U is some m⇥m orthogonal matrix.

V is some n⇥ n orthogonal matrix.

⌃ is the m⇥ n matrix ⌃ =


D 0
0 0

�
where D =

2

6664

�1

�2

. . .
�r

3

7775
.

Definition. A factorization A = U⌃V > with U , V , ⌃ as above is a singular value
decomposition of A. We sometimes abbreviate by writing SVD instead of singular
value decomposition.

Orthogonal = (inverse = transpose) = ( Orthonara and
square

- called an SVO for A

notene &
unique S



U and V in an SVD A = U⌃V > are not uniquely determined by A, but ⌃ is.

The columns of U are called left singular vectors of A.

The columns of V are called right singular vectors of A.

Proof that an SVD of A exists. Let �1 � �2 � · · · � �n be the eigenvalues of A>A.

The singular values of A are �i =
p
�i for each i = 1, 2, . . . , n.

Let v1, v2, . . . , vn be a list of corresponding orthonormal eigenvectors for A>A.

Then �r+1 = · · · = �n = 0 and Av1, Av2, . . . , Avr is orthogonal basis for ColA.

For each i = 1, 2, . . . , r, define ui =
1

kAvikAvi =
1p
�i
Av = 1

�i
Avi.
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Then u1, u2, . . . , ur is an orthonormal basis for ColA.

We can choose vectors ur+1, ur+2, . . . , um 2 Rm such that the extended list of vectors
u1, u2, . . . , um is an orthonormal basis for Rm. Make any such choice, and define

U =
⇥
u1 u2 . . . um

⇤
and V =

⇥
v1 v2 . . . vn

⇤
.

These matrices are orthogonal by construction, and

AV =
⇥
Av1 Av2 . . . Avn

⇤

=
⇥
Av1 Av2 . . . Avr 0 . . . 0

⇤
=

⇥
�1u1 �2u2 . . . �rur 0 . . . 0

⇤
.

If ⌃ is the matrix given in the theorem, then we also have

U⌃ =
⇥
�1u1 �2u2 . . . �rur 0 . . . 0

⇤
= AV

so U⌃V > = AV V > = AI = A, which confirms the theorem statement.

If rankA <U:

*
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Example. Again suppose A =


4 11 14
8 7 �2

�
.

To find a singular value decomposition for A, there are three steps.

1. Find an orthogonal diagonalization of A>A.

A>A is a 3 ⇥ 3 matrix, and by the usual methods of row reducing A � �I to
find a basis for Nul(A� �I) for each eigenvalue �, you can check that

v1 =

2

4
1/3
2/3
2/3

3

5 , v2 =

2

4
�2/3
�1/3
2/3

3

5 , and v3 =

2

4
2/3

�2/3
1/3

3

5

is an orthonormal basis of R3 consisting of eigenvectors of A>A.

The corresponding eigenvalues are �1 = 360, �2 = 90, and �3 = 0.

rankA =2=r

[] a=-No



2. Set up V and ⌃. Following the proof of the theorem, we have

V =
⇥
v1 v2 v3

⇤
=

1

3

2

4
1 �2 2
2 �1 �2
2 2 1

3

5 and D =


�1 0
0 �2

�

for �1 =
p
�1 =

p
360 and �2 =

p
�2 =

p
90.

Since ⌃ has the same size as A, we get ⌃ =

 p
360 0 0
0

p
90 0

�
.

3. Construct U . We have U =
⇥
u1 u2

⇤
where ui =

1
�i
Avi.

In this case you can compute that

u1 =
1p
360


18
6

�
and u2 =

1p
90


3

�9

�

which means that we can write U = 1p
10


3 1
1 �3

�
.

E
L

AV = Ava

rankA = #rows (easy case)



Putting everything together produces the singular value decomposition

A = U⌃V > =


3/
p
10 1/

p
10

1/
p
10 �3/

p
10

�  p
360 0 0
0

p
90 0

�2

4
1/3 2/3 2/3

�2/3 �1/3 2/3
2/3 �2/3 1/3

3

5 .

Be careful to note that the third matrix factor is the transpose V > rather than V .

j
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One application of SVDs is to show the existence of pseudo-inverses:

Definition. A pseudo-inverse of an m⇥ n matrix A is an n⇥m matrix A+ with

AA+A = A and A+AA+ = A+.

Example: If A is invertible, then A+ = A�1 is the pseudo-inverse of A.

Theorem. Every matrix A has a pseudo-inverse, which can be computed as follows.

If A = U⌃V > is a singular value decomposition, and ⌃+ is the matrix formed by
transposing ⌃ and then replacing all of its nonzero entries by their reciprocals.

Then A+ = V ⌃+U> is a pseudo-inverse for A.

Proof. See lecture notes. Key step is to check that ⌃⌃+⌃ = ⌃ and ⌃+⌃⌃+ = ⌃+

S
&
Where st= (0. ] (Same sizeas+1)



Example. If

A = U⌃V > =


3/
p
10 1/

p
10

1/
p
10 �3/

p
10

�  p
360 0 0
0

p
90 0

�2

4
1/3 2/3 2/3

�2/3 �1/3 2/3
2/3 �2/3 1/3

3

5

then a pseudo-inverse is provided by

A+ =

2

4
1/3 �2/3 2/3
2/3 �1/3 �2/3
2/3 2/3 1/3

3

5

2

4
1/
p
360 0
0 1/

p
90

0 0

3

5

3/
p
10 1/

p
10

1/
p
10 �3/

p
10

�
.

One can show that the pseudo-inverse is unique (but we won’t prove this).

Y E vT

Sup

pseudo
inverse

V # UT

satisfies At AAT = At and AATA = A




