ecture #23 - MATH 2121

D Revien : Symmetric matrices orthogonal matrices

2 New: singular values decompositions

Orthog. matrices : [0] or and perm. matrix [cose -nne] or any rotation matrix 1 Last time: symmetric matrices A matrix A is symmetric if $A^{\top} = A$. This happens if and only if A is square and $A_{ij} = A_{ji}$ for all i, j. **Example.** $\begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix}$ is symmetric but $\begin{vmatrix} 1 & 2 \\ 3 & 2 \end{vmatrix}$ is not. for distinct A matrix U is *orthogonal* if U is invertible and $U^{-1} = U^{\top}$. Columns v, w This happens precisely when U is square with orthonormal columns. An $n \times n$ matrix A is *orthogonally diagonalizable* if there is an orthogonal matrix U and a diagonal matrix D such that $A = UDU^{-1} = UDU^{\top}$. In this case, columns of U are an orthonormal basis for \mathbb{R}^n consisting of eigenvectors for A, and eigenvalues of these eigenvectors are the diagonal entries of D. > A = UDUT = UDU" w/D diagonal

The following summarizes the main results from last time: $A = U D U^T = U D U^{'}$

Theorem.

(1) A square matrix is orthogonally diagonalizable if and only if it is symmetric.

Eigenvectors with different eigenvalues for a symmetric matrix are orthogonal.

~ ^ '

All (complex) eigenvalues of a symmetric matrix A are real. The characteristic (3)polynomial of \overline{A} has all real roots and can be completely factored as

$$\det(A - xI) = (\lambda_1 - x)(\lambda_2 - x)\cdots(\lambda_n - x)$$

for some (not necessarily distinct) real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$.

Appl. of (3) To show that a polynomial
$$p(x)$$
 has
all real roots, just need to find
 $A = A^T$ with $p(x) = det(A - xI)$

Fact
$$v^2 - w^2 = (v - v)(v + u)$$
 for any $v, w \in \mathbb{C}$

Example. Suppose $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ for some $a, b \in \mathbb{R}$.

How does the preceding theorem apply to this generic 2-by-2 matrix? Since

$$det(A - xI) = det \begin{bmatrix} a - x & b \\ b & a - x \end{bmatrix} = (a - x)^2 - b^2 = (a - b - x)(a + b - x),$$

the eigenvalues of A are a - b and a + b.

The vector $\begin{bmatrix} 1\\ -1 \end{bmatrix}$ is an eigenvector for A with eigenvalue a - b.

These eigenvectors are orthogonal, as predicted by the theorem. We can convert them to unit vectors by multiplying each vector by the reciprocal of its length.

2 Singular value decomposition

Today, we'll prove the existence of *singular value decompositions*, which give a sort of approximate orthogonal diagonalization for any matrix, not just symmetric ones.

Let A be an $m \times n$ matrix.

Then
$$A^{\top}A$$
 is a symmetric $n \times n$ matrix, since $(A^{\top}A)^{\top} = A^{\top}(A^{\top})^{\top} = A^{\top}A$.

It follows from our results last time that $A^{\top}A$ has all real eigenvalues.

A stronger statement holds.

Will turn at that the numbers $\sigma_i \ge \sigma_i \begin{pmatrix} e^{||i|pre} \\ radii \end{pmatrix}$ on next slide are square nots of eigenvalues of ATA

Idea of an SVD for a matrix A Usual way of writing a matrix encoder how it transforms unit square 2×2 case: $A = \begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix}$ $A[\hat{o}] = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ $\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix} = A \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ The SVD for a matrix instead encoder how the matrix transforms the unit Circle (or n-dim sphere)

The SVD for a matrix instead encoder how the matrix transforms the unit Circle (or n-dim sphere) (Áv, $u_i \stackrel{det}{=} \frac{1}{\|Av_i\|} Av_i$ this is an V, V2 are orthonormal ellipse basis for R² (ontered **();** = || Av; || U, Uz are also orthonormal at origin (notunique) nontrivial exercise 0,20,20 $A = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_1 \\ \sigma_2 \end{bmatrix} \begin{bmatrix} v_1 & v_2 \end{bmatrix} \leftarrow call this decomp, and$ JVD for A

Lemma. All eigenvalues of $A^{\top}A$ are nonnegative real numbers. In fact, if λ is an eigenvalue of $A^{\top}A$ and $v \in \mathbb{R}^n$ is a unit vector with $A^{\top}Av = \lambda v$, then $\lambda = ||Av||^2$.

Proof. If
$$v \in \mathbb{R}^n$$
 has $||v|| = 1$ and $A^{\top}Av = \lambda v$ then

n = F columns of A

 $0 \le \|Av\|^2 = (Av) \bullet (Av) = (Av)^\top (Av) = v^\top A^\top Av = v^\top (\lambda v) = \lambda \|v\|^2 = \lambda.$

The preceding lemma allows us to make the following definition.

If $A^T A v = \frac{1}{v}$ for $0 \neq v \in \mathbb{R}^n$ and $\frac{1}{E} \in \mathbb{R}^n$ then $|A| = ||Av||^2 \ge 0$

Definition. Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ be the eigenvalues of $A^{\top}A$ arranged in decreasing order. Define $\sigma_i = \sqrt{\lambda_i}$ for $i = 1, 2, \ldots, n$.

The numbers $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$ are the *singular values* of A.

The singular values of a matrix A are the squares roots of the eigenvalues of $A^{\top}A$, which are guaranteed to be nonnegative (so have well-defined square roots).

 $det (A^{T}A - xI) = (A_{1} - x) \cdots (A_{n} - x)$

Ex. Suppose
$$D = \begin{bmatrix} d_1 d_2 \\ \vdots & d_n \end{bmatrix}$$
 is diagonal
Then $\overline{DD} = \begin{bmatrix} d_1^2 & d_2^2 \\ \vdots & d_n^2 \end{bmatrix}$ is also diagonal
The eignals of D are $d_1 d_2 \cdots d_n$ arranged
The eignals of \overline{D} are $d_1^2 d_2^2 \cdots d_n^2$ arranged
The eignals of \overline{D} are $d_1^2 d_2^2 \cdots d_n^2$ arranged
The singular values of D are $|d_1|$, $|d_2|$, ..., $|d_n|$
We have $\sigma_1 = max \{|d_1|\}$ and $\sigma_n = min \{|d_1|\}$

3 cds
3 × 3
Example. Suppose
$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$
. Then $A^{T}A = \begin{bmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{bmatrix}$.
This matrix $A^{T}A$ has characteristic polynomial
 $det(A^{T}A - xI) = (360 - x)(90 - x)x$
so the eigenvalues of $A^{T}A$ are $\lambda_{1} = 360, \lambda_{2} = 90, \text{ and } \lambda_{3} = 0$.
The singular values of A are $\sigma_{1} = \sqrt{360} = 6\sqrt{10} > \sigma_{2} = \sqrt{90} = 3\sqrt{10} > \sigma_{3} = 0$.
Note 2 non-zero Singular values
 $\sigma_{2} = 500$
 $\sigma_{3} = 0$
Note 2 non-zero Singular values

Fact rank A = 4t of nonzero singular values Setup: $v_1 v_2 - v_r$ is orthonormal basis of R^n consisting of eigenvectors of A^TA

A sequel to the lemma above, about the eigenvectors of $A^{\top}A$:

Suppose v_1, v_2, \ldots, v_n is an orthonormal basis of \mathbb{R}^n composed of eigenvectors of $A^{\top}A$. Assume that if $\lambda_i \in \mathbb{R}$ is eigenvalue of v_i then $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

Theorem. Suppose A has r nonzero singular values.

Then Av_1, Av_2, \ldots, Av_r is an orthogonal basis for the column space of A. Consequently rank A = r.

Proof. Choose indices $i \neq j$. Then $v_i \bullet v_j = 0$ so also $v_i \bullet \lambda_j v_j = 0$. Then

$$(Av_i)^{\top}Av_j = v_i^{\top}A^{\top}Av_j = v_i^{\top}(\lambda_j v_j) = v_i \bullet \lambda_j v_j = 0.$$

This shows that Av_1, Av_2, \ldots, Av_r are orthogonal vectors in Col A.

Since $||Av_i|| = \sqrt{\lambda_i} > 0$, these vectors are nonzero, so are linearly independent.

Intuitive reason: the vectors v, v2, ..., Vr (1=reak A) are onlyg. radius vectors for unit n-due sphere that become radius vectors of corresponding n-din ellipse when multiplied by A

To see that these vectors span the column space of A, suppose $y \in \operatorname{Col} A \xrightarrow{} y = A \xrightarrow{}$ Then y = Ax for some vector $x \in \mathbb{R}^n$, which we can write as $x = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$ of v's are less for \mathbb{P}^n for some $c_1, c_2, \ldots, c_n \in \mathbb{R}$. If i > r then $Av_i = 0$ since $||Av_i|| = \sqrt{\lambda_i} = 0$. Therefore $y = Ax = c_1Av_1 + c_2Av_2 + \dots + c_rAv_r + \underbrace{c_{r+1}Av_{r+1} + \dots + c_nAv_n}_{=0} = c_1Av_1 + c_2Av_2 + \dots + c_rAv_r.$ 1:=0 We conclude that Av_1, Av_2, \ldots, Av_r is a basis for Col A. **\clubsuit Corollary.** For any matrix A: rank A = number of nonzero singular values of A.

Chiegonal = (inverse = transpose) = (orthonormal)
Square
Theorem (Existence of SVDs). Let
$$A$$
 be an $m \times n$ matrix with rank r .
Suppose $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$ are the nonzero singular values of A .
Then we can write $A = U\Sigma V^{\top}$ where **Collect on SVD for A**
 U is some $m \times m$ orthogonal matrix.
 V is some $n \times n$ orthogonal matrix.
 V is some $n \times n$ matrix $\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$ where $D = \begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \vdots \\ \sigma_r \end{bmatrix}$.
Definition. A factorization $A = U\Sigma V^{\top}$ with U, V, Σ as above is a singular value decomposition of A . We sometimes abbreviate by writing SVD instead of singular

value decomposition.

If A is man and A = UEVT is an SVD then U is man, Z is man, V is nan

U and V in an SVD $A = U\Sigma V^{\top}$ are not uniquely determined by A, but Σ is.

- The columns of U are called *left singular vectors* of A.
- **The columns of** V are called *right singular vectors* of A.

Proof that an SVD of A exists. Let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the eigenvalues of $A^{\top}A$. The singular values of A are $\sigma_i = \sqrt{\lambda_i}$ for each i = 1, 2, ..., n. Let v_1, v_2, \ldots, v_n be a list of corresponding orthonormal eigenvectors for $A^{\top}A$. Then $\lambda_{r+1} = \cdots = \lambda_n = 0$ and Av_1, Av_2, \ldots, Av_r is orthogonal basis for Col A. For each $i = 1, 2, \ldots, r$, define $u_i = \frac{1}{\|Av_i\|} Av_i = \frac{1}{\sqrt{\lambda_i}} Av = \frac{1}{\sigma_i} Av_i$. * If rank A = m, then we're done: U=[u,-un] () Find eignals of ATA V=[v, -- vn] Take square roots Find onthornmal eignectors vi v2. Vn for ATA 2 : [6's,] Define U; = (unit vector in dir of Avi) for i=1,2,..., rank A=r

If rank A < m: Then u_1, u_2, \ldots, u_r is an orthonormal basis for Col A.

We can choose vectors $u_{r+1}, u_{r+2}, \ldots, u_m \in \mathbb{R}^m$ such that the extended list of vectors u_1, u_2, \ldots, u_m is an orthonormal basis for \mathbb{R}^m . Make any such choice, and define

$$U = \begin{bmatrix} u_1 & u_2 & \dots & u_m \end{bmatrix} \quad \text{and} \quad V = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}.$$

These matrices are orthogonal by construction, and

$$AV = \begin{bmatrix} Av_1 & Av_2 & \dots & Av_n \end{bmatrix}$$

= $\begin{bmatrix} Av_1 & Av_2 & \dots & Av_r & 0 & \dots & 0 \end{bmatrix} = \begin{bmatrix} \sigma_1 u_1 & \sigma_2 u_2 & \dots & \sigma_r u_r & 0 & \dots & 0 \end{bmatrix}.$

If Σ is the matrix given in the theorem, then we also have

 $U\Sigma = \begin{bmatrix} \sigma_1 u_1 & \sigma_2 u_2 & \dots & \sigma_r u_r & 0 & \dots & 0 \end{bmatrix} = AV$ so $U\Sigma V^{\top} = AVV^{\top} = AI = A$, which confirms the theorem statement.

Example. Again suppose
$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$
.

To find a singular value decomposition for A, there are three steps.

1. Find an orthogonal diagonalization of $A^{\top}A$.

 $A^{\top}A$ is a 3 × 3 matrix, and by the usual methods of row reducing $A - \lambda I$ to find a basis for Nul $(A - \lambda I)$ for each eigenvalue λ , you can check that

$$v_1 = \begin{bmatrix} 1/3\\ 2/3\\ 2/3 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -2/3\\ -1/3\\ 2/3 \end{bmatrix}, \quad \text{and} \quad v_3 = \begin{bmatrix} 2/3\\ -2/3\\ 1/3 \end{bmatrix}$$

is an orthonormal basis of \mathbb{R}^3 consisting of eigenvectors of $A^{\top}A$. The corresponding eigenvalues are $\lambda_1 = 360$, $\lambda_2 = 90$, and $\lambda_3 = 0$. 2. Set up V and Σ . Following the proof of the theorem, we have

$$V = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ 2 & -1 & -2 \\ 2 & 2 & 1 \end{bmatrix} \text{ and } D = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}$$

for $\sigma_1 = \sqrt{\lambda_1} = \sqrt{360}$ and $\sigma_2 = \sqrt{\lambda_2} = \sqrt{90}$.
Since Σ has the same size as A , we get $\Sigma = \begin{bmatrix} \sqrt{360} & 0 & 0 \\ 0 & \sqrt{90} & 0 \end{bmatrix}$.
3. Construct U . We have $U = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$ where $u_i = \frac{1}{\sigma_i} A v_i$.
In this case you can compute that
 $A \vee , \qquad \blacksquare \quad u_1 = \frac{1}{\sqrt{360}} \begin{bmatrix} 18 \\ 6 \end{bmatrix} \text{ and } u_2 = \frac{1}{\sqrt{90}} \begin{bmatrix} 3 \\ -9 \end{bmatrix} = \frac{1}{\sigma_i} A v_i$

which means that we can write $U = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 & 1\\ 1 & -3 \end{bmatrix}$.

Ġ

Putting everything together produces the singular value decomposition

$$A = U\Sigma V^{\top} = \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix} \begin{bmatrix} \sqrt{360} & 0 & 0 \\ 0 & \sqrt{90} & 0 \end{bmatrix} \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ -2/3 & -1/3 & 2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}.$$

Be careful to note that the third matrix factor is the transpose V^{\top} rather than V.

One application of SVDs is to show the existence of pseudo-inverses:

Definition. A *pseudo-inverse* of an $m \times n$ matrix A is an $n \times m$ matrix A^+ with

$$AA^+A = A$$
 and $A^+AA^+ = A^+$.

Example: If A is invertible, then $A^+ = A^{-1}$ is the pseudo-inverse of A.

Theorem. Every matrix A has a pseudo-inverse, which can be computed as follows. If $A = U\Sigma V^{\top}$ is a singular value decomposition, and Σ^{+} is the matrix formed by transposing Σ and then replacing all of its nonzero entries by their reciprocals. The $A^{+} = V\Sigma^{+}U^{\top}$ is a pseudo-inverse for A. Proof. See lecture notes. Key step is to check that $\Sigma\Sigma^{+}\Sigma = \Sigma$ and $\Sigma^{+}\Sigma\Sigma^{+} = \Sigma^{+}$ Where $\Sigma^{+} = \int_{-}^{+} \int_{-}$

Example. If
$$V$$
 E V^{T}
SVP $A = U\Sigma V^{\mathsf{T}} = \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix} \begin{bmatrix} \sqrt{360} & 0 & 0 \\ 0 & \sqrt{90} & 0 \end{bmatrix} \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ -2/3 & -1/3 & 2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$

then a pseudo-inverse is provided by

$$A^{+} = \begin{bmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{360} & 0 \\ 0 & 1/\sqrt{90} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix}$$

One can show that the pseudo-inverse is uncase (but we won't hove this).

satisfies
$$A^+A A^+ = A^+$$
 and $A A^+A = A$

•