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1 Last time: symmetric matrices

A matrix A 1\ symmetric if AT = A

This happens if and only if A is square and A;; = A;; for all 7, j.

1 2. : 1 2.
* Example. [ 5 3 } is symmetric but [ 3 9 } is not.

A matrix U ig| orthogonal if U is invertible and U~ = U T.I

This happens precisely when U is square with orthonormal columns.

An n x n matrix A is
and a diagonal mat

orthogonally diagonalizable

if there is an orthogonal matrix U

A Dsuhithal A=0D0U T=UDU".

In this case, columphs of U are an orthonormal basis for R™ consisting of eigenvectors
for A, and eigenvdlues of these eigenvectors are the diagonal entries of D.

A= UDUT

20pu w/D dicqma)






The following summarizes the main results from last time:

Theorem. A =V pu‘f = u Du.\ A * AT

(1) A square matrix is prthogonally diagonalizablefif and only if it i symmetric.s

(2) Eigenvectors with different eigenvalues for a symmetric matrix are orthogonal.

(3) All (complex) eigenvalues of a symmetric matrix A are real. The characteristic
polynomial of A has all real roots and can be completely factored as

det(A—al)= (N —2)( Ay — )+ (N, — 2)

for some (not necessarily distinct) real numbers Aj, Ag,..., A\, € R.

App\- of (3) To show Ima a polynowe\ PG s

all rea\ roos, just needdo fino
A=A' wit po = dek(A- 11)






Vae Ve z(v-¥)(vav) for any vw €C

T
Example. Suppose A = [CbL 2] for some a,b € R. A = A

How does the preceding theorem apply to this generic 2-by-2 matrix? Since
a— b . . 2 32 o .
edet A—xal) det[ b a_gj}—(a ) =b"=(a—b—2x)(a+b—x),
the eigenvalues of A are a — b and a + b.

* The vector [ _1 } is an eigenvector for A with eigenvalue a — b. [L [‘\) [

* The vector { 1 } is an eigenvector for A with eigenvalue a + b.

These eigenvectors are orthogonal, as predicted by the theorem. We can convert
them to unit vectors by multiplying each vector by the reciprocal of its length.

\' rep\Qce veW by v “



' 9 =510 T
note s = [T he) & 00 % {D
(e:(64)

This gives the orthonormal eigenvectors
S (00,0+0)

. L ] ]_ 1
Undt vectorg? [ 1] a5
which form an orthonormal basis for R?. So

[“ b} —A=UDU'=UDUT
b a

0 a+bd

Chedk: [ \ L ;’.‘\ [q;k :u:) [.:-z H

WhereU:I[ } 1]andD:[G_b 0].
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2 Singular value decomposition

Today, we’ll prove the existence of! singular value decompositions,) which give a sort

of approximate orthogonal diagonalization for any matrix, not just symmetric ones.
D

———y

Let A be an m x n matrix.
* Thel| AT A is a symmetric n x n matrix,lsince (ATA)T = AT(AT)T = ATA.

It follows from our results last time that AT A has all real eigenvalues.

A stronger statement holds.
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Lemma. All eigenvalues of A" A are nonnegative real numbers{ln fact, if X\ is an
eigenvalue of AT A and v € R" is a unit vector with A" Av = Av, then \ = ||Av|2.

Proof. If v € R has ||v]| =1 and AT Av = \v then
0< ||Av||2 = (Av)e(Av) = (A’U)T(AU) =v AT Av = UT()\U) = )\(UTU) = )\||v||2 =\
O

The preceding lemma allows us to make the following definition.

Definition. Let A\; > Xy > --- > )\, > 0 be the eigenvalues of AT A arranged in
decreasing order. Define o; = \/\; fori=1,2,...,n.

The numbers o1 > 09 > --- > 0, > 0 are the singular values of A.

The singular values of a matrix A are the squares roots of the eigenvalues of
AT A, which are guaranteed to be nonnegative (so have well-defined square roots).

n= ¥ cdumns of A det (,ATA“'-B = (A-9) - (A1)
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3 cds 33

411 14 80 100 40
Example. Suppose A = [8 . _2]. Then ATA=§ 100 170 140
40 140 200

This matrix A" A has characteristic polynomial

L’ det(ATA — xI) = (360 — )(90 — x)z

so the eigenvalues of AT A ar¢ \; = 360, A\, = 90, and A3 = 0.
The singular values of A are o; = v/360 = 610 > 09 = /90 = 3v/10 > 03 = 0.
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A sequel to the lemma above, about the eigenvectors of AT A:

Suppose vy, vs,...,v, is an orthonormal basis of R" composed of eigenvectors of
ATA. Assume that if \; € R is eigenvalue of v; then A\; > Xy > -+ > \,..

Theorem. Suppose A has r nonzero singular values.

Then Awvq, Avs, ..., Av, is an orthogonal basis for the column space of A.

Consequently rank A = 7.

Proof. Choose indices 7 # j. Then v; e v; = 0 so also v; ® A\ju; = 0. Then
(AUZ')TAUJ' = ’UZ-TATAUJ' = viT()\jvj) =V; ® )\j’Uj =0.
This shows that Avy, Avs, ..., Av, are orthogonal vectors in Col A.

Since ||Av;|| = v/A; > 0, these vectors are nonzero, so are linearly independent.

Inkailite reagm: Ne vedoss vi vy - Ve (s zremk A)

Qre orveg. vadin§ vedat (or UnY  h-ov- gphece ol Reme
coadins vectors oF covrefpording n-oin ellioge whon wubiplied by A



Fact from covtor: | Avill = 43,

To see that these vectors span the column space of A, suppose y € ColAa j s A*

Then y = Az for some vector x € R", which we can write as & fove A

T = C1U1 + CUg + + -+ + CpUp a‘ v“ aie ur‘ & m‘

for some ¢q,¢o,...,c, € R.

{ If i > r then Av; = 0 since ||Av;|| = VA = 0.

Therefore

y = Ax = ci Avy+ca Avg+- - '—I—CTAUT—|—€T+1AUT+1 + o4 C"AU’B = 1 Avi+cAvg+- - -+, Av,..

A:=0

-~
=0

We conclude th){ Avq, Avg, ..., Av, \9 a basis for Col A.

LN fpan (olA(md are odogmme))

* Corollary. For any matrix A: rank A = number of nonzero singular values of A.
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Theorem (Existence of SVDs). Let] A be an m x n matrix with rank r.

Suppose g, > g9 > --- > 0, are the nonzero singular values of A.

Then We (ﬁ\\ea on SVD h A

'\0" U is some m x m orthogonal matrix.
uﬂiqw V' is some n x n orthogonal matrix.

01

““Qq“ [E is the m x n matrix X = { 13 8 ] where D =

Or

Definition. A factorization A = USV T with U, V, ¥ as above is a singular value
decomposition of A. We sometimes abbreviate by writing SVD instead of singular
value decomposition.
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U and V in an SVD A = UXV T are not uniquely determined by A, but ¥ is.
* The columns of U are called left singular vectors of A.
* The columns of V' are called right singular vectors of A.

Proof that an SVD of A ewists. Let \y > Xy > --- > \,, be the cigenvalues of AT A. 0
The singular values of A are o; = \/\; for each i = 1,2,...,n. @

Let v1,vs,...,v, be a list of corresponding orthonormal eigenvectors for ATA.®
Then A\,y1 =--- =X\, =0 and Avy, Avs, ..., Av, is orthogonal basis for Col A.

For each i = 1,2,...,r, definefu; = m/lvi = ﬁAv = U%Avi.

¥ If vank A =™ e
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Then uq, us, . .., u, is an orthonormal basis for Col A. IG fﬂﬂk A &, h .

We can choose vectors 1, Up12, ..., U, € R™ such that the extended list of vectors
* Uy, Usg, . . ., Uy i an orthonormal basis for R™. Make any such choice, and define
Uz[ul Ug ... um} and Vz[vl Vg ... vn].

These matrices are orthogonal by construction, and

AV:[Avl Avy ... Avn}
:[Avl Avy ... Av, 0 ... 0]:[01u1 oty ... opu, 0 ... 0].

‘m If 3 is the matrix given in the theorem, then we also have

&Ma US=[ou oy ... ou, 0 ... 0]=AV

k‘ so UXVT = AVVT = Al = A, which confirms the theorem statement. O






vosbA =250
Example. Again suppose A :[;l 1; _1;1] ¢\ s {366 ,0& = \rq-.o

To find a singular value decomposition for A, there are three steps.
1. Find an orthogonal diagonalization of AT A.

AT A is a 3 x 3 matrix, and by the usual methods of row reducing A — A\I to
find a basis for Nul(A — AI) for each eigenvalue A, you can check that

1/3 —2/3 2/3
v=12/31, ve=1| —1/3 |, and  wy3=| —2/3
2/3 2/3 1/3

is an orthonormal basis of R? consisting of eigenvectors of AT A.

The corresponding eigenvalues are A\; = 360, Ao = 90, and A3 = 0.



2. Set up V and X. Following the proof of the theorem, we have

1 1 =2 2 0
V=lv v vw]=5]2 -1 =2 and D:{Ué ]
2 2 1 72
for o1 = VM = v/360 and oy = v/ A2 = /90. J
. . V360 00
Since ¥ has the same size as A, we gef X = { 0 V90 0
3. Construct U. We have U = [ U U ] where u; J%_Avi.

In this case you can compute that

d+ Av, sulzL[B} and

V360 | 6

which means that we can write

U:

L
V10

3
1

5]

rak A = ¥l (eag) case)



Putting everything together produces the singular value decompositiol

/3 2/3 2/3
A_yUsyT | 3/VI0 1/\@”% 00}

yvio v ][ o vao o | Y8 T8 T

Be careful to note that the third matrix factor is the transpose V' rather than V.






One application of SVDs is to show the existence of pseudo-inverses:

Definition. A pseudo-inverse of an m x n matrix A is an n x m matrix AT with

AATA=A and ATAAT = AT,

Example: If A is invertible, then AT = A~ is the pseudo-inverse of A.

Theorem. Every matrix A has a pseudo-inverse, which can be computed as follows.

is a singular value decomposition, and X% is the matrix formed by
transposing Y. and then replacing all of its nonzero entries by their reciprocals.

AT =VX*tUT Js a pseudo-inverse for A.

Proof. Seeflecture notes. Key step is to check that XX 7Y = Y and XTXXT =X+ O
o\

Where 5“': d o (‘QM Jize @S AT>



Example. If u 2 A", L

B T 3/@ 1/\/1_0 V360 0 0 1/3 2/3 2/3
Svp a-vm-[ 378 0B [ at][ 4 R

then a pseudo-inverse is provided by

‘e‘ao X 1/3 —2/3  2/3 1/4/360 0 VI 1/VI0
Pih‘m A —[2/3 -1/3 —2/3 0 1/4/90 L/m —3/\/ﬁ}'

2/3 2/3 1/3 0 0
+
One can show that Me pseudo-inverse is ulﬁ_\e (but we won’t uove this).

sxiebies AAAT=N' am AA*A=A






