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1 Last time: singular value decomposition

Let A be an m⇥ n matrix.

Then A>A is a symmetric n⇥ n matrix, eigenvalues all nonnegative real numbers.

If � is an eigenvalue of A>A and v 2 Rn is a unit vector with A>Av = �v, then

� = kAvk2.

Let �1 � �2 � · · · � �n � 0 be the eigenvalues of A>A arranged in decreasing order.

Define �i =
p
�i for i = 1, 2, . . . , n.

The nonnegative real numbers �1 � �2 � · · · � �n � 0 are the singular values of A.

SV0 : matrix factorization A-USUT
=USVT
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factorize det(ATA - xF) = (t,-x)-- (n-x)



Remember that a matrix U is orthogonal if U is invertible and U�1 = U>.

Theorem. Suppose �1 � �2 � · · · � �r > 0 = �r+1 = �r+2 = · · · = �n.

Then rankA = r and we can write A = U⌃V > where

U is some m⇥m orthogonal matrix.

V is some n⇥ n orthogonal matrix.

⌃ is the m⇥ n matrix with �i in each position (i, i) and zeros elsewhere.

The factorization A = U⌃V > is called a singular value decomposition or SVD of A.

The columns of U are called left singular vectors of A.

The columns of V are called right singular vectors of A.

A matrix A may have more than one SVD, but ⌃ will be the same in all of these.

A has rows (V is mxm)
Def of an SVD A has n cols (v is nxn)
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A pseudo-inverse of an m⇥ n matrix A is an n⇥m matrix A+ such that

AA+A = A and A+AA+ = A+.

If A is a square, invertible matrix, then A+ = A�1 is the pseudo-inverse of A.

Suppose A = U⌃V > is a singular value decomposition.

Construct ⌃+ by transposing ⌃ then replacing nonzero entries by reciprocals.

Then A+ = V ⌃+U> is a pseudo-inverse for A.

If A were invertible , then AAA=A and A"AA"=A
"
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=Suppose A = [d] ·
What's an SV0 for A?

The eigenvalues of ATA = A2 = [a] are 14 , twt

so singular values of A are a 2,a

A = (6 .2) =[i7(i : ] : (02)
j E VT

is an SVO for A- Permutation matrices are arthogonal,
and multiplying columns byE preserves
orthogonality of a matrix



To find a singular value decomposition for an m⇥ n matrix A:

1. Find the nonnegative eigenvalues �1 � �2 � · · · � �n � 0 of A>A.

Find a basis of eigenvectors for A>A for each eigenspace.

Convert each basis to an orthonormal basis using the Gram-Schmidt process.

Combine these to get an orthonormal list of eigenvectors v1, v2, . . . , vn.

2. Let V =
⇥
v1 v2 . . . vn

⇤
.

Form ⌃ as the m⇥n matrix with �i =
p
�i in position (i, i) for i = 1, 2, . . . ,m.

3. Let ui =
1
�i
Avi for i = 1, 2, . . . , r where r = rankA is maximal with �r 6= 0.

Find vectors ur+1, ur+2, . . . , um 2 Rm such that u1, u2, . . . , um are orthonormal.

This can be done by finding the pivot columns of
⇥
u1 u2 . . . ur e1 e2 . . . em

⇤

and then applying the Gram-Schmidt process. Finally let U =
⇥
u1 u2 . . . um

⇤
.

General algorithm to find an SV0 :
factoring

g
S detCATA-XI)

-> NulCATA-+F)

construct-&

·

&Bwhen ram

step is only complicatedFinally : A =UEVT
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= What's an SV0 for A =C ?

A is a permutation matrix and so A" =At. Therefore

ATA =( has eiguals +- trots

so A has singuals a = 02 = &=1 so anSo is

A = [ = /](" . ) = urt = u
VTU &
outhog

orthog
vEvT

More generally , wherever A" =AT, one SVO is A =AII



2 SVDs for symmetric matrices

When we first introduced singular value decompositions we said that they general-
ized the notion of “orthogonal diagonalization” for symmetric matrices.

How are SVDs are a generalization of the decomposition A = UDU> = UDU�1

that exists for a symmetric matrix?

Suppose A = A> is an n⇥ n symmetric matrix.

We know there are real numbers �1,�2, . . . ,�n 2 R such that

det(A� xI) = (�1 � x)(�2 � x) · · · (�n � x).

These are the eigenvalues of A. Some of these numbers could be negative.

I
Y



Suppose the eigenvalues are ordered such that |�1| � |�2| � · · · � |�n| � 0. Let

D =

2

6664

�1

�2

. . .
�n

3

7775
and E =

2

6664

e1
e2

. . .
en

3

7775
where ei =

(
+1 if �i � 0

�1 if �i < 0.

From previous lectures: there is an orthogonal n⇥n matrix U such that A = UDU>.

Proposition. An SVD for the symmetric matrix A = A> = UDU> is

A = U⌃V >

where ⌃ = DE and V = UE. The singular values of A are |�1| � |�2| � · · · � |�n|.

Proof. Need to check that �2
1 � �2

2 � · · · � �2
n are the eigenvalues of A>A = A2.

This follows since A2 is similar to D2. Checking that A = U⌃V > is routine.

DE = [ 1x2 ...)

&S
10fA =At decreasing abs value

A =vorror &)

&
10- [S) thene-[] Eure = e = I

VEVT : VOEEUT-VOUT





3 SVDs for 2⇥ 2 matrices

For intuition about what an SVD means, let’s consider SVDs for 2⇥ 2 matrices.

It is possible describe all 2⇥ 2 orthogonal matrices in a simple way:

Proposition. Every 2⇥ 2 orthogonal matrix has the form

cos ✓ � sin ✓
sin ✓ cos ✓

�
or


cos ✓ sin ✓
sin ✓ � cos ✓

�

for an angle 0  ✓ < 2⇡.

Proof. 1st column must be on the unit circle, so is of the form


cos ✓
sin ✓

�
.

2nd column must be of the unit vectors


� sin ✓
cos ✓

�
or


sin ✓

� cos ✓

�
orthogonal to 1st.

-> Cow
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Suppose U is a 2⇥ 2 orthogonal matrix.

The columns of U are two perpendicular radii of the unit circle.

If the second column is 90 degrees counterclockwise from the first column, then

detU = 1 and U =


cos ✓ � sin ✓
sin ✓ cos ✓

�
for some angle ✓.

Otherwise, second column must be 90 degrees clockwise from the first column, so

detU = �1 and U =


cos ✓ sin ✓
sin ✓ � cos ✓

�
for some angle ✓.

We can also describe the e↵ect of the mapping v 7! Uv for v 2 R2 as follows:

• If detU = 1 then v is rotated counter-clockwise by angle ✓.

• If detU = �1 then v is reflected across y = x then rotated by angle ✓ � ⇡
2 .

U = [u , un]=+
detU =+ det =+1

S
-> V is just rotation

&U combines rotation + reflection





The unit disc D is the set of vectors


v1
v2

�
2 R2 with v21 + v22  1.

Fix real numbers r1, r2 � 0. Let E be set of vectors


v1
v2

�
2 R2 with

(v1/r1)
2 + (v2/r2)

2  1.

When ri = 0 we consider (vi/ri)2 to be zero if vi = 0 and +1 if vi 6= 0.

We call E a (solid) standard ellipse.

Ala unit circle, unit sphere, unit ball,etc

VI

(v .vsl)
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possible
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by hand
with string





Proposition. It holds that E =

⇢
r1 0
0 r2

�
v : v 2 D

�
.

Proof.


r1 0
0 r2

�
v =


r1v1
r2v2

�
2 E i↵ (r1v1/r1)2 + (r2v2/r2)2 = v21 + v22  1.

The radii of E are the vectors ±

r1
0

�
and ±


0
r2

�
.

For each radius there is a choice of direction.

But any two orthogonal radii uniquely determine E .

standard ellipse
unit disc

↓ ↓= (2)0
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More generally, we refer to any rotation of the region E as a (solid) ellipse.

The radii of an ellipse formed by rotating E by some angle ✓ counterclockwise are

±

r1 cos ✓
r1 sin ✓

�
and ±


�r2 sin ✓
r2 cos ✓

�

which are formed by rotating the radii of E counterclockwise by the same angle.

Any two orthogonal radii once again completely determine the ellipse.

standard ellipse

↓

R

-
-9

->





Proposition. Suppose U is some orthogonal 2 ⇥ 2 matrix and ⌃ =


r1 0
0 r2

�
.

Then the set of vectors n
U⌃v 2 R2 : v 2 D

o

is an ellipse with radii of lengths r1 and r2, and every such ellipse arises in this way.

Proof. Reflecting a standard ellipse across the line y = x gives another standard
ellipse. The result follows since {⌃v : v 2 D} is a standard ellipse and U is a
rotation matrix times a permutation matrix.

already know that 20 is a standard ellipse

since U is a combin of rotation & reflection, result follows

&) = USD

S
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Proposition. Let A be a 2⇥ 2 matrix. Then the region {Av : v 2 D} is an ellipse.

The lengths of the radii of this ellipse are the singular values of A.

Proof. Let A = U⌃V > be a singular value decomposition.

Then {V >v : v 2 D} = D as orthogonal matrices preserve lengths.

Thus {Av : v 2 D} = {U⌃v : v 2 D} so result follows by previous proposition.

Car Taking d
= (d) in previous prop , shows that VTO =0

when V is arthogonal 2x2 as then vT is also orthogonal

AE

AO = UEVTO = UED = ellipse w/radii 0, and On

A

⑭~tha



suppose an so for A is A = [u.z](7/ /val
Then we have this picture:

V E Vent

miplyby

#
D = Swellwil=19

Note : Avi =Ev = Us(o) -v() = qu , likewise Arm = &42



Let’s now try to say what a SVD A = U⌃V > means physically for a 2⇥ 2 matrix.

Suppose the ellipse E = {Av : v 2 D} has radii of lengths �1 � �2 � 0.

As noted in the proposition, we then have ⌃ =


�1 0
0 �2

�
.

The columns of V =
⇥
v1 v2

⇤
are two orthogonal radii of the unit disc D.

These vectors have the property that Avi is a radius of E with length ri.

This holds as Av1 = U⌃V >v1 = U⌃V �1v1 = U⌃e1 = U


�1

0

�
and Av2 = U


0
�2

�
.

The matrix U is always an orthogonal matrix whose inverse transforms the ellipse
E back to a standard ellipse (whose radii belong to the x- and y-axes).

If detA and detV have the same sign then U is a rotation matrix.

Otherwise U is a rotation matrix with its columns interchanged.

->

rescaling these

-> given as



A 2 ⇥ 2 matrix A parametrizes a linear transformation R2 ! R2 by telling us the
images of the standard basis elements e1, e2 2 R2 (images are the columns of A).

The SVD of A parametrizes a linear transformation R2 ! R2 in a di↵erent way.

It tells us which orthogonal radii of the unit disc (the columns of V ) are mapped
to which orthogonal radii of the image ellipse (the columns of U give the directions
of these radii and the entries of ⌃ give their lengths)





We can extend this interpretation of the SVD to higher dimensions, after setting

Dn = {v 2 Rn : v • v  1}

defining an m-dimensional ellipse to be a set of the form {U⌃v : v 2 Dn} where U
is an orthogonal m⇥m matrix and ⌃ is an m⇥ n matrix with nonzero entries only
on the main diagonal.

If A is m ⇥ n, then the first r = rankA columns of V in an SVD A = U⌃V > are
still orthogonal vectors of the unit disc that are transformed to orthogonal radii of
some m-dimensional ellipse (in which m � r radii have length zero), while the last
n� r columns are an orthogonal basis for NulA.




