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1 Last time: singular value decomposition

LetfA be an m x n matrix.
Then AT A is a symmetric n X n matrix, eigenvalues all nonnegative real numbers.

a If X is an eigenvalue of AT A and v € R" is a unit vector with A" Av = \v, then
A= ||Av||2!o

Let Ay > Xy > --- > )\, > 0 be the eigenvalues of AT A arranged in decreasing order.

Define o; = /\; fori =1,2,...,n.
The nonnegative real numbers o; > 09 > --+ > 7, > 0 are the singular values of A.
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Remember that a matrix U is orthogonal if U is invertible and U~ = U".

Theorem. Suppose 0y > 09>+ >0, >0=0,.1 = Opyo =+ = 0p. V M‘Cm
Ther rank A = r and we can write| A = ULV " |where '?
e=P [/ is some m x m orthogonal matrix. ve,
e=d) V' is some n x n orthogonal matrix.

Y is the m x n matrix with o; in each position (i,7) and zeros elsewhere.

The factorization A = UXV " is called alsingular value decomposition or SVD of A.

The columns of U are called left singular vectors of A.
The columns of V' are called right singular vectors of A.

A matrix A may have more than one SVD, but ¥ will be the same in all of these.
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A pseudo-inverse of an m x n matrix A is an n X m matrix A" such that

AATA=A and ATAAT = AT,

If A is a square, invertible matrix, then A* = A~! is the pseudo-inverse of A.

Suppose A = ULV T is a singular value decomposition.

Construc{ YT by transposing ¥ then replacing nonzero entries by reciprocals.

Then AT = VX*TUT is a pseudo-inverse for A. y_\__’ ‘;
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To find a singular value decomposition for an m x n matrix A:

A (acroring
wf -*1
G Find the nonnegative eigenvalues A\; > XAy > --- >\, > 0 of AT A. JQ"' ‘A A )

Find a basis of eigenvectors for AT A for each eigenspace. o Nﬂ‘ (ATA '.‘I)

Convert each basis to an orthonormal basis using the Gram-Schmidt process.

Combine these to get anjorthonormal list of eigenvectors vy, v, ..., vy.

W&(@Let‘/:[m vy ... U
v Form Y as the m x n matrix Witn position (i,4) fori =1,2,...,m.

and @ Letlu; = %Avi or i =1,2,...,r where r = rank A is maximal with o, # 0.
i Find vectors w41, Upyo, ..., uy, € R™such that uy, us, ..., u,, are orthonormal.
This can be done by finding the pivot columns of [ Uy Us U £ P 2 }
and then applying the Gram-Schmidt process. Finally le1U = [ Uy Uy ... Up ]
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2 SVDs for symmetric matrices

ju
When we first introduced singular value decompositions we said that they general-

ized the notion of “orthogonal diagonalization” for symmetric matrices.

How are SVDs are a generalization of the decomposition A = UDU'" = UDU™' & AT
that exists for a symmetric matrix?

é Suppose A = AT is an n x n symmetric matrix.

We know there are real numbers A, \o, ..., A\, € R such that
det(A—xl)= (N —x)( Ny — )+ (N — ).

These are the eigenvalues of A. Some of these numbers could be negative.
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Suppose the eigenvalues are ordered such that |[A;| > [Ag| > -+ > |A\,| > 0. Let

)\1 €1

A2 €2 1 if N>
D = and FE = where e; = * 1 A2 0
-1 if \; <O0.

An €n

From previous lectures: there is an orthogonal n x n matrix U such that A = UDU .

. \Proposition. An SVD for the symmetric matrix A = A" = UDU " is
% "~ 3,.,T

e H
A =V0V vy ( \ A=UxV"

where ¥ = DE nle = UE. [The singular values of A are |A1| > [Ag| > -+ > |\,

Proof. Need to check that A2 > X2 > --- > A2 are the eigenvalues OI ATA = A2
This follows since A? is similar to D?. Checking that A = ULV is routine. O
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3 SVDs for 2 x 2 matrices

For intuition about what an SVD means, let’s consider SVDs for 2 x 2 matrices.

a It is possible describe all 2 x 2 orthogonal matrices in a simple way: W

vola¥ion
Proposition. Every 2 x 2 orthogonal matrix has the form o
cosf) —siné cos 6 sin @ : cor% NZ\O‘\I’@] [
sinff  cosf or sinf —cosf N 0 -1
for an angle 0 < 6 < 27. | 4 eﬂec\%

Av
&

cos 6 }

Proof. 1st column must be on the unit circle, so is of the form { sin 0

cos 0 —cosf

2nd column must be of the unit vectors [ —sind } or [ sin 6 } orthogonal to 1st.
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The columns of U are two perpendicular radii of the unit circle.

Suppose|U is a 2 x 2 orthogonal matrix.

If the second column is 90 degrees counterclockwise from the first column, then

detU =1 and U= [COSH —sin

snf  cosd } for some angle 6.

Otherwise, second column must be 90 degrees clockwise from the first column, so

cos sin 6

detU = -1 and U:{sinﬁ o8l

} for some angle 6.

We can also describe the effect of the mapping v — Uv for v € R? as follows:
e If det U = 1 then v is rotated counter-clockwise by angle §. == \, '€ S"ﬁ h\d'io\
o If det U = —1 then v is reflected across y = x then rotated by angle  — 7.

& U (ombines retobior &+ refleclion
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The unit disc D is the set of vectors { Y1 ] € R? with v} + 03 < 1. (v V) s\)

U2

Fix real numbers 1,7y > 0. Let &£ be set of vectors [ 21 ] e R? with
2

(v1/71)? + (va/r2)? < 1.

When r; = 0 we consider (v;/r;)? to be zero if v; = 0 and +oo if v; # 0.

We call € a (solid)|standard ellipse.
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§tomar ellipse
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Proposition. It holds that £ = { [ r(l] TO } vivE D}. e ® [0 ':\ p
2
Proof. { mo 0 } v = [ i } € Eiff (ryvy/r)? + (rave/re)? = v + 02 < 1. O
0 T2 X%

The radii of € are the vectors { 7’(1) } and =+ { TO } .
p)

For each radius there is a choice of direction.

But any two orthogonal radii uniquely determine &.
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More generally, we refer to any rotation of the region & as a (solid) ellipse.

The radii of an ellipse formed by rotating £ by some angle 6 counterclockwise are

i{rlcose} and i[—msm@]

r18in 6 79 COS 0

which are formed by rotating the radii of £ counterclockwise by the same angle.

aAny two orthogonal radii once again completely determine the ellipse.
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Proposition. Suppose U is some orthogonal 2 x 2 matrix and X = [ T(l) ro }
2
Then the set of vectors

{UZU€R2:UGD} S“ip

is an ellipse with radii of lengths r; and r5, and every such ellipse arises in this way.

Proof. Reflecting a standard ellipse across the line y = x gives another standard
ellipse. The result follows since {Xv :

: v € D} is a standard ellipse and U is a
rotation matrix times a permutation matrix.
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Proposition. Let A be a 2 x 2 matrix. Then the region {Av : v € D} is an ellipse.

The lengths of the radii of this ellipse are the singular values of A.

Proof. Let

A=UxVT

be a singular value decomposition.

Then {V v : v € D} = D as orthogonal matrices preserve lengths.

Thus {Av : v € D} = {UXv : v € D} so result follows by previous proposition. [

AD:= USV'D =

VED = elipie w/ved™ € and O,
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-* Let’s now try to say what a SVD A = UXV " means physically for a 2 x 2 matrix.

Suppose the ellipsp € = {Av : v € D} has radii of lengths o7 > 09 > 0.

As noted in the proposition, we then havé > = [ 0(1) JO } .
2

_§The columns of V' = [ V1 U } are two orthogonal radii of the unit disc D.

These vectors have the property that Av; is a radius of £ with length ;.

0 02

This holds as Av, = USV "oy = ULV "lyy = UXe; = U[al}andAvgzU[ 0].

The matrix U is always an orthogonal matrix whose inverse transforms the ellipse
€ back to a standard ellipse (whose radii belong to the z- and y-axes).

If det A and det V' have the same sign then U is a rotation matrix.

Otherwise U is a rotation matrix with its columns interchanged.



A 2 x 2 matrix A parametrizes a linear transformation R?> — R? by telling us the
images of the standard basis elements e, eo € R? (images are the columns of A).

The SVD of A parametrizes a linear transformation R? — R? in a different way.

It tells us which orthogonal radii of the unit disc (the columns of V') are mapped
to which orthogonal radii of the image ellipse (the columns of U give the directions
of these radii and the entries of X give their lengths)






We can extend this interpretation of the SVD to higher dimensions, after setting
D'={veR":vev <1}

defining an m-dimensional ellipse to be a set of the form {UXv : v € D"} where U
is an orthogonal m x m matrix and ¥ is an m X n matrix with nonzero entries only
on the main diagonal.

If Ais m x n, then the first » = rank A columns of V in an SVD A = UXV T are
still orthogonal vectors of the unit disc that are transformed to orthogonal radii of
some m-dimensional ellipse (in which m — r radii have length zero), while the last
n — r columns are an orthogonal basis for Nul A.






