Lecture # 24 - MATH 2121

Outline:

Review SVD, Jefs and props
What does SVD actually mean

SVD: matrix factorization A=UEVT

1 Last time: singular value decomposition

Let A be an $m \times n$ matrix.

Then $A^{\top}A$ is a symmetric $n \times n$ matrix, eigenvalues all <u>nonnegative real numbers</u>.

 \rightarrow If λ is an eigenvalue of $A^{\top}A$ and $v \in \mathbb{R}^n$ is a unit vector with $A^{\top}Av = \lambda v$, then

 $\lambda = \|Av\|^2. \ge 0$

Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$ be the eigenvalues of $A^{\top}A$ arranged in decreasing order. Define $\sigma_i = \sqrt{\lambda_i}$ or $i = 1, 2, \dots, n$. The nonnegative real numbers $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$ are the *singular values* of A. **factorize** def(A^TA - χ T) = ($\lambda_1 - \chi$) --- ($A_n - \chi$)

A has moons (U is mem) A has m cals (V is mem)

Singular

Remember that a matrix U is *orthogonal* if U is invertible and $U^{-1} = U^{\top}$.

Theorem. Suppose $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0 = \sigma_{r+1} = \sigma_{r+2} = \cdots = \sigma_n$. (\checkmark Nonzero Ther rank A = r and we can write $A = U\Sigma V^{\top}$ where

 $\rightarrow U$ is some $m \times m$ orthogonal matrix.

Def of an SVD

V is some $n \times n$ orthogonal matrix.

 Σ is the $m \times n$ matrix with σ_i in each position (i, i) and zeros elsewhere. The factorization $A = U\Sigma V^{\top}$ is called a *singular value decomposition* or *SVD* of *A*.

The columns of U are called *left singular vectors* of A.

The columns of V are called *right singular vectors* of A.

A matrix A may have more than one SVD, but Σ will be the same in all of these.

 $\Sigma = \begin{bmatrix} \sigma_1 & \sigma_2 \\ & \sigma_2 \end{bmatrix}$ Same size as A, all unlabeled entries are Zero

If A were investible, then $AA^{A} = A$ and $A^{A}AA^{A} = A^{A}$ $A^{A}AA^{A} = A^{A}$

A *pseudo-inverse* of an $m \times n$ matrix A is an $n \times m$ matrix A^+ such that

 $AA^+A = A$ and $A^+AA^+ = A^+$.

If A is a square, invertible matrix, then $A^+ = A^{-1}$ is the pseudo-inverse of A.

Suppose $A = U\Sigma V^{\top}$ is a singular value decomposition.

Construct Σ^+ by transposing Σ then replacing **nonzero entries by reciprocals**.

Then $A^+ = V \Sigma^+ U^\top$ is a pseudo-inverse for A.

× mo 1×

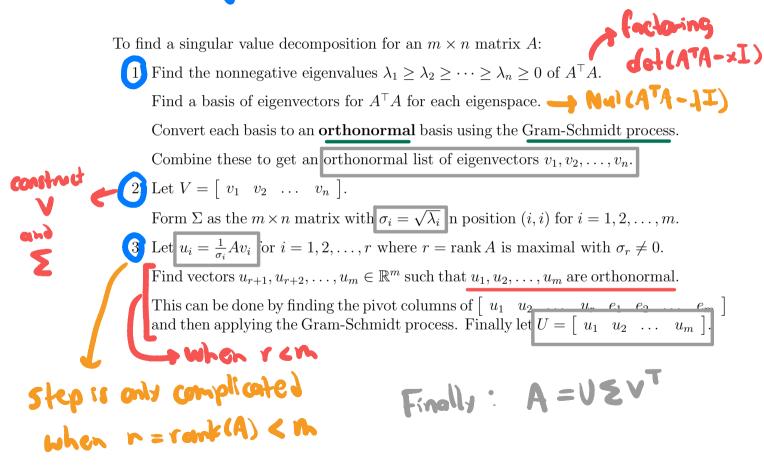
Convert an SVD
$$A = U \Sigma V^{T}$$

to the formula $A^{+} = V \Sigma^{+} U^{T}$
where $\Sigma^{+} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{bmatrix}$ some size as A^{T}
all unlabeled entries zero

Ex Suppose
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -2 \end{bmatrix}$$
. What's an SVD for A ?
The eigenvalues of $A^{T}A = A^{2} = \begin{bmatrix} 10 \\ 04 \end{bmatrix}$ are $\lambda_{1} = 4, \lambda_{2} = 1$
so singular values of A are $\sigma_{1} = 2$, $\sigma_{2} = 1$ so
 $\begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 & -2 \end{bmatrix}$
is an SVD for A . Permutation matrices are arthrogonal,

Permutation matrices are orthogonal, and multiplying columns by ±1 presorves orthogonality of a matrix

General algorithm to find an SVD:



Ex What's an SVD for $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$? A is a pomulation matrix and so A" = A". Therefore $A^T A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ has eigends $-1_1 = -1_2 = -1_3 = 1$ so A has Sing vals $\sigma_1 = \sigma_2 = \sigma_3 = 1$ so an SVD is $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ U S VT υΣν More generally, wherever A"=A", one SVD is A = AII

2 SVDs for symmetric matrices

When we first introduced singular value decompositions we said that they generalized the notion of "orthogonal diagonalization" for symmetric matrices.

How are SVDs are a generalization of the decomposition $A = UDU^{\top} = UDU^{-1}$ = A^{\top} that exists for a symmetric matrix?

Suppose $A = A^{\top}$ is an $n \times n$ symmetric matrix.

We know there are real numbers $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ such that

$$\det(A - xI) = (\lambda_1 - x)(\lambda_2 - x)\cdots(\lambda_n - x).$$

These are the eigenvalues of A. Some of these numbers could be negative.

 $A = A^T$ decreasing abs value Suppose the eigenvalues are ordered such that $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n| \ge 0$. Let From previous lectures: there is an orthogonal $n \times n$ matrix U such that $A = UDU^{\top}$. **Proposition.** An SVD for the symmetric matrix $A = A^{\top} = UDU^{\top}$ is $A = U\Sigma V^{\top}$ where $\Sigma = DE$ and V = UE. The singular values of A are $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$. *Proof.* Need to check that $\lambda_1^2 \ge \lambda_2^2 \ge \cdots \ge \lambda_n^2$ are the eigenvalues of $A^{\top}A = A^2$. This follows since A^2 is similar to D^2 . Checking that $A = U\Sigma V^{\top}$ is routine. Ex If $O = \begin{bmatrix} -s & s \\ u & -1 \end{bmatrix}$ then $E = \begin{bmatrix} -1 & t \\ t & -1 \end{bmatrix} \begin{bmatrix} v & v & e^T & v & e^T & z \end{bmatrix}$ $u \ge v^T = u D E E^T v^T = u D v^T$

3 SVDs for 2×2 matrices

For intuition about what an SVD means, let's consider SVDs for 2×2 matrices. COW It is possible describe all 2×2 orthogonal matrices in a simple way: rotation **Proposition.** Every 2×2 orthogonal matrix has the form $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \text{ or } \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ for an angle $0 \leq \theta < 2\pi$. *Proof.* 1st column must be on the unit circle, so is of the form $\begin{vmatrix} \cos \theta \\ \sin \theta \end{vmatrix}$. 2nd column must be of the unit vectors $\begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}$ or $\begin{bmatrix} \sin\theta \\ -\cos\theta \end{bmatrix}$ orthogonal to 1st. $\begin{bmatrix} \lambda \\ \chi \end{bmatrix} \top \begin{bmatrix} \gamma \\ -\lambda \end{bmatrix}$

$$U = \begin{bmatrix} u, u_2 \end{bmatrix} \longleftrightarrow \qquad \overset{u}{\longrightarrow} & \overset{u}{$$

The columns of U are two perpendicular radii of the unit circle.

If the second column is 90 degrees counterclockwise from the first column, then

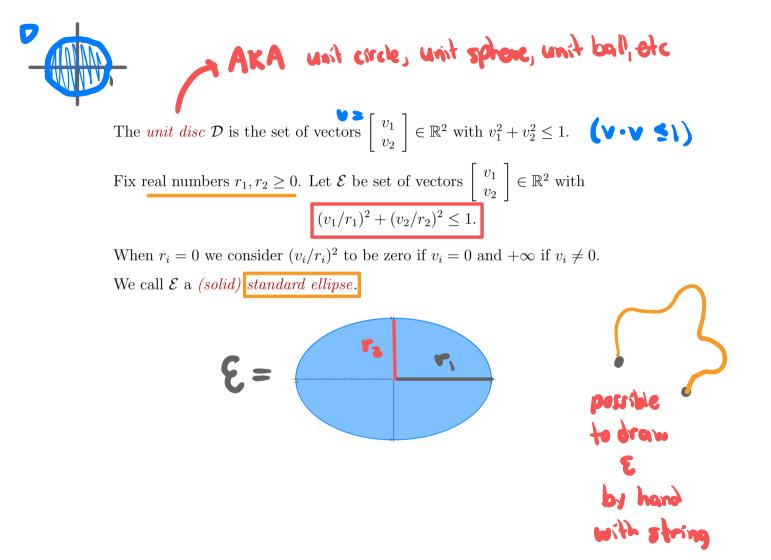
det
$$U = 1$$
 and $U = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ for some angle θ .

Otherwise, second column must be 90 degrees clockwise from the first column, so

det
$$U = -1$$
 and $U = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix}$ for some angle θ .

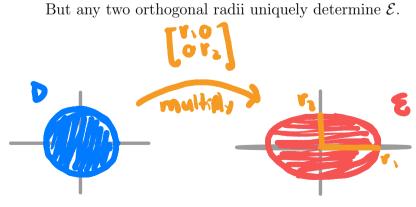
We can also describe the effect of the mapping $v \mapsto Uv$ for $v \in \mathbb{R}^2$ as follows:

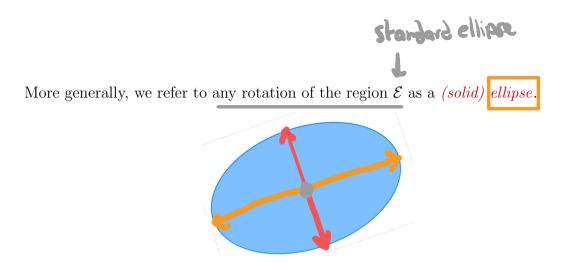
- If det U = 1 then v is rotated counter-clockwise by angle θ . $\rightarrow \bigvee$ is just relation. If det U = -1 then v is reflected across y = x then rotated by angle $\theta \frac{\pi}{2}$.



Standard ellipse
Proposition. It holds that
$$\mathcal{E} = \left\{ \begin{bmatrix} r_1 & 0 \\ 0 & r_2 \end{bmatrix} v : v \in \mathcal{D} \right\}.$$
 $\mathcal{E} = \begin{bmatrix} c & c \\ 0 & c \\ 0 & r_2 \end{bmatrix} \mathcal{D}$
Proof. $\begin{bmatrix} r_1 & 0 \\ 0 & r_2 \end{bmatrix} v = \begin{bmatrix} r_1 v_1 \\ r_2 v_2 \end{bmatrix} \in \mathcal{E}$ iff $(r_1 v_1/r_1)^2 + (r_2 v_2/r_2)^2 = v_1^2 + v_2^2 \leq 1.$

The radii of \mathcal{E} are the vectors $\pm \begin{bmatrix} r_1 \\ 0 \end{bmatrix}$ and $\pm \begin{bmatrix} r_2 \\ r_2 \end{bmatrix}$. For each radius there is a choice of direction.





The radii of an ellipse formed by rotating ${\mathcal E}$ by some angle θ counterclockwise are

$$\pm \left[\begin{array}{c} r_1 \cos \theta \\ r_1 \sin \theta \end{array} \right] \quad \text{and} \quad \pm \left[\begin{array}{c} -r_2 \sin \theta \\ r_2 \cos \theta \end{array} \right]$$

which are formed by rotating the radii of \mathcal{E} counterclockwise by the same angle. Any two orthogonal radii once again completely determine the ellipse.

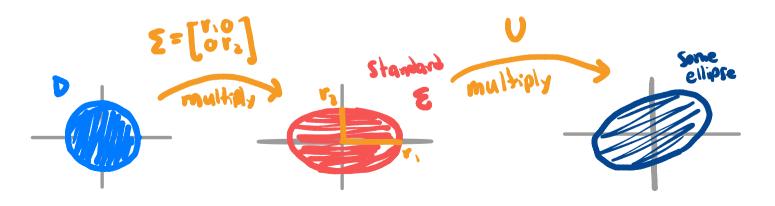
already know that ED is a standard ellipse since U is a combin. of rotation & reflection, result follow

Proposition. Suppose U is some orthogonal 2×2 matrix and $\Sigma = \begin{bmatrix} r_1 & 0 \\ 0 & r_2 \end{bmatrix}$. Then the set of vectors

$$\left\{ U\Sigma v \in \mathbb{R}^2 : v \in \mathcal{D} \right\}$$
 a V2D

is an ellipse with radii of lengths r_1 and r_2 , and every such ellipse arises in this way.

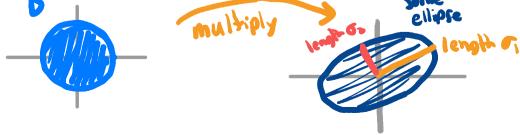
Proof. Reflecting a standard ellipse across the line y = x gives another standard ellipse. The result follows since $\{\Sigma v : v \in \mathcal{D}\}$ is a standard ellipse and U is a rotation matrix times a permutation matrix.



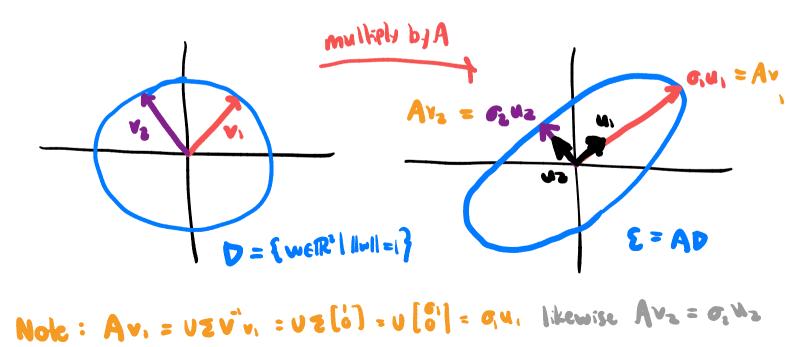
Cor. Taking $\Sigma = \begin{bmatrix} 10 \\ 01 \end{bmatrix}$ in provious pice, shows that $\nabla^T \nabla = P$ when ∇ is orthogonal 2×2. As then ∇^T is also orthogonal AD

Proposition. Let A be a 2×2 matrix. Then the region $\{Av : v \in \mathcal{D}\}$ is an ellipse. The lengths of the radii of this ellipse are the singular values of A.

Proof. Let $A = U\Sigma V^{\top}$ be a singular value decomposition. Then $\{V^{\top}v : v \in \mathcal{D}\} = \mathcal{D}$ as orthogonal matrices preserve lengths. Thus $\{Av : v \in \mathcal{D}\} = \{U\Sigma v : v \in \mathcal{D}\}$ so result follows by previous proposition.



Suppose an SVD for A is $A = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & \sigma_2 \\ \sigma_2 & \sigma_2 \end{bmatrix} \begin{bmatrix} v_1 & v_2 \end{bmatrix}$ Then we have this picture: $V = V = V^T = V^T$



Let's now try to say what a SVD $A = U\Sigma V^{\top}$ means physically for a 2×2 matrix. Suppose the ellips $\mathcal{E} = \{Av : v \in \mathcal{D}\}$ has radii of lengths $\sigma_1 \ge \sigma_2 \ge 0$. As noted in the proposition, we then have $\Sigma = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}$. The columns of $V = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$ are two orthogonal radii of the unit disc \mathcal{D} . These vectors have the property that Av_i is a radius of \mathcal{E} with length r_i . This holds as $Av_1 = U\Sigma V^{\top}v_1 = U\Sigma V^{-1}v_1 = U\Sigma e_1 = U\begin{bmatrix} \sigma_1 \\ 0 \end{bmatrix}$ and $Av_2 = U\begin{bmatrix} 0 \\ \sigma_2 \end{bmatrix}$.

The matrix U is always an orthogonal matrix whose inverse transforms the ellipse \mathcal{E} back to a standard ellipse (whose radii belong to the x- and y-axes).

If $\det A$ and $\det V$ have the same sign then U is a rotation matrix.

Otherwise U is a rotation matrix with its columns interchanged.

A 2 × 2 matrix A parametrizes a linear transformation $\mathbb{R}^2 \to \mathbb{R}^2$ by telling us the images of the standard basis elements $e_1, e_2 \in \mathbb{R}^2$ (images are the columns of A).

The SVD of A parametrizes a linear transformation $\mathbb{R}^2 \to \mathbb{R}^2$ in a different way.

It tells us which orthogonal radii of the unit disc (the columns of V) are mapped to which orthogonal radii of the image ellipse (the columns of U give the directions of these radii and the entries of Σ give their lengths)

We can extend this interpretation of the SVD to higher dimensions, after setting

$$\mathcal{D}^n = \{ v \in \mathbb{R}^n : v \bullet v \le 1 \}$$

defining an *m*-dimensional ellipse to be a set of the form $\{U\Sigma v : v \in \mathcal{D}^n\}$ where *U* is an orthogonal $m \times m$ matrix and Σ is an $m \times n$ matrix with nonzero entries only on the main diagonal.

If A is $m \times n$, then the first $r = \operatorname{rank} A$ columns of V in an SVD $A = U\Sigma V^{\top}$ are still orthogonal vectors of the unit disc that are transformed to orthogonal radii of some *m*-dimensional ellipse (in which m - r radii have length zero), while the last n - r columns are an orthogonal basis for Nul A.